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Abstract

This article is devoted to the analysis of semilinear, parabolic, Stochastic Partial Differential
Equations, with slow and fast time scales. Asymptotically, an averaging principle holds: the slow
component converges to the solution of another semilinear, parabolic, SPDE, where the nonlinearity
is averaged with respect to the invariant distribution of the fast process.

We exhibit orders of convergence, in both strong and weak senses, in two relevant situations,
depending on the spatial regularity of the fast process and on the covariance of the Wiener noise in
the slow equation. In a very regular case, strong and weak orders are equal to 1

2 and 1. In a less regular
case, the weak order is also twice the strong order.

This study extends previous results concerning weak rates of convergence, where either no stochastic
forcing term was included in the slow equation, or the covariance of the noise was extremely regular.

An efficient numerical scheme, based on Heterogeneous Multiscale Methods, is briefly discussed.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Systems with multiple time scales, and possibly stochastic forcing terms, appear in all
fields of modern science, at fundamental and applied levels, for instance in physics, chemistry,
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biology, engineering, etc... Understanding how properties at micro-scales transfer to macro-
scales, and the design of efficient numerical schemes, are still challenging issues. In the
mathematical literature, powerful limiting procedures have been developed, e.g. averaging and
homogenization techniques are available. We refer for instance to [14,15,30,36] for monographs
devoted to the study of multiscale stochastic systems.

The averaging principle can be interpreted as a law of large numbers, in cases where a
slow component is driven by an equation with coefficients depending on a fast component,
which is an ergodic stochastic process: when the separation of time scales goes to infinity,
the slow component converges to the solution of an averaged equation, where coefficient have
been averaged out with respect to some invariant probability distribution for the fast component.
For results concerning the averaging principle for Stochastic Differential Equations (SDEs), we
refer to the pioneering work [26], and to the following extensions since then, e.g. [27,28,32,39]
(this list is not exhaustive).

In this article, the aim is to study the averaging principle for a class of parabolic, semilinear,
Stochastic Partial Differential Equations (SPDEs)

∂xϵ(t, ξ )
∂t

= ∆xϵ(t, ξ ) + f
(
xϵ(t, ξ ), yϵ(t, ξ )

)
+ Ẇ (t, ξ ), t ≥ 0, ξ ∈ D,

xϵ(t, ·)|∂D = 0, t ≥ 0,
xϵ(0, ·) = x0, yϵ(0, ·) = y0,

where the domain is D = (0, 1)d , for some d ∈ {1, 2, 3}, and Ẇ is a Gaussian noise which
is white in time, and white or correlated in space. For a mathematically precise formulation,
see (1), in the framework of [12], and Section 2. The fast component is given by yϵ(t, ·) =

y(ϵ−1t, ·), where y is assumed to be an ergodic process, independent of the Wiener process W
which appears in the slow equation, i.e. the equation for the slow component xϵ .

The averaging principle for such SPDE systems has been proved in a very general framework
in [9,11] for globally Lipschitz coefficients, and later in [10] in the case of non-globally
Lipschitz continuous coefficients. In these results, no order of convergence, in terms of ϵ → 0,
is provided. The first study of orders of convergence for the averaging principle in the SPDE
case, was performed by the author in [3]. The main motivation for studying the rates of
convergence is the construction of efficient numerical schemes, based on the Heterogeneous
Multiscale Methods, see [4] and references therein.

In recent years, many works have been devoted to the study of the averaging principle
for different classes of SPDEs. For instance, see [13,16,17,19,21,31], in the parabolic SPDE
case. See [18,20], for some parabolic–hyperbolic systems. See [22,23] in the Schrödinger
equations case. Finally, see [1,2], where stochastic fluid mechanics equations are considered,
with motivations coming from physics.

As is usual when dealing with stochastic equations, orders of convergence are understood
in two senses. On the one hand, strong convergence deals with the mean-square error. On the
other hand, weak convergence is related to convergence in distribution, considering sufficiently
smooth test functions. If the averaging principle for SDEs (with globally Lipschitz continuous
coefficients) is considered, the strong order of convergence is 1

2 , whereas the weak order
is 1, and these results are optimal in general. The technique of [26] is perfectly suited to
prove strong convergence results, whereas to study weak convergence, approaches based on
asymptotic expansions of solutions of Kolmogorov equations are very efficient, see [27,28].
The generalization to SPDEs, where there is no Wiener noise in the slow equation, has been
considered in [3]. If a stochastic forcing term is present, much less is known. Indeed, for
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SPDEs, i.e. for infinite dimensional stochastic equations, the analysis of the order of weak
convergence and of the Kolmogorov equations, is notoriously challenging, we refer for instance
to [6] for a recent contribution, and the discussions and references therein.

The aim of this manuscript is to study the weak order of convergence in the averaging
principle, for semilinear, parabolic, SPDEs, with a stochastic forcing in the slow equation. Note
that this question has been recently investigated in [19] with a very strong regularity condition
on the covariance of the noise, which implies a high spatial regularity of the process xϵ . In fact,
using this condition, the techniques of [3] may be applied, essentially with no modification,
hence the weak order of convergence equal to 1 obtained in [19]. The objective of this article
is to weaken the regularity conditions required to obtain strong and weak rates of convergence
in the averaging principle. The main finding is that a trade-off between regularity properties of
the slow and the fast components is at play. First, we prove that the strong (resp. weak) order
of convergence is 1/2 (resp. 1), under an appropriate condition (the very regular case), which
is in general much weaker than the assumption in [19]. Second, we weaken the condition (the
less regular case), and exhibit appropriate strong and weak orders of convergence depending
on the regularity properties of the slow and fast component. In that case, as expected, the weak
order is twice the strong order, however, whether these results are optimal is not known, indeed
the proof is based on an approximation argument and may not be optimal. For statements of
the main results, see Theorems 4.5, 4.7 and 4.8.

Even if the main motivation of this work is the analysis of the weak order of convergence,
a detailed analysis of the strong order of convergence is also provided, for two reasons. First,
it allows us to check that the weak order is twice the strong order, as expected. Second,
the technique of proof is different from the one used in previous publications on the strong
convergence in the averaging principle for SPDEs, such as [3] instead of employing the
technique introduced by Khasminskii in [26], the Poisson equation technique described for
instance in [36] is generalized to a situation where mild solutions of SPDEs are considered.

Several relevant questions are left for future works. For instance, in this manuscript, it is
assumed that the fast component yϵ is not coupled with the slow component xϵ , and it would
be interesting to study the coupled case.

This article is organized as follows. Section 2 is devoted to introducing the necessary
functional analysis framework and to stating precise assumptions. Regularity parameters αmax
and γmax, which are used to define the very regular and less regular cases, are introduced in
Assumptions 2.6 and 2.7 respectively. Section 3 presents the averaged equation.

The main results of this article are stated and discussed in Section 4. First, in the very
regular case, see Assumption 4.1 and Section 4.1, Theorem 4.5 and 4.7 state that the strong
(resp. weak) order is equal to 1

2 (resp. 1). Second, in the less regular case, see Assumption 4.2
and Section 4.2, Theorem 4.8 show that the strong order is (at least) βmax =

αmax
1+αmax−γmax

≤
1
2

and the weak order is (at least) 2βmax.
Auxiliary but fundamental and nontrivial regularity results concerning a family of Poisson

equations are studied in Section 5.
Proofs of the main results are provided in Sections 6, 7 and 8.
Finally, in Section 9, a class of temporal discretization numerical schemes, based on

Heterogeneous Multiscale Methods, see [4], is presented. The goal of the schemes is to
approximate the slow component xϵ , and to avoid conditions on the time step size h of the
type h = o(ϵ), which arise when discretizing naively the slow–fast system, and are prohibitive
when ϵ → 0. The guideline of the method is the averaging principle (and the error estimates
proved in this article are crucial for a full error analysis): one may approximate the solution
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of the averaged equation, and estimate the (unknown) averaged equation using a numerical
scheme for the fast process, with different and independent time step sizes at the slow and fast
scales. Section 9 presents the construction of the method and error estimates. In particular, in
certain regimes, one recovers an averaging principle at the discrete-time level. Section 9 may
be skipped by readers which are interested only in the averaging principle for the SPDEs.

2. Setting

The objective of this section is to state precise assumptions, and to derive moment estimates
(uniform in ϵ), for the following Stochastic Evolution Equation

d X ϵ(t) = AX ϵ(t)dt + F
(
X ϵ(t), Y ϵ(t)

)
dt + dW Q(t). (1)

This is the abstract formulation of a parabolic, semilinear, SPDE, in the framework of [12]. The
stochastic forcing is given by a Q-Wiener process W Q . In addition, Y ϵ is another stochastic
process with values in L2. In this work, it is assumed that Y ϵ and W Q are independent.

We are interested in the regime of a small parameter ϵ, and of a timescale separation:
Y ϵ(t) = Y (tϵ−1). As a consequence, X ϵ is referred to as the slow component, and Y ϵ as
the fast component.

For instance, the process Y may be the solution of an equation of the type

dY (t) = AY (t)dt + G(Y (t))dt + dwq (t),

where
(
wq (t)

)
t≥0 is a q-Wiener process, independent of W Q . Then Y ϵ solves an equation of

the type

dY ϵ(t) =
1
ϵ

(
AY ϵ(t) + G(Y ϵ(t))

)
dt +

1
√
ϵ

dwq (t),

in which case one has the equality in distribution (but not almost surely) of the processes(
Y (tϵ−1)

)
t≥0 and

(
Y ϵ(t)

)
t≥0. The assumption that Y is independent of W Q means that G

does not depend on the slow component, thus the fast evolution is not coupled with the slow
evolution.

Considering the coupled situation, where G depends also on the slow component, would
substantially modify some computations below. However, the treatment of the uncoupled case,
considered in this manuscript, already requires the use of original and nontrivial arguments. The
objective of this manuscript is to exhibit these arguments, in the simplest nontrivial framework.
The treatment of the coupled case is left for future work.

2.1. Notation

Let D = (0, 1)d , with dimension d ∈ {1, 2, 3}, denote a domain. For any p ∈ [1,∞],
let L p

= L p(D), and denote by | · |L p the associated L p-norm. When p = 2, H = L2 is
a separable, infinite dimensional, Hilbert space, with norm | · |H = | · |L2 , and inner product
denoted by ⟨·, ·⟩.

For any p, q ∈ [2,∞), let L(L p, Lq ) denote the space of bounded linear operators from L p

to Lq . The associated norm is denoted by ∥ · ∥L(L p,Lq ).
For p ∈ [2,∞), let R(L2, L p) ⊂ L(L2, L p) denote the space of γ -Radonifying operators

from L2 to L p. Recall that a linear operator Ψ ∈ L(L2, L p) is a γ -radonifying operator, if
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the image by Ψ of the canonical Gaussian distribution on L2 extends to a Borel probability
measure on L p. The space R(L2, L p) is equipped with the norm ∥ · ∥R(L2,L p) defined by

∥Ψ∥
2
R(L2,L p) = Ẽ

⏐⏐ ∑
n∈N

γnΨ fn
⏐⏐2

L p ,

where (γn)n∈N is any sequence of independent standard (mean 0 and variance 1) Gaussian
random variables, defined on a probability space (Ω̃ , F̃ , P̃), with expectation operator denoted
by Ẽ, and ( fn)n∈N is any complete orthonormal system of L2. When p = 2, R(L2, L2) =

L2(L2) is the space of Hilbert–Schmidt operators on L2, and ∥Ψ∥
2
R(L2,L2)

= Tr(ΨΨ ⋆), where
Tr(·) is the trace operator, and Ψ ⋆ is the adjoint of Ψ .

Note that, for any p ∈ [2,∞), there exists cp ∈ (0,∞) such that for any Ψ ∈ R(L2, L p),

∥Ψ∥
2
R(L2,L p) ≤ cp

⏐⏐ ∑
n∈N

(Ψ fn)2
⏐⏐

L
p
2
.

Finally, recall the left and right ideal property for γ -Radonifying operators: for all p, q ∈

[2,∞), for all operators L1 ∈ L(L p, Lq ), Ψ ∈ R(L2, L p) and L2 ∈ L(L2, L2), then
L1Ψ L2 ∈ R(L2, Lq ), and

∥L1Ψ L2∥R(L2,Lq ) ≤ ∥L1∥L(L p,Lq )∥Ψ∥R(L2,L p)∥L2∥L(L2,L2).

Let
(
W (t)

)
t≥0 denote a cylindrical Wiener process defined on L2, on a probability space

(Ω ,F ,P). For any T ∈ (0,∞) and p ∈ [2,∞), the L p-valued Itô integral
∫ T

0 Φ(t)dW (t)
is defined for predictable processes Φ ∈ L2(Ω × (0, T ),R(L2, L p)). Moreover, there exists
cp ∈ (0,∞), such that

E
[
|

∫ T

0
Φ(t)dW (t)|2L p

]
≤ cp

∫ T

0
E∥Φ(t)∥2

R(L2,L p)dt.

In the case p = 2, the inequality above is replaced by the following Itô isometry property:

E
[
|

∫ T

0
Φ(t)dW (t)|2L2

]
=

∫ T

0
E∥Φ(t)∥2

R(L2,L2)dt.

Higher order moments of stochastic integrals are estimated using Burkholder–Davis–Gundy
type inequalities.

For statements, proofs, and generalizations, of the results above, we refer for instance
to [7,34,35] for Banach space valued stochastic integrals, and to [12] for the Hilbert space
case.

If ϕ : L2
→ R is a function of class C1, its first order derivative Dϕ(x) ∈ L(L2,R) may be

identified with a element of L2, thanks to Riesz Theorem: as a consequence, for all x, h ∈ L2,
we write Dϕ(x).h = ⟨Dϕ(x), h⟩.

2.2. The linear operator A

Let A denote the unbounded linear operator on H = L2, with{
D(A) = H 2(D) ∩ H 1

0 (D),
Ax = ∆x, ∀ x ∈ D(A),

where ∆ is the Laplace differential operator in dimension d . The domain is chosen in order to
consider homogeneous Dirichlet boundary conditions in evolution equations. It is a standard
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result (see for instance [37]) that there exist a complete orthonormal system
(
en

)
n∈N of L2, and

a non-decreasing sequence
(
λn

)
n∈N of positive real numbers such that

Aen = −λnen, ∀ n ∈ N , λn ∼
n→∞

cdn
2
d , sup

n∈N
|en|L∞ < ∞. (2)

The operator A can also be considered as an unbounded linear operator on L p, for all
p ∈ [2,∞), in a consistent way as p varies. The linear operator A generates an analytic
semigroup

(
et A

)
t≥0, on L p for p ∈ [2,∞). For α ∈ (0, 1), the linear operators (−A)−α and

(−A)α are constructed in a standard way, see for instance [37, Chapter 2, Section 2.6]:

(−A)−α =
sin(πα)
π

∫
∞

0
t−α(t I−A)−1dt , (−A)α =

sin(πα)
π

∫
∞

0
tα−1(−A)(t I−A)−1dt,

where (−A)α is defined as an unbounded linear operator on L p. In the case p = 2, note that

(−A)−αx =

∑
i∈N⋆

λ−α
i ⟨x, ei ⟩ei , x ∈ H,

(−A)αx =

∑
i∈N⋆

λαi ⟨x, ei ⟩ei , x ∈ D2
(
(−A)α

)
=

{
x ∈ H ;

∞∑
i=1

λ2α
i ⟨x, ei ⟩

2 < ∞

}
.

Since
(
et A

)
t≥0 is an analytic semigroup on L p, one has the following regularization property:

for all p ∈ [2,∞) and α ∈ [0, 1], there exists C p,α ∈ (0,∞) such that for all x ∈ L p, one has

|(−A)αet Ax |L p ≤ C p,αt−α
|x |L p , (3)

see [37, Chapter 2, Theorem 6.13].
Introduce also the kernel function K associated with the semigroup

(
et A

)
t≥0:

et Aϕ(ξ ) =

∫
D

K (t, ξ, η)ϕ(η)dη. (4)

The kernel function K satisfies the two following properties: there exist c,C ∈ (0,∞), such
that for all t > 0 and ξ, η ∈ D, one has

0 ≤ K (t, ξ, η) ≤ Ct−
d
2 exp

(
−ct−1

|ξ − η|2
)
,

∫
D

K (t, ξ, η)dη ≤ 1. (5)

To conclude this section, useful calculus inequalities are stated. They are employed in a
crucial way in Section 5.

Proposition 2.1. For any α ∈ [0, 1
2 ), any κ ∈ (0, 1

2 − α), and any p ∈ [2,∞), there exists
Cα,κ,p ∈ (0,∞), such that for all x1, x2 ∈ L2p,

|(−A)α(x1x2)|L p ≤ Cα,κ,p|(−A)α+κx1|L2p |(−A)α+κx2|L2p .

Moreover, let φ : (z1, z2) ∈ R × R ↦→ φ(z1, z2) ∈ R be a Lipschitz continuous function of
class C1. Then there exists Cα,κ,p(φ) ∈ (0,∞) such that for all x, y1, y2 ∈ L2p,

|(−A)α
(
φ(x, y2) − φ(x, y1)

)
|L p ≤ Cα,κ,p(φ)

(
1 + |(−A)α+κx |L2p

+

∑
j=1,2

|(−A)α+κ y j |L2p

)⏐⏐(−A)α+κ (y2 − y1)
⏐⏐

L2p .

Remark 2.2. In the statement of Proposition 2.1 (and in the whole article), the following
convention is used to simplify the presentation: one mentions that x ∈ L p, whereas |(−A)αx |L p ,
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for some p and α > 0, appears on the right-hand side. It should be understood that the
inequality is valid only if |(−A)αx |L p < ∞, whereas if |(−A)αx |L p = ∞ then the inequality
provides no information.

For the first inequality, we refer to [6, Section 3.2] and [38]. The second inequality is a
straightforward consequence of the first inequality and of a first order Taylor formula:

φ(x, y2) − φ(x, y2) =

∫ 1

0
∂z2φ(x, λy2 + (1 − λ)y1)(y2 − y1)dλ.

Finally, the following inequalities are used below: for every κ > 0, there exists Cκ ∈ (0,∞)
such that for all x ∈ D((−A)

d
4 +κ ),

|x |L∞ ≤ Cκ |(−A)
d
4 +κx |L2 , |(−A)−

d
4 −κx |L2 ≤ Cκ |x |L1 . (6)

The first inequality is interpreted as a Sobolev inequality, and is a straightforward consequence
of the properties (2) of eigenvalues λn and eigenfunctions en of A:

|x |L∞ ≤ sup
n∈N

|en|L∞

∑
n∈N

|⟨x, en⟩|λ
d
4 +κ

n

λ
d
4 +κ

n

≤ sup
n∈N

|en|L∞

(∑
n∈N

1

λ
d
2 +2κ
n

) 1
2 |(−A)

d
4 +κx |L2 .

The second inequality is obtained by a duality argument. As a consequence, one obtains the
following inequality: for all x ∈ L1,

|et Ax |L2 ≤ Cκ t−
d
4 −κ

|x |L1 . (7)

2.3. Assumptions on F and Q

The coefficient F in (1) is defined as the Nemytskii operator (see Definition 2.5) associated
with a smooth function f (see Assumption 2.3).

Assumption 2.3. Assume that f : (z1, z2) ∈ R × R ↦→ f (z1, z2) ∈ R is a function of class
C4, with bounded derivatives of order 1, . . . , 4.

Remark 2.4. In the calculations below, quantitative estimates will only depend on the bounds
on the derivatives of f of order 1, 2, 3. Existence of the fourth order derivative is only employed
to justify some calculations in Section 5.

Definition 2.5. For all p, q ∈ [2,∞), the mapping F : L p
× Lq

→ L p∧q is defined as the
Nemytskii operator, with F(x, y) = f

(
x(·), y(·)

)
for all x ∈ L p, y ∈ Lq .

Note that the definition of F is consistent when parameters p and q vary.
Observe that, for any p, q ∈ [2,∞), and fixed y ∈ Lq , then the mapping x ∈ L p

↦→

F(x, y) ∈ L p∧q is globally Lipschitz continuous, uniformly in y ∈ Lq , and in p, q . More
precisely,

Lip
(
F(·, y)

)
≤ sup

(z1,z2)∈R2
|∂z1 f (z1, z2)|.

In addition, if y ∈ Lq and x1, x2 ∈ L p, then one has F(x2, y) − F(x1, y) ∈ L p, with
|F(x2, y) − F(x1, y)|L p ≤ sup(z1,z2)∈R2 |∂z1 f (z1, z2)| |x2 − x1|L p .

Nemytskii operators, in general, are not Fréchet differentiable. In addition, second and higher
order derivatives are defined only in certain directions (consistently with Hölder inequality).
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Gâteaux derivatives of F can be computed as follows: for all x, y ∈ L2 and h ∈ L p, h1 ∈ L p1 ,
h2 ∈ L p2 and h3 ∈ L p3 ,

Dx F(x, y).h = ∂z1 f (x, y)h ∈ L p,

Dxx F(x, y).(h1, h2) = ∂2
z1

f (x, y)h1h2 ∈ Lq2 ,

Dxxx F(x, y).(h1, h2, h3) = ∂3
z1

f (x, y)h1h2h3 ∈ Lq3 ,

(8)

with 1
q2

=
1
p1

+
1
p2

and 1
q3

=
1
p1

+
1
p2

+
1
p3

.

The stochastic perturbation in the slow component of (1) is given by a Q-Wiener pro-
cess. The covariance operator Q is a bounded, self-adjoint, operator on L2, and satisfies
Assumption 2.6.

Assumption 2.6. There exists a family of nonnegative real numbers
(
qn

)
n∈N and a complete

orthonormal system
(

fn
)

n∈N of H , such that supn∈N qn < ∞, and

Q =

∑
n∈N

qn⟨ fn, ·⟩ fn.

Let Q
1
2 be defined as

Q
1
2 =

∑
n∈N

√
qn⟨ fn, ·⟩ fn.

It is assumed that fn ∈ L∞ for all n ∈ N, and that

sup
n∈N

| fn|L∞ < ∞.

Finally, assume that there exists αmax ∈ (0, 1] such that, for all α ∈ [0, αmax) and p ∈ [2,∞),

Mα,p(Q
1
2 , T ) =

(∫ T

0
∥(−A)αet A Q

1
2 ∥

2
R(L2,L p)dt

) 1
2 < ∞. (9)

The Q-Wiener process W Q is then defined on a probability space (Ω ,F ,P), as follows:

W Q(t) =

∑
n∈N

√
qnγn(t) fn,

where
(
γn

)
n∈N is a sequence of independent real-valued Wiener processes. Note that W Q(t) =

Q
1
2 W (t) where W (t) =

∑
n∈N γn(t) fn is a cylindrical Wiener process.

Note that, for all T ∈ (0,∞), Mα,p(Q
1
2 , T ) < ∞ if and only if Mα,p(Q

1
2 , 1) < ∞. Thus

the condition expressed in (9) does not depend on the time T , it only depends on Q, and on
the parameters α and p.

A sufficient condition for (9) to hold is the following: for all α ∈ [0, αmax) and p ∈ [2,∞),
∥(−A)α−

1
2 Q

1
2 ∥R(L2,L p) < ∞. For another class of sufficient conditions, see Assumption 4.2

and Proposition 8.1.

2.4. Assumptions on the fast process

The fast process
(
Y ϵ(t)

)
t≥0 in (1) is defined in terms of an ergodic Markov process Y , such

that, for all t ≥ 0,

Y ϵ(t) = Y (
t
ϵ

).
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Assumption 2.7. The process Y =
(
Y (t)

)
t≥0 is a continuous, ergodic, Markov process on

H = L2. Its unique invariant probability distribution is denoted by µ.
Moreover, it is assumed that Y and the Q-Wiener process W Q are independent.
Finally, there exists a parameter γmax ∈ (0, 1

2 ], such that the following estimates are satisfied:
for all γ ∈ [0, γmax), all p ∈ [2,∞), and M ∈ N, there exists Cγ,p,M ∈ (0,∞) such that

sup
t≥0

E|(−A)γY (t)|M
L p ≤ Cγ,p,M (1 + E|(−A)γY (0)|M

L p ), (10)∫
|(−A)γ y|

M
L pµ(dy) ≤ Cγ,p,M , (11)

The following standard notation is used:
(
Yy(t)

)
t≥0 denotes the Markov process with initial

condition Y (0) = y.
Another key assumption concerning the fast process deals with solvability of Poisson

equations, and on regularity properties of the solutions.

Assumption 2.8. Define admissible functions φ : H → R, to be such that, for some
q ∈ [2,∞), φ is twice Fréchet differentiable on Lq , and such that there exists C ∈ (0,∞)
such that for all y ∈ H , h, h1, h2 ∈ Lq ,

|Dφ(y).h| ≤ C |h|Lq , |D2φ(y).(h1, h2)| ≤ C |h1|Lq |h2|Lq .

Let L be the infinitesimal generator of the Markov process Y .
Assume that for any admissible function φ, the Poisson equation

− Lψ = φ −

∫
φdµ (12)

admits a unique solution such that
∫
ψdµ = 0, and that this solution is given by

ψ(y) =

∫
∞

0
E

[
φ(Yy(t)) −

∫
φdµ

]
dt. (13)

Moreover, for all γ ∈ [0, γmax), p ∈ [2,∞) and M ∈ N0, assume that there exists
Cγ,p,M ∈ (0,∞) such that the following property is satisfied. Let φ : H → R be an admissible
function, and assume that there exists C(φ) ∈ (0,∞), such that for all y1, y2 ∈ H

|φ(y2) − φ(y1)| ≤ C(φ)(1 + |(−A)γ y1|
M
L p + |(−A)γ y2|

M
L p )|(−A)γ (y2 − y1)|L p . (14)

Then the solution ψ of the Poisson equation (12) satisfies, for all y ∈ H ,

|ψ(y)| ≤ Cγ,p,M C(φ)(1 + |(−A)γ y|
M+1
L p ). (15)

A sufficient condition to have the estimate (15) satisfied is given by Proposition 2.9.

Proposition 2.9. Let Assumption 2.7 be satisfied. Assume that for all γ ∈ [0, γmax), p ∈ [2,∞)
and M ∈ N0, there exists Cγ,p,M ∈ (0,∞) such that for all y1, y2 ∈ L p,∫

∞

0

(
E|(−A)γ (Yy2 (t) − Yy1 (t))|M

L p

) 1
M dt ≤ Cγ,p,M |(−A)γ (y2 − y1)|L p .

Then the estimate (15) is satisfied.

Proof of Proposition 2.9. By stationarity, ψ is written as follows:

ψ(y) =

∫ ∫
∞

0
E[φ(Y y(t)) − φ(Y z(t))]dtµ(dz).
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Then, using (14) and Assumption 2.7,

|ψ(y)| ≤ C(φ)
∫ ∫

∞

0

(
E|(−A)γ (Y y(t) − Y z(t))|2L p

) 1
2
(
1 + (E|(−A)γY y(t)|2M

L p )
1
2

+ (E|(−A)γY z(t)|2M
L p )

1
2
)
dtµ(dz)

≤ Cγ,p,M (φ)
∫ ∫

∞

0

(
E|(−A)γ (Y y(t) − Y z(t))|2L p

) 1
2 dt

(
1 + |(−A)γ y|

M
L p

+ |(−A)γ z|M
L p

)
µ(dz)

≤ Cγ,p,M (φ)
∫

|(−A)γ (y − z)|L p
(
1 + |(−A)γ y|

M
L p + |(−A)γ z|M

L p
)
µ(dz)

≤ Cγ,p,M
(
1 + |(−A)γ y|

M+1
L p

)
. □

2.5. Well-posedness and moment estimates

We are now in position to state (and give a sketch of proof of) a well-posedness result
for (1), for arbitrary ϵ > 0. Without loss of generality, it is assumed that ϵ ∈ (0, 1).

We also state moment estimates for X ϵ(t). These estimates are uniform with respect to the
parameter ϵ ∈ (0, 1). Recall that αmax is defined in Assumption 2.6 and that it is assumed that
αmax > 0.

Proposition 2.10. Let T ∈ (0,∞). For any x0 ∈ H, any y0 ∈ H, and any ϵ ∈ (0, 1), the
SPDE (1) admits a unique mild solution, with initial conditions X ϵ(0) = x0, Y ϵ(0) = y0, such
that for all t ∈ [0, T ],

X ϵ(t) = et Ax0 +

∫ t

0
e(t−s)A F(X ϵ(s), Y ϵ(s))ds +

∫ t

0
e(t−s)AdW Q(s). (16)

In addition, the following moment estimates are satisfied, uniformly with respect to ϵ ∈ (0, 1):
for any T ∈ (0,∞), α ∈ [0, αmax), p ≥ 2 and M ∈ N, there exists Cα,p,M (T ) ∈ (0,∞), such
that for all x0, y0 ∈ L p, such that |(−A)αx0|L p < ∞,

sup
ϵ∈(0,1)

sup
t∈[0,T ]

E
[
|(−A)αX ϵ(t)|M

L p
]

≤ Cα,p,M (T )
(
1+|(−A)αx0|

M
L p +|y0|

M
L p +Mα,p(Q

1
2 , T )M)

.

(17)

Remark 2.11. Using the regularization property (3) of the semigroup
(
et A

)
t≥0, the moment

estimates (17) may be replaced with

sup
ϵ∈(0,1)

E
[
|(−A)αX ϵ(t)|M

L p
]

≤ Cα,p,M (T )
(
1 + t−αM

|x0|
M
L p + |y0|

M
L p + Mα,p(Q

1
2 , T )M)

.

Therefore the regularity assumption on the initial condition x0 may be relaxed.

We conclude this section with a sketch of proof of Proposition 2.10.

Proof of Proposition 2.10. The existence and uniqueness of a mild solution (16) of (1) is
obtained by a standard fixed point argument, see for instance [12].

The proof of the moment estimates (17) combines the following observations. On the one
hand, owing to (3) and to Lipschitz continuity of F ,⏐⏐(−A)α

∫ t

0
e(t−s)A F(X ϵ(s), Y ϵ(s))ds

⏐⏐
L p ≤ C

∫ t

0
(t − s)−α

(
1 + |X ϵ(s)|L p + |Y ϵ(s)|L p

)
ds.
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On the other hand, owing to (9), see Assumption 2.6, the moment estimate

E|(−A)α
∫ t

0
e(t−s)AdW Q(s)|2L p ≤ cp

∫ T

0
∥(−A)αet A Q

1
2 ∥

2
R(L2,L p)dt

= cp Mα,p(Q
1
2 , T )2 < ∞

for the stochastic convolution, is easily obtained, in the case M = 2. Higher order moments
are estimated using a Burkholder–Davis–Gundy type inequality.

The case α = 0 is treated using Gronwall inequality, and then the case α ∈ (0, αmax) follows
from the estimates above.

This concludes the sketch of proof of Proposition 2.10. □

3. The averaged equation

Let us first define the so-called averaged coefficient F .

Definition 3.1. For any x ∈ L2, define

F(x) =

∫
F(x, y)dµ(y) ∈ L2, (18)

where µ is the unique invariant probability distribution of the ergodic process Y , see Assump-
tion 2.7.

Since F is the Nemytskii operator associated with a globally Lipschitz continuous function
f , using Assumption 2.7, it is straightforward to check that F(x) ∈ L p if x ∈ L p, for all
p ∈ [2,∞).

The derivatives of the averaged coefficient F satisfy the following estimates.

Proposition 3.2. For all p ∈ [2,∞), there exists C p ∈ (0,∞) such that for all h ∈ L p

sup
x∈L2

|DF(x).h|L p ≤ C p|h|L p . (19)

For all p ∈ [1,∞), and p1, p2 ∈ [2,∞), such that 1
p =

1
p1

+
1
p2

, there exists C p1,p2 ∈ (0,∞)
such that for all h1 ∈ L p1 and h2 ∈ L p2 ,

sup
x∈L2

|D2 F(x).(h1, h2)|L p ≤ C p1,p2 |h1|L p1 |h2|L p2 . (20)

For all p ∈ [1,∞), and p1, p2, p3 ∈ [2,∞), such that 1
p =

1
p1

+
1
p2

+
1
p3

, there exists

C p1,p2,p3 ∈ (0,∞) such that for all h1 ∈ L p1 , h2 ∈ L p2 and h3 ∈ L p3 ,

sup
x∈L2

|D3 F(x).(h1, h2, h3)|L p ≤ C p1,p2,p3 |h1|L p1 |h2|L p2 |h3|L p3 . (21)

Proof of Proposition 3.2. The derivatives of F are given by (8).
The conclusion follows using boundedness of the derivatives of f , the Hölder inequality,

and integrating with respect to dµ(y). □

We are now in position to state a well-posedness result for the averaged equation:

d X (t) = AX (t)dt + F(X (t))dt + dW Q(t). (22)
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Proposition 3.3. Let T ∈ (0,∞). For any x0 ∈ H, the SPDE (22) admits a unique mild
solution, with initial condition X (0) = x0, such that for all t ∈ [0, T ],

X (t) = et Ax0 +

∫ t

0
e(t−s)A F(X (s))ds +

∫ t

0
e(t−s)AdW Q(s). (23)

In addition, the following moment estimates are satisfied: for any T ∈ (0,∞), α ∈ [0, αmax)
(where αmax is defined in Assumption 2.6), p ≥ 2 and M ∈ N, there exists Cα,p,M (T ) ∈ (0,∞),
such that for all x0, y0 ∈ L p, such that |(−A)αx0|L p < ∞,

sup
t∈[0,T ]

E
[
|(−A)αX (t)|

M
L p

]
≤ Cα,p,M (T )

(
1 + |(−A)αx0|

M
L p + Mα,p(Q

1
2 , T )M)

. (24)

The proof is omitted. Existence and uniqueness of the mild solution follows from the
global Lipschitz continuity property of F (thanks to (19), see Proposition 3.2). The moment
estimates (24) are proved using the same arguments as in the proof of Proposition 2.10, in
particular using (9), see Assumption 2.6.

To conclude this section, introduce the infinitesimal generator associated with the averaged
equation (22):

Lϕ(x) = ⟨Dxϕ(x), Ax + F(x)⟩ +
1
2

∑
n∈N

qn D2
xϕ(x).

(
fn, fn

)
. (25)

This definition makes sense for sufficiently regular functions ϕ : L2
→ R.

4. Statements of the main results

The main results of this article, concerning the error in the averaging principle, are stated
in this section. We exhibit both strong and weak orders of convergence, with respect to ϵ. Two
situations need to be considered, depending on the regularity properties of the slow and the fast
component, more precisely in terms of αmax (defined in Assumption 2.6) and of γmax (defined
in Assumption 2.7).

Let us introduce Assumption 4.1 (resp. Assumption 4.2) which defines the very regular case
(resp. the less regular case).

Assumption 4.1. The parameters αmax and γmax satisfy the condition

αmax + γmax > 1.

Moreover, assume that Tr(Q) =
∑

n∈N qn < ∞.

Assumption 4.2. Assume that
(∑

n∈N q
ϱ
2

n
) 2
ρ < ∞, for some

ϱ ∈

{
[2,∞], d = 1,
[2, d

d−2 ), d ∈ {2, 3},

with usual conventions if ϱ = ∞ or if d = 2.
In this case, let

αmax =
1
2

(
1 −

d
2

(1 −
2
ϱ

)
)
. (26)

Moreover, assume that γmax ≤ αmax.
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The definition of the parameter αmax in Assumption 4.2 is consistent with Assumption 2.6,
see Proposition 8.1. Note that in this case, one has αmax ∈ (0, 1

2 ].

Remark 4.3. If Assumption 4.2 is satisfied, the condition αmax ≥ γmax is not restrictive. Indeed,
in practice, when the regularity αmax is given, one may always replace γmax with min(αmax, γmax)
without extra assumption.

Remark 4.4. The condition Tr(Q) < ∞ in Assumption 4.1 is not very restrictive. For
instance, if αmax is characterized by the property that for all α < αmax and all p ∈ [2,∞),
∥(−A)α−

1
2 Q

1
2 ∥R(L2,L p) < ∞, the condition is satisfied since Tr(Q) = ∥Q

1
2 ∥R(L2,L2) < ∞,

with α =
1
2 < αmax.

First, in the very regular case (see Section 4.1), the strong (resp. weak) order of convergence
is equal to 1

2 (resp. 1). This coincides with the orders of convergence obtained in [3], where
no stochastic perturbation is acting in the slow component, i.e. Q = 0 in (1). The weak order
1 also essentially coincides with the result from [19], where it is assumed that αmax = 1 and
γmax = 0. Moreover, this also coincides with the orders obtained in the case of SDEs (see for
instance [36]). In particular, these values are optimal in general.

Second, in the less regular case (see Section 4.2), Assumption 4.2 is satisfied, and it is proved
that the strong (resp. weak) order of convergence is equal to αmax

1+αmax−γmax
(resp. 2αmax

1+αmax−γmax
). The

proof is based on the application of the result in the regular case for a well-chosen approximate
problem, with modified covariance operator Q. It is not known whether these strong and weak
orders of convergence are optimal. On the one hand, observe the orders of convergence are
maximal when γmax = αmax, in which case the strong and weak orders are αmax and 2αmax
respectively, hence are clearly related to the spatial and temporal regularity of the processes.
On the other hand, when γmax is arbitrarily small, the strong and weak orders of convergence are
αmax

1+αmax
and 2αmax

1+αmax
respectively. The application of the standard Khasminskii strategy would also

lead to a strong order of convergence equal to αmax
1+αmax

, see [3]. As a consequence, the additional
use of regularity properties of the fast process in the analysis allows us to get improved orders
of convergence.

4.1. The very regular case

In this section, it is assumed that Assumption 4.1 is satisfied. As a consequence, there exists

γ ∈ (1 − αmax, γmax), such that M1−γ,p(Q
1
2 , T ) < ∞ for all p ∈ [2,∞) and all T ∈ (0,∞),

see (9). In particular,

M1−γ,8(Q
1
2 , T ) < ∞,

for all T ∈ (0,∞),.
We are now in position to provide precise statements of the results, concerning the order of

convergence of the averaging error, in the regular case.

Theorem 4.5. Let Assumption 4.1 be satisfied. Let T ∈ (0,∞), and assume that the initial
conditions x0, y0, satisfy

|(−A)1−γ x0|L8 + |(−A)γ+κ y0|L8 < ∞,

for some γ ∈ (1 − αmax, γmax) and some κ ∈ (0, γmax − γ ).
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Then there exists C(T, x0, y0) ∈ (0,∞) such that for all ϵ ∈ (0, 1),

sup
t∈[0,T ]

(
E|X ϵ(t) − X (t)|

2
L2

) 1
2 ≤ C(T, x0, y0)

(
Tr(Q) + M1−γ,8(Q

1
2 , T )

) 1
2 ϵ

1
2 . (27)

To state the weak error result, an appropriate notion of nice test functions is used.

Definition 4.6. Let ϕ : L2
→ R. It is called a nice test function if the following derivatives

of ϕ exist and are continuous, and if the estimates below are satisfied.

• There exists C ∈ (0,∞) such that for all x ∈ L2 and h ∈ L2,

|Dϕ(x).h| ≤ C |h|L2 ,

and, for all x ∈ L2, h1, h2 ∈ L2,

|D2ϕ(x).(h1, h2)| ≤ C |h1|L2 |h2|L2 .

• For every p1, p2, p3 ∈ [2,∞) such that 1 =
1
p1

+
1
p2

+
1
p3

, there exists C p1,p2,p3 ∈ (0,∞)
such that for all x ∈ L2, and h1 ∈ L p1 , h2 ∈ L p2 , h3 ∈ L p3 ,

|D3ϕ(x).(h1, h2, h3)| ≤ C p1,p2,p3 |h1|L p1 |h2|L p2 |h3|L p3 .

For instance, a function ϕ : L2
→ R of class C3, with bounded derivatives of order 1, 2, 3,

is a nice test function. Other nice test functions are constructed as follows:

ϕ(x) = ⟨ω, ϕ̃(x)⟩,

where ϕ̃ : R → R is of class C3
b , and ω ∈ L∞ is a weight function.

The weak error is estimated for the class of nice test functions introduced above.

Theorem 4.7. Let Assumption 4.1 be satisfied. Let T ∈ (0,∞), and assume that the initial
conditions x0, y0, satisfy

|(−A)1−γ x0|L8 + |(−A)γ+κ y0|L8 < ∞,

for some γ ∈ (1 − αmax, γmax) and some κ ∈ (0, γmax − γ ). Let ϕ : L2
→ R be a nice test

function.
There exists C(T, x0, y0, ϕ) ∈ (0,∞) such that for all ϵ ∈ (0, 1),

sup
t∈[0,T ]

|E[ϕ(X ϵ(t))] − E[ϕ(X (t))]| ≤ C(T, x0, y0, ϕ)
(
Tr(Q) + M1−γ,4(Q

1
2 , T )

)
ϵ. (28)

The apparently strong conditions imposed on the initial conditions x0 and y0 may be
weakened using standard arguments, thanks to the regularization properties (3) of the semigroup(
et A

)
t≥0, and minor modifications in the proofs. However, one could not consider the supremum

over time t ∈ [0, T ] in (27) and (28). In addition, assuming that the initial conditions possess
nice spatial regularity properties allows us to focus on the most important issues solved in this
manuscript.

Note that the strong order of convergence is equal to 1
2 , whereas the weak order of

convergence is equal to 1. As explained above, these values are optimal.
The proofs of Theorems 4.5 and 4.7 are postponed to Sections 6 and 7 respectively.
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4.2. The less regular case

In this section it is assumed that Assumption 4.2 is satisfied, in particular αmax is defined
by (26) and γmax ≤ αmax. Let

βmax =
αmax

1 + αmax − γmax
,

and observe that βmax ≤
1
2 .

Theorem 4.8. Let Assumption 4.2 be satisfied. Let T ∈ (0,∞), and assume that the initial
conditions x0, y0, satisfy

|(−A)1−γ x0|L8 + |(−A)γ+κ y0|L8 < ∞,

for some γ ∈ (0, γmax) and some κ ∈ (0, αmax − γ ).
For any β ∈ [0, βmax), there exists Cβ(T, x0, y0, Q) ∈ (0,∞) such that for all ϵ ∈ (0, 1),

the strong error is estimated by

sup
t∈[0,T ]

(
E|X ϵ(t) − X (t)|

2
L2

) 1
2 ≤ Cβ(T, x0, y0, Q)ϵβ . (29)

Moreover, let ϕ : L2
→ R be a nice test function. For any β ∈ [0, βmax), there exists

Cβ(T, x0, y0, Q, ϕ) ∈ (0,∞) such that for all ϵ ∈ (0, 1), the weak error is estimated by

sup
t∈[0,T ]

|E[ϕ(X ϵ(t))] − E[ϕ(X (t))]| ≤ Cβ(T, x0, y0, Q, ϕ)ϵ2β . (30)

Note that in Theorem 4.8, the weak order is equal to twice the strong order, as discussed
above. The proof of Theorem 4.8 is postponed to Section 8.

Remark 4.9. Whether the supremum in the strong error estimates (27) and (29) can be put
inside the expectation is not clear. This question is left open for future work.

5. Auxiliary regularity results for solutions of the Poisson equation

This section is devoted to the analysis of the Poisson equation below: for any x ∈ L2 and
θ ∈ L2, define Φ(x, ·, θ) : L2

→ R as the unique solution of

− LΦ(x, ·, θ) = ⟨F(x, ·) − F(x), θ⟩, (31)

with the condition
∫
Φ(x, ·, θ)dµ = 0. Observe that θ ↦→ Φ(x, y, θ) is a (possibly unbounded)

linear mapping.
Recall that L is the generator of the Markov process Y . It is assumed that Assumption 2.8

is satisfied.
The function Φ plays a key role in the analysis of the error in the averaging principle, both

in the strong and in the weak senses. It is straightforward to obtain estimates on Φ(x, y, θ), on
DxΦ(x, y, θ).h and on D2

xΦ(x, y, θ).(h1, h2), in terms on L p norms of x, y, θ, h, h1, h2 (for
well-chosen p), see Lemmas 5.1, 5.3 and 5.5. The main original results in this manuscript
are estimates of Φ(x, y, θ) in terms of |(−A)−γ θ |L p (see Lemma 5.2), and of DxΦ(x, y, θ).h
in terms of |(−A)−γ h|L p (see Lemma 5.4), for positive γ ∈ (0, γmax). These two results are
specific to the analysis of the averaging principle for parabolic SPDEs, and they allow us to
exhibit the trade-off between the regularity properties of the slow and fast processes in the
identification of the strong and weak orders of convergence discussed above. These results are
consequences of Proposition 2.1.
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First, Lemmas 5.1 and 5.2 deal with estimates of Φ(x, y, θ). In particular, note that
Lemma 5.1 implies the well-posedness of (31).

Lemma 5.1. Let p ∈ [2,∞) and p′
=

p
p−1 ∈ (1, 2]. There exists C p ∈ (0,∞), such that for

all x ∈ L2, y ∈ L p and all θ ∈ L p′

,

|Φ(x, y, θ)| ≤ Cq (1 + |y|L p )|θ |L p′ .

Proof. For any fixed x ∈ L2 and θ ∈ L2
⊂ L p′

, the mapping y ↦→ ⟨F(x, y) − F(x), θ⟩
is an admissible function (with q = 4). In addition, using Lipschitz continuity of F (and
boundedness of the derivatives of f , see Assumption 2.3), one has the estimate

|⟨F(x, y2) − F(x, y1), θ⟩| ≤ |F(x, y2) − F(x, y1)|L p |θ |L p′ ≤ C |y2 − y1|L p |θ |L p′ .

This proves that (14) is satisfied, with the parameters α = 0, p, and M = 0. By Assumption 2.8,
then (15) is satisfied, which concludes the proof of Lemma 5.1. □

Lemma 5.2. Let γ ∈ (0, γmax). For all κ ∈ (0, γmax − γ ), there exists Cγ,κ ∈ (0,∞) such that
for all x, y ∈ L4 and θ ∈ L2, then

|Φ(x, y, θ)| ≤ Cγ,κ

(
1 + |(−A)γ+κx |

2
L4 + |(−A)γ+κ y|

2
L4

)
|(−A)−γ θ |L2 .

Proof. Observe that

|⟨F(x, y2) − F(x, y2), θ⟩| ≤ Cγ |(−A)γ (F(x, y2) − F(x, y1))|L2 |(−A)−γ θ |L2

≤ Cγ

(
1 + |(−A)γ+κx |L4 + |(−A)γ+κ y1|L4 + |(−A)γ+κ y2|L4

)
|(−A)γ+κ (y2 − y1)|L4 |(−A)−γ θ |L2 ,

using the second inequality in Proposition 2.1. This proves that (14) is satisfied, thus (15)
follows, and this concludes the proof of Lemma 5.2. □

Lemmas 5.3 and 5.4 deal with the first order derivative of Φ(x, y, θ) with respect to x .

Lemma 5.3. There exists C ∈ (0,∞), such that for all x ∈ L2, y, θ, h ∈ L4,

|⟨DxΦ(x, y, θ), h⟩| ≤ C(1 + |y|L4 ) min
(
|θ |L4 |h|L2 , |θ |L2 |h|L4

)
.

Moreover, for all x ∈ L2, y, h ∈ L8, θ ∈ L
4
3 , one has

|⟨DxΦ(x, y, θ), h⟩| ≤ C(1 + |y|L8 )|θ |
L

4
3
|h|L8 .

Proof. For all x, h ∈ L2, θ ∈ L4, the function y ↦→ ⟨DxΦ(x, y, θ), h⟩ solves the Poisson
equation

−L
(
DxΦ(x, ·, θ).h

)
= φx,θ,h

where φx,θ,h(y) = ⟨Dx
(
F(x, ·) − F(x)

)
.h, θ⟩. It is straightforward to check that φx,θ,h is an

admissible function (by Assumption 2.3, f is of class C3 with bounded derivatives), with q = 8.
Let x, h ∈ L2 and θ ∈ L4, then for all y1, y2 ∈ L4, one has

|φx,θ,h(y2)−φx,θ,h(y1)| =
⏐⏐⟨Dx

(
F(x, y2) − F(x, y1)

)
.h, θ⟩

⏐⏐
=

⏐⏐⟨(∂z1 f (x, y2) − ∂z1 f (x, y1)
)
h, θ⟩

⏐⏐
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=
⏐⏐⟨(∂z1 f (x, y2) − ∂z1 f (x, y1)

)
θ, h⟩

⏐⏐
≤ C |y2 − y1|L4 min

(
|θ |L4 |h|L2 , |θ |L2 |h|L4

)
,

using the Hölder inequality and by the boundedness of the first-order partial derivative
∂z1 f (z1, z2).

Alternatively,

|φx,θ,h(y2) − φx,θ,h(y1)| ≤ C |y2 − y1|L8 |θ |
L

4
3
|h|L8 .

Thus (14), and consequently (15), are satisfied, for an appropriate choice of the parameters.
This concludes the proof of Lemma 5.3. □

Lemma 5.4. Let γ ∈ (0, γmax). For all κ ∈ (0, γmax − γ ), there exists Cγ,κ ∈ (0,∞) such that
for all x, y, θ ∈ H, then

|⟨DxΦ(x, y, θ), h⟩| ≤ Cγ,κ

(
1 + |(−A)γ+κx |

2
L8 + |(−A)γ+κ y|

2
L8

)
min

(
|(−A)γ+

κ
2 θ |L4 |(−A)−γ h|L2 , |(−A)γ+

κ
2 θ |L2 |(−A)−γ h|L4

)
.

Proof. Let x, θ, h be fixed. Proceeding as in the proof of Lemma 5.3, for all y1, y2 ∈ H ,

|φx,θ,h(y2) − φx,θ,h(y1)| =
⏐⏐⟨(∂x f (x, y2) − ∂x f (x, y1)

)
h, θ⟩

⏐⏐
=

⏐⏐⟨(∂x f (x, y2) − ∂x f (x, y1)
)
θ, h⟩

⏐⏐,
thus, thanks to Hölder inequality and to the first inequality in Proposition 2.1, it is sufficient
to consider

|(−A)γ+
κ
2
(
∂x f (x, y2) − ∂x f (x, y1)

)
|L4

≤ Cγ,κ (1 + |(−A)γ+κ y1|L8 + |(−A)γ+κ y2|L8 )|(−A)γ+κ (y2 − y1)|L8 ,

thanks to the second inequality of Proposition 2.1. It remains to use Assumption 2.8 to conclude
the proof of Lemma 5.3. □

Finally, it remains to state and prove a result, Lemma 5.5, concerning the second order
derivative.

Lemma 5.5. There exists C ∈ (0,∞) such that for all x ∈ L2 y, θ ∈ L4 and h1, h2 ∈ L8,

|D2
xΦ(x, y, θ).(h1, h2)| ≤ C(1 + |y|L4 ) min

(
|θ |L4 |h1|L4 |h2|L4 , |θ |L2 |h1|L8 |h2|L8

)
.

Proof. For all x , θ , h1, h2, the function y ↦→ D2
xΦ(x, y, θ).(h1, h2) solves the Poisson equation

−L
(
D2

xΦ(x, ·, θ).(h1, h2)
)

= φ
(2)
x,θ,h1,h2

where φ(2)
x,θ,h1,h2

(y) = ⟨D2
x

(
F(x, ·)− F(x)

)
.(h1, h2), θ⟩. It is straightforward to check that φ(2)

x,θ,h
is an admissible function (thanks to Assumption 2.3, f is of class C4 with bounded derivatives
of order 1, . . . , 4).

For all y1, y2 ∈ H , using the boundedness of the third-order derivative ∂ (3)
x f and the Hölder

inequality, one obtains

|φ
(2)
x,θ,h1,h2

(y2) − φ
(2)
x,θ,h1,h2

(y1)| ≤ C |y2 − y1|L4 min
(
|θ |L4 |h1|L4 |h2|L4 , |θ |L2 |h1|L8 |h2|L8

)
.

Thus it remains to apply Assumption 2.8 to conclude the proof of Lemma 5.5. □
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6. Proof of Theorem 4.5

The goal of this section is to provide a proof of Theorem 4.5, i.e. that under Assumption 4.1,
the strong order of convergence in the averaging principle is equal to 1

2 .
Let T ∈ (0,∞). Thanks to Assumption 4.1, let also γ ∈ (1 −αmax, γmax), κ ∈ (0, γmax − γ ),

and let the initial conditions x0 and y0 satisfy |(−A)1−γ x0|L8 + |(−A)γ+κ y0|L8 < ∞.
Introduce the auxiliary function δF(x, y) = F(x, y) − F(x). Thanks to the mild formula-

tions (16) and (23), the following decomposition of the averaging error is obtained:

X ϵ(t) − X (t) =

∫ t

0
e(t−s)A(

F(X ϵ(s), Y ϵ(s)) − F(X (s), Y ϵ(s))
)
ds

+

∫ t

0
e(t−s)AδF(X (s), Y ϵ(s))ds.

Recall that F is globally Lipschitz-continuous, owing to Assumption 2.3. The mean-square
error is then bounded from above as follows:

E
⏐⏐X ϵ(t) − X (t)

⏐⏐2
≤ 2E

[⏐⏐⏐ ∫ t

0
e(t−s)A(

F(X ϵ(s), Y ϵ(s)) − F(X (s), Y ϵ(s))
)
ds

⏐⏐⏐2]
+ 2E

[⏐⏐⏐ ∫ t

0
e(t−s)AδF(X (s), Y ϵ(s))ds

⏐⏐⏐2]
≤ 2T

∫ t

0
E

⏐⏐e(t−s)A(
F(X ϵ(s), Y ϵ(s)) − F(X (s), Y ϵ(s))

)⏐⏐2ds

+ 2E
[
⟨

∫ t

0
e(t−s)AδF(X (s), Y ϵ(s))ds,

∫ t

0
e(t−r )AδF(X (r ), Y ϵ(r ))dr⟩

]
≤ CT

∫ t

0
E

⏐⏐X ϵ(s) − X (s)
⏐⏐2ds

+ 4
∫ t

0

∫ t

s
E

[
⟨e(t−s)AδF(X (s), Y ϵ(s)), e(t−r )AδF(X (r ), Y ϵ(r ))⟩

]
drds.

Let θs,t (r ) = e(2t−s−r )AδF(X (s), Y ϵ(s)). Observe that ∂rθs,t (r ) = −Aθs,t (r ). Using the
definition (31) of Φ, considering the quantity EΦ(X (t), Y ϵ(t), θs,t (t))−EΦ(X (s), Y ϵ(s), θs,t (s)),
and applying the Itô formula, one obtains∫ t

s
E

[
⟨e(t−s)AδF(X (s), Y ϵ(s)),e(t−r )AδF(X (r ), Y ϵ(r ))⟩

]
dr

=

∫ t

s
E

[
−LΦ

(
X (r ), Y ϵ(r ), θs,t (r )

)]
dr

= Iϵ1 (s, t) + Iϵ2 (s, t) + Iϵ3 (s, t),

where

Iϵ1 (s, t) = ϵEΦ(X (s), Y ϵ(s), θs,t (s)) − ϵEΦ(X (t), Y ϵ(t), θs,t (t)), (32)

Iϵ2 (s, t) = −ϵ

∫ t

s
E

[
Φ

(
X (r ), Y ϵ(r ), Aθs,t (r )

)]
dr, (33)

Iϵ3 (s, t) = ϵ

∫ t

s
E

[
LΦ

(
X (r ), Y ϵ(r ), θs,t (r )

)]
dr, (34)

where L is the infinitesimal generator associated with the averaged equation (22), see (25).
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For future use, a more detailed decomposition of the third term is introduced: Iϵ3 (s, t) =

Iϵ3,1(s, t) + Iϵ3,2(s, t) + Iϵ3,3(s, t), with

Iϵ3,1(s, t) = ϵ

∫ t

s
E⟨F(X (r )), DxΦ

(
X (r ), Y ϵ(r ), θs,t (r )

)
⟩dr (35)

Iϵ3,2(s, t) = ϵ

∫ t

s
E⟨AX (r ), DxΦ

(
X (r ), Y ϵ(r ), θs,t (r )

)
⟩dr (36)

Iϵ3,3(s, t) =
ϵ

2

∫ t

s
ETr

(
Q D2

xΦ
(
X (r ), Y ϵ(r ), θs,t (r )

))
dr (37)

Lemmas 6.1, 6.2 and 6.3 state the necessary estimates in order to conclude the analysis of
the strong error. Observe that Assumption 4.1 is only used effectively in Lemma 6.3.

Lemma 6.1. There exists C(T ) ∈ (0,∞), such that, for all ϵ ∈ (0, 1),

sup
0≤s≤t≤T

|Iϵ1 (s, t)| ≤ C(T )ϵ(1 + |x0|
2
L2 + |y0|

2
L2 ).

Lemma 6.2. There exists C(T ) ∈ (0,∞), such that, for all ϵ ∈ (0, 1),

sup
0≤s<t≤T

(t − s)
1
2 |Iϵ2 (s, t)| ≤ C(T )ϵ(1 + |x0|

2
L2 + |y0|

2
L2 ).

Lemma 6.3. Let Assumption 4.1 be satisfied, and let γ ∈ (1 − αmax, γmax) and κ ∈ (0, γ ).
There exists Cγ,κ (T ) ∈ (0,∞) such that, for all ϵ ∈ (0, 1),

sup
0≤s<t≤T

(t − s)γ+
κ
2 |Iϵ3 (s, t)|

≤ Cγ,κ (T )ϵ
(
1 + |(−A)γ+κx0|

3
L8 + |(−A)γ+κ y0|

3
L8

)
×

(
1 + |(−A)1−γ x0|L8 + M1−γ,8(Q

1
2 ) + Tr(Q)

)
.

The proofs of the three auxiliary lemmas above are provided below, then the proof of
Theorem 4.5 is concluded.

Proof of Lemma 6.1. For r ∈ {s, t}, note that E|θs,t (r )|2L p ≤ C p(1 + |x0|
2
L p + |y0|

2
L p ),

for all p ∈ [2,∞) since F has at most linear growth, and thanks to moment estimates, in
Proposition 3.3 and in Assumption 2.7. Thus, thanks to Lemma 5.1.

E|Φ(X (r ), Y ϵ(r ), θs,t (r ))| ≤ C(1 + (E|Y ϵ(r )|2L2 )
1
2 )(E|θs,t (r )|2L2 )

1
2

≤ C(1 + |y0|L2 )(1 + |x0|L2 + |y0|L2 ),

which concludes the proof. □

Proof of Lemma 6.2. For r ∈ (s, t), using Lemma 5.1, and Assumption 2.7,

E|Φ
(
X (r ), Y ϵ(r ), Aθs,t (r )

)
| ≤ C(1 + |y0|L2 )(E|Aθs,t (r )|2L2 )

1
2

≤ C∥Ae(2t−s−r )A
∥L(L2,L2)(1 + |x0|

2
L2 + |y0|

2
L2 ).

Using twice the regularization property (3) of the semigroup, one has∫ t

s
∥Ae(2t−s−r )A

∥L(L2,L2)dr ≤

∫ T

0
∥(−A)

1
2 e(t−r )A

∥L(L2,L2)dr∥(−A)
1
2 e(t−s)A

∥L(L2,L2)

≤ C(T )(t − s)−
1
2 .
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Thus one obtains

(t − s)
1
2 |Iϵ2 (s, t)| ≤ C(T )ϵ(1 + |x0|

2
L2 + |y0|

2
L2 ),

which concludes the proof. □

Proof of Lemma 6.3. First, Lemma 5.3 yields

|Iϵ3,1(s, t)| ≤ ϵ

∫ t

s
E

[
(1 + |Y ϵ(r )|L4 )|F(X (r ))|L4 |θs,t (r )|L2

]
dr

≤ CT ϵ(1 + |y0|L4 )(1 + |x0|L4 )
(
E|θs,t (r )|2L2

) 1
2

≤ CT ϵ(1 + |x0|
2
L4 + |y0|

2
L4 ),

using the moment estimates, in Proposition 3.3 and in Assumption 2.7, and the estimate given
in the proof of Lemma 6.1.

Second, let γ ∈ [0, γmax), and κ ∈ (γmax −γ ). Thanks to Lemma 5.4, and Hölder inequality,
one obtains

|Iϵ3,2(s, t)| ≤ Cϵ
∫ t

s
(E|(−A)1−γ X (r )|

4
L2 )

1
4 (E|(−A)γ+

κ
2 θs,t (r )|

2
L4 )

1
2

(
1 + (E|(−A)γ+κX (r )|

8
L8 )

1
4 + (E|(−A)γ+κY ϵ(r )|8L8 )

1
4
)
dr

≤ Cϵ(t − s)−γ−
κ
2 (1 + |x0|L4 + |y0|L4 ) sup

r∈[0,T ]
(E|(−A)1−γ X (r )|

4
L2 )

1
4

(
1 + |(−A)γ+κ y0|

2
L8 + sup

r∈[0,T ]
(E|(−A)γ+κX (r )|

8
L8 )

1
4
)
.

Observe that the conditions on γ and κ above imply that γ + κ ≤ 1 − γ . Using the moment
estimates in Proposition 3.3 and in Assumption 2.7, one obtains

|Iϵ3,2(s, t)| ≤ Cγ,κ,T ϵ(t − s)−γ−
κ
2 (1 + |(−A)1−γ x0|

3
L8 + |(−A)γ+κ y0|

3
L8 )

×
(
1 + |(−A)1−γ x0|L8 + M1−γ,8(Q

1
2 )

)
.

It remains to deal with the trace term, Iϵ3,3. Using Lemma 5.5 and Assumption 2.6,

|Iϵ3,3(s, t)| ≤ Cϵ
∫ t

s

∑
n∈N

qn|D2
xΦ(X (r ), Y ϵ(r ), θs,t (r )).( fn, fn)|dr

≤ Cϵ
∑
n∈N

qn| fn|
2
L4

∫ t

s
(E|θs,t (r )|2L4 )

1
2 (1 + (E|Y ϵ(r )|2L4 )

1
2 )dr

≤ CϵTr(Q)(1 + |x0|
2
L4 + |y0|

2
L4 ).

Gathering the estimates on |Iϵ3,1(s, t)|, |Iϵ3,2(s, t)| and |Iϵ3,3(s, t)| then concludes the proof of
Lemma 6.3. □

Remark 6.4. The assumption that Tr(Q) =
∑

n∈N qn is finite may be removed, using further
regularity properties of the second order derivative D2

xΦ.

We are now in position to provide the proof of Theorem 4.5.
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Proof of Theorem 4.5. Gathering estimates from Lemmas 6.1, 6.2 and 6.3, gives

E
⏐⏐X ϵ(t) − X (t)

⏐⏐2
L2 ≤ CT

∫ t

0
E

⏐⏐X ϵ(s) − X (s)
⏐⏐2

L2 ds +

∫ t

0

(
|Iϵ1 (s, t)| + |Iϵ2 (s, t)|

+ |Iϵ3 (s, t)|
)

ds

≤ CT
∫ t

0
E

⏐⏐X ϵ(s) − X (s)
⏐⏐2

L2 ds + C(T, x0, y0)

×
(
Tr(Q) + M1−γ,8(Q

1
2 , T )

)
ϵ.

It remains to apply the Gronwall Lemma to conclude the proof. □

7. Proof of Theorem 4.7

The goal of this section is to provide a proof of Theorem 4.7, i.e. that in the very regular
case, under Assumption 4.1, the weak order of convergence in the averaging principle is equal
to 1.

Let T ∈ (0,∞). Thanks to Assumption 4.1, let also γ ∈ (1 −αmax, γmax), κ ∈ (0, γmax − γ ),
and let the initial conditions x0 and y0 satisfy |(−A)1−γ x0|L8 + |(−A)γ+κ y0|L8 < ∞.

A key tool in the analysis is the function u defined below:

u(t, x) = E[ϕ(X
x
(t))]. (38)

Note that u is the solution of the Kolmogorov equation

∂t u = Lu,

with initial condition u(0, ·) = ϕ, where L is the infinitesimal generator associated with the
averaged equation (22), see (25).

To deal with this infinite dimensional PDE, usually an auxiliary approximation procedure is
employed, see for instance [6], in order to justify the computations. To simplify notation, this
is omitted in this manuscript.

The regularity properties stated in Proposition 7.1 play a fundamental role in the analysis
of the weak error below. When the auxiliary approximation procedure mentioned above
is explicitly written, the upper bounds are meant to be independent of the approximation
parameter.

Proposition 7.1 (Regularity Properties of the Derivatives of u). Let ϕ be a nice test function.
For all β ∈ [0, 1), there exists Cβ(T ) ∈ (0,∞), such that for all t ∈ (0, T ], and x, h ∈ L2,

|Dx u(t, x).(−A)βh| ≤ Cβ(T )t−β
|h|L2 . (39)

For all β1, β2 ∈ [0, 1) such that β1 + β2 < 1, there exists Cβ1,β2 (T ) ∈ (0,∞), such that for all
t ∈ (0, T ], and all x, h1, h2 ∈ L2,⏐⏐D2

x u(t, x).
(
(−A)β1 h1, (−A)β2 h2

)⏐⏐ ≤ Cβ1,β2 (T )t−β1−β2 |h1|L2 |h2|L2 . (40)

In addition, for p1, p2, p3 ∈ [2,∞) such that 1 =
1
p1

+
1
p2

+
1
p3

, there exists C p1,p2,p3 ∈ (0,∞),
such that for all t ∈ [0, T ], and all x ∈ L2, h1 ∈ L p1 , h2 ∈ L p2 and h3 ∈ L p3 ,

|D3
x u(t, x).(h1, h2, h3)| ≤ C p1,p2,p3 (T )|h1|L p1 |h2|L p2 |h3|L p3 . (41)
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Regularity properties for infinite dimensional Kolmogorov equations, as stated in
Proposition 7.1, are now a classical tool in the analysis of parabolic SPDEs. We refer to [8]
for a reference textbook and to [6] for a recent overview of this topic and for further results.

Proof of Proposition 7.1. The proof is based on computing the derivatives of u in terms
of tangent processes, which are solutions of PDEs with random coefficients (noise is additive
in (22)). See for instance [8] where such computations are justified in a general setting.

• The first-order derivative is expressed as follows:

Dx u(t, x).h = E
[
⟨Dϕ(X

x
(t)), ηh(t)⟩

]
,

where the process
(
ηh(t)

)
t≥0 solves the linear evolution equation

dηh(t) = Aηh(t)dt + DF(X
x
(t))dt

with initial condition ηh(0) = h. The unique solution of this equation is rewritten in a
mild form as follows: for all t ≥ 0,

ηh(t) = et Ah +

∫ t

0
e(t−s)A DF(X

x
(s)).ηh(s)ds.

The operator F is globally Lipschitz continuous due to Proposition 3.2, and using the
regularization property (3) of the semigroup, one obtains, for all p ∈ [2,∞) and for all
t ∈ (0, T ],

|ηh(t)|L p ≤ C p,β t−β
|(−A)−βh|L2 +

∫ t

0
|ηh(s)|L2ds.

Applying the Gronwall Lemma yields

|ηh(t)|L p ≤ C p,β(T )t−β
|(−A)−βh|L p .

Since ϕ is a nice test function, one obtains

|Dx u(t, x).h| ≤ CE[|ηh(t)|L2 ] ≤ Cβ(T )t−β
|(−A)−βh|L2 ,

hence (39).
• The second-order derivative is expressed as follows:

D2
x u(t, x).(h1, h2) = E

[
⟨Dϕ(X

x
(t)), ζ h1,h2 (t)⟩

]
+ E

[
D2ϕ(X

x
(s)).(ηh1 (t), ηh2 (t))

]
,

where the process
(
ζ h1,h2 (t)

)
t≥0 solves the linear equation

dζ h1,h2 (t) = Aζ h1,h2 (t)dt + DF(X
x
(t)).ζ h1,h2 (t)dt + D2 F(X

x
(t)).(ηh1 (t), ηh2 (t))dt,

with initial condition ζ h1,h2 (0) = 0. The unique solution of this equation is rewritten in a
mild form as follows: for all t ≥ 0,

ζ h1,h2 (t) =

∫ t

0
e(t−s)A DF(X

x
(s)).ζ h1,h2 (s)ds+

∫ t

0
e(t−s)A D2 F(X

x
(s)).(ηh1 (s), ηh2 (s))ds.

First, ϕ being a nice test function, one obtains

E
[
D2ϕ(X

x
(s)).(ηh1 (t), ηh2 (t))

]
≤ CE

[
|ηh1 (t)|L2 |η

h2 (t)|L2
]

≤ Cβ1,β2 (T )t−β1−β2 |(−A)−β1 h1|L2 |(−A)−β2 h2|L2 .
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Second, thanks to (19) and (20), and using the inequality (7), one obtains, for κ ∈

(0, 1 −
d
4 ),

|ζ h1,h2 (t)|L2 ≤ C
∫ t

0
|ζ h1,h2 (s)|L2ds

+

∫ t

0
(t − s)−

d
4 −κ

|D2 F(X
x
(s)).(ηh1 (s), ηh2 (s))|L1ds

≤ C
∫ t

0
|ζ h1,h2 (s)|L2ds

+ Cβ1,β2 (T )
∫ t

0
(t − s)−

d
4 −κs−β1−β2ds|(−A)−β1 h1|L2 |(−A)−β2 h2|L2

≤ C
∫ t

0
|ζ h1,h2 (s)|L2ds + Cβ1,β2 (T )|(−A)−β1 h1|L2 |(−A)−β2 h2|L2

≤ Cβ1,β2 (T )|(−A)−β1 h1|L2 |(−A)−β2 h2|L2 ,

using the Gronwall Lemma to obtain the last inequality. Thus, since ϕ is a nice test
function, one obtains

|E
[
⟨Dϕ(X

x
(t)), ζ h1,h2 (t)⟩

]
| ≤ Cβ1,β2 (T )|(−A)−β1 h1|L2 |(−A)−β2 h2|L2

Gathering the estimates finally yields (40).
• The third-order derivative is expressed as follows:

D3
x u(t, x).(h1, h2, h3) = E

[
⟨Dϕ(X

x
(t)), ξ h1,h2,h3 (t)⟩

]
+

∑
σ∈S3

cσE
[
D2ϕ(X

x
(t)).(ζ hσ (1),hσ (2) (t), ηhσ (3) (t))

]
+ E

[
D3ϕ(X

x
(t)).(ηh1 (t), ηh2 (t), ηh3 (t))

]
,

where S3 is the set of permutations of {1, 2, 3}, cσ ∈ {0, 1}, and the process(
ξ h1,h2,h3 (t)

)
t≥0 solves the linear equation

dξ h1,h2,h3 (t) = Aξ h1,h2,h3 (t)dt + DF(X
x
(t)).ξ h1,h2,h3 (t)dt

+

∑
σ∈S3

cσ D2 F(X
x
(t)).(ζ hσ (1),hσ (2) (t), ηhσ (3) (t))dt

+ D3 F(X
x
(t)).(ηh1 (t), ηh2 (t), ηh3 (t))dt

with initial condition ξ h1,h2,h3 (0) = 0. The unique solution of this equation is rewritten
in a mild form as follows: for all t ≥ 0,

ξ h1,h2,h3 (t) =

∫ t

0
e(t−s)A DF(X

x
(s)).ξ h1,h2,h3 (s)ds

+

∑
σ∈S3

cσ

∫ t

0
e(t−s)A D2 F(X

x
(s)).(ζ hσ (1),hσ (2) (s), ηhσ (3) (s))ds

+

∫ t

0
e(t−s)A D3 F(X

x
(s)).(ηh1 (s), ηh2 (s), ηh3 (s))ds.
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Since ϕ is a nice test function, using the estimates above for ηh(t) and ζ h1,h2 (t), one
obtains⏐⏐E[

D2ϕ(X
x
(t)).(ζ hσ (1),hσ (2) (t), ηhσ (3) (t))

]⏐⏐ ≤ E
[
|ζ hσ (1),hσ (2) (t)|L2 |η

hσ (3) (t)|L2
]

≤ C(T )E|h1|L2 |h2|L2 |h3|L2⏐⏐E[
D3ϕ(X

x
(t)).(ηh1 (t), ηh2 (t), ηh3 (t))

]⏐⏐ ≤ CE
[
|ηh1 (t)|L p1 |η

h2 (t)|L p2 |η
h3 (t)|L p3

]
≤ C(T )|h1|L p1 |h2|L p2 |h3|L p3 .

In addition, one has⏐⏐E[
⟨Dϕ(X

x
(t)), ξ h1,h2,h3 (t)⟩

]⏐⏐ ≤ CE[|ξ h1,h2,h3 (t)|L2 ],

where, using the mild formulation, the estimates from Proposition 3.2 on derivatives of
F , and the inequality (7), one has

|ξ h1,h2,h3 (t)|L2 ≤ C
∫ t

0
|ξ h1,h2,h3 (s)|L2ds

+ Cκ

∑
σ∈S3

cσ

∫ t

0
(t − s)−

d
4 −κ

|ζ hσ (1),hσ (2) (s)|L2 |η
hσ (3) (s)|L2ds

+ Cκ

∫ t

0
(t − s)−

d
4 −κ

|ηh1 (s)|L p1 |η
h2 (s)|L p2 |η

h3 (s)|L p3 ds

≤ Cκ

∫ t

0
|ξ h1,h2,h3 (s)|L2ds + C |h1|L2 |h2|L2 |h3|L2

+ C |h1|L p1 |h2|L p2 |h3|L p3 ,

with 1 =
1
p1

+
1
p2

+
1
p3

. Applying Gronwall Lemma then yields (using the condition
p1, p2, p3 ≥ 2)

|ξ h1,h2,h3 (t)|L2 ≤ C |h1|L p1 |h2|L p2 |h3|L p3 ,

and gathering the estimates then concludes the proof of (41). □

For the analysis of the averaging error, in the weak sense, the fundamental object is the
auxiliary function v defined by

v(t, x, y) = Φ
(
x, y, Dx u(t, x)

)
, (42)

where the first order derivative Dx u(t, x) is interpreted as an element of L2.
By construction, v(t, x, ·) is the solution of the Poisson equation (31) with θ = Dx u(t, x),

i.e. one has the fundamental identity

− Lv(t, x, y) = ⟨F(x, y) − F(x), Dx u(t, x)⟩. (43)

For all y ∈ L2, denote by Ly the infinitesimal generator given by

Lyϕ(x) = ⟨Dxϕ(x), Ax + F(x, y)⟩ +
1
2

∑
n∈N

qn D2
xϕ(x, y).

(
fn, fn

)
,

for functions ϕ : x ∈ L2
↦→ ϕ(x) ∈ R, depending only on the slow variable x .
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Applying the Itô formula, the weak error is written as

E[ϕ(X ϵ(T ))] − E[ϕ(X (T ))] = E[u(0, X ϵ(T ))] − E[u(T, X ϵ(0))]

=

∫ T

0
E

[
−∂t u(T − t, X ϵ(t)) + LY ϵ (t)u(T − t, X ϵ(t))

]
dt

=

∫ T

0
E

[
(LY ϵ (t) − L)u(T − t, X ϵ(t))

]
dt

=

∫ T

0
E

[
⟨F(X ϵ(t), Y ϵ(t))

− F(X ϵ(t)), Dx u(T − t, X ϵ(t))⟩
]

dt

=

∫ T

0
E

[
−Lv(T − t, X ϵ(t), Y ϵ(t))

]
dt,

thanks to the identity (43). To exploit this formula for the weak error, note that the Itô formula
applied with the function v yields the identity

E[v(0, X ϵ(T ), Y ϵ(T ))] = E[v(T, X ϵ(0), Y ϵ(0))]

+

∫ T

0
E

[(
LY ϵ (t) +

1
ϵ

L − ∂t
)
v(T − t, X ϵ(t), Y ϵ(t))

]
dt.

As a consequence, the weak error has the following decomposition

E[ϕ(X ϵ(T ))] − E[ϕ(X (T ))] = J ϵ
1 + J ϵ

2 + J ϵ
3 , (44)

where

J ϵ
1 = ϵ

(
E[v(T, X ϵ(0), Y ϵ(0))] − E[v(0, X ϵ(T ), Y ϵ(T ))]

)
J ϵ

2 = −ϵ

∫ T

0
E

[
∂tv(T − t, X ϵ(t), Y ϵ(t))

]
dt

J ϵ
3 = ϵ

∫ T

0
E

[
LY ϵ (t)v(T − t, X ϵ(t), Y ϵ(t))

]
dt,

and the third expression is decomposed as J ϵ
3 = J ϵ

3,1 + J ϵ
3,2 + J ϵ

3,3, where

J ϵ
3,1 = ϵ

∫ T

0
E

[
⟨F(X ϵ(t), Y ϵ(t)), Dxv(T − t, X ϵ(t), Y ϵ(t))⟩

]
dt

J ϵ
3,2 = ϵ

∫ T

0
E

[
⟨AX ϵ(t), Dxv(T − t, X ϵ(t), Y ϵ(t))⟩

]
dt

J ϵ
3,3 =

ϵ

2

∫ T

0
E

[∑
n∈N

qn D2
xv(T − t, X ϵ(t), Y ϵ(t)).

(
fn, fn

)]
dt.

Theorem 4.7 is then a straightforward consequence of the three auxiliary results stated below.

Lemma 7.2. There exists C(T ) ∈ (0,∞), such that, for all ϵ ∈ (0, 1), and all x0, y0 ∈ H,

|J ϵ
1 | ≤ C(T )ϵ(1 + |y0|L2 ).

Lemma 7.3. Let κ ∈ (0, γmax). There exists Cκ (T ) ∈ (0,∞), such that, for all ϵ ∈ (0, 1), and
all x0, y0 ∈ H,

|J ϵ
2 | ≤ Cκ (T )ϵ(1 + Tr(Q))

(
1 + |(−A)2κx0|

2
L4 + |(−A)2κ y0|

2
L4

)
.
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Lemma 7.4. Let γ ∈ (1 − αmax, γmax) and κ ∈ (0, γmax − γ ). There exists Cγ,κ (T ) ∈ (0,∞)
such that, for all ϵ ∈ (0, 1), and all x0, y0 ∈ L8,

|J ϵ
3 | ≤ Cγ,κ (T )ϵ

(
1 + |(−A)γ+κx0|

2
L8 + |(−A)γ+κ y0|

2
L8

)
×

(
1 + |(−A)1−γ x0|L4 + Tr(Q) + Mα,4(Q

1
2 , T )

)
.

Note that Assumption 4.1 is only required in Lemma 7.4.

Proof of Lemma 7.2. Thanks to Lemma 5.1 and Proposition 7.1, for all t ∈ [0, T ], x, y ∈ L2,

|v(t, x, y)| = |Φ(x, y, Dx u(t, x))| ≤ C(1 + |y|)|Dx u(t, x)|L2 ≤ C(T, ϕ)(1 + |y|L2 ).

Combined with Assumption 2.7, this estimate concludes the proof of Lemma 7.2. □

Proof of Lemma 7.3. Since the mapping θ ∈ H ↦→ Φ(x, y, θ) is a continuous linear mapping
(thanks to Lemma 5.1), one has the following expression (justified below)

∂tv(t, x, y) = Φ
(
x, y, ∂t Dx u(t, x)

)
= Φ

(
x, y,Θ1(t, x)

)
+ Φ

(
x, y,Θ2(t, x)

)
+ Φ

(
x, y,Θ3(t, x)

)
,

(45)

where

⟨Θ1(t, x), h⟩ = ⟨Ah + DF(x).h, Dx u(t, x)⟩, (46)

⟨Θ2(t, x), h⟩ = D2
x u(t, x).(h, Ax + F(x)), (47)

⟨Θ3(t, x), h⟩ =
1
2

∑
n∈N

qn D3
x u(t, x).( fn, fn, h). (48)

Indeed, the quantity U (t, x, h) = Dx u(t, x).h can be expressed as

U (t, x, h) = E
[
⟨Dxϕ(X

x
(s)), ηx,h(s)⟩

]
,

with dηx,h(t) = Aηx,h(t)dt + DF(X
x
(t)).ηx,h(t)dt and ηx,h(0) = h (where dependence with

respect to x is indicated), see the proof of Proposition 7.1. Consider the auxiliary Markov
process defined by X̃ x,h(t) =

(
X

x
(t), ηx,h(t)

)
, with generator given by

L̃φ(x, h) = Lφ(x, h) + ⟨Ah + DF(x).h, Dhφ(x, h)⟩.

Then applying the Itô formula yields the identity

∂t
(
Dx u(t, x).h

)
= ∂tU (t, x, h)

= L̃U (t, x, h)

= ⟨Ah + DF(x).h, DhU (t, x, h)⟩

+ D2
x u(t, x).(h, Ax + F(x)) +

1
2

∑
n∈N

qn D3
x u(t, x).( fn, fn, h),

and it remains to observe that DhU (t, x, h) = Dx u(t, x) to conclude the derivation of (45).
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Let κ ∈ (0, 1). Thanks to (39), one has

|⟨Θ1(t, x), h⟩| ≤ Cκ (T )t−1+κ
|(−A)κh|L2 ,

which implies |(−A)−κΘ1(t, x)|L2 ≤ Cκ (T )t−1+κ . Thus, thanks to Lemma 5.2,⏐⏐Φ(
x, y,Θ1(t, x)

)⏐⏐ ≤ Cκ (T )t−1+κ
(
1 + |(−A)2κx |

2
L4 + |(−A)2κ y|

2
L4

)
.

Thanks to (40), one has

|Θ2(t, x)|L2 = sup
h∈L2,|h|L2 ≤1

|⟨Θ2(t, x), h⟩| ≤ Cκ (T )t−1+κ (1 + |(−A)κx |L2 ).

Thus, thanks to Lemma 5.1,⏐⏐Φ(
x, y,Θ2(t, x)

)⏐⏐ ≤ Cκ (T )t−1+κ (1 + |(−A)κx |
2
L2 + |y|

2
L2 ).

Finally, thanks to (41) and Assumption 2.6, one has, for all h ∈ L2,

|⟨Θ3(t, x), h⟩| ≤ C(T )
∑
n∈N

qn| fn|
2
L4 |h|L2 ≤ C(T )Tr(Q)|h|L2 ,

i.e. |Θ3(t, x)|L2 = suph∈L2,|h|L2 ≤1 |⟨Θ3(t, x), h⟩| ≤ C(T )Tr(Q). Thus Lemma 5.1 yields⏐⏐Φ(
x, y,Θ3(t, x)

)⏐⏐ ≤ C(T )Tr(Q)(1 + |y|L2 ).

Gathering the above estimates then yields, if 2κ < γmax,

|J ϵ
2 | ≤ Cκ (T )ϵ

∫ T

0
(1 + t−1+κ )E

(
1 + |(−A)2κX ϵ(t)|

2
L4 + |(−A)2κY ϵ(t)|

2
L4

)
dt

≤ Cκ (T )ϵT κ (1 + Tr(Q))
(
1 + |(−A)2κx0|

2
L4 + |(−A)2κ y0|

2
L4

)
.

This concludes the proof of Lemma 7.3. □

Proof of Lemma 7.4. Note that the first-order derivative of v with respect to x satisfies the
following identity:

⟨Dxv(t, x, y), h⟩ = Φ
(
x, y, D2

x u(t, x).(h, ·)
)
+ ⟨DxΦ

(
x, y, Dx u(t, x)

)
, h⟩.

Observe that |D2
x u(t, x).(h, ·)|L2 ≤ C |h|L2 , thanks to (40), with β1 = β2 = 0. Then, thanks to

Lemmas 5.1 and 5.3, one obtains

|⟨Dxv(t, x, y), h⟩| ≤ C(1 + |y|L2 )|D2
x u(t, x).(h, ·)|L2 + C(1 + |y|L4 )|Dx u(t, x)|L2 |h|L4

≤ C(1 + |y|L4 )|h|L4 .

Since F has at most linear growth, using moment estimates then yields

E|J ϵ
3,1| ≤ C(T )ϵ(1 + |x0|

2
L4 + |y0|

2
L4 ).

To treat the second term, J ϵ
3,2, observe that |D2

x u(t, x).(h, ·)|L2 ≤ Cκ t−1+κ
|(−A)−1+κh|L2 ,

for all κ ∈ (0, 1], thanks to (40). In addition, |(−A)1−κDx u(t, x)|L2 ≤ Cκ t−1+κ , thanks to (39).
Then, thanks to Lemmas 5.1 and 5.4,

|⟨Dxv(t, x, y), h⟩| ≤ Cκ (1 + |y|L2 )t−1+κ
|(−A)−1+κh|L2

+ Cγ,κ

(
1 + |(−A)γ+κx |

2
L8 + |(−A)γ+κ y|

2
L8

)
t−γ−

κ
2 |(−A)−γ h|L4 ,

where γ < γmax and κ ∈ (0, γmax − γ ).
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As a consequence

|J ϵ
3,2| ≤ Cκϵ

∫ T

0

(
1 + E|Y ϵ(t)|2L2

) 1
2
(
E|(−A)κX ϵ(t)|2L2

) 1
2 (T − t)−1+κdt

+ Cγ,κϵ

∫ T

0

(
1 + E|(−A)γ+κX ϵ(t)|4L8 + |(−A)γ+κY ϵ(t)|4L8

) 1
2

×
(
E|(−A)1−γ X ϵ(t)|

2
L4

) 1
2 (T − t)−γ−

κ
2 dt.

It remains to use the condition that γ ∈ (1 − αmax, γmax), thanks to Assumption 4.1. Note that
γ + κ ≤ γmax ≤

1
2 ≤ 1 − γ . Finally, thanks to moment estimates,

|J ϵ
3,2| ≤ Cγ,κϵ

(
1+|(−A)γ+κx0|

2
L8+|(−A)γ+κ y0|

2
L8

)(
1+|(−A)1−γ x0|L4+M1−γ,4(Q

1
2 , T )

)
.

It remains to deal with the third term, J ϵ
3,3. Note that the second-order derivative of v with

respect to x satisfies the identity

D2
xv(t, x, y).(h, h) = Φ

(
x, y, D3

x u(t, x).(h, h, ·)
)
+ 2⟨DxΦ

(
x, y, D2

x u(t, x).(h, ·)
)
, h⟩

+ D2
xΦ

(
x, y, Dx u(t, x)

)
.(h, h).

First, observe that |D3
x u(t, x).(h, h, k)| ≤ C |h|

2
L4 |k|L2 , thanks to (41). Equivalently, this

means that |D3
x u(t, x).(h, h, ·)|L2 ≤ C |h|

2
L4 , then Lemma 5.1 yields⏐⏐Φ(

x, y, D3
x u(t, x).(h, h, ·)

)⏐⏐ ≤ C(1 + |y|L2 )|h|
2
L4 .

Second, thanks to Lemma 5.3,⏐⏐⟨DxΦ
(
x, y, D2

x u(t, x).(h, ·)
)
, h⟩

⏐⏐ ≤ C(1 + |y|L4 )|h|L4 |D2
x u(t, x).(h, ·)|L2

≤ C(1 + |y|L4 )|h|
2
L4 .

Finally, Lemma 5.5 and (39) yield⏐⏐D2
xΦ

(
x, y, Dx u(t, x)

)
.(h, h)

⏐⏐ ≤ C(1 + |y|L4 )|Dx u(t, x)|L2 |h|
2
L8 ≤ C(1 + |y|L4 )|h|

2
L8 .

As a consequence, one obtains

|J ϵ
3,3| =

⏐⏐⏐ϵ
2

∫ T

0

∑
n∈N

qnE
[
D2

xv(T − t, X ϵ(t), Y ϵ(t)).( fn, fn)
]
dt

⏐⏐⏐
≤ Cϵ

∑
n∈N

qn| fn|
2
L8

∫ T

0

(
1 + E|Y ϵ(t)|L4

)
dt

≤ C(T )Tr(Q)ϵ(1 + |y0|L4 ),

thanks to Assumption 2.6, and a moment estimate, see Assumption 2.7.
Gathering the estimates for J ϵ

3,1, J ϵ
3,2 and J ϵ

3,3, one obtains

|J ϵ
3 | ≤ Cγ,κϵ

(
1 + |(−A)1−γ x0|

4
L8 + |(−A)γ+κ y0|

4
L8

)
×

(
1 + |(−A)1−γ x0|L4 + Tr(Q) + M1−γ,4(Q

1
2 , T )

)
.

This concludes the proof of Lemma 7.4. □

We are now in position to conclude the proof of Theorem 4.7.

Proof. Thanks to the decomposition (44) of the weak error, it suffices to gather the estimates
of Lemmas 7.2, 7.3 and 7.4 to conclude. □
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8. Proof of Theorem 4.8

This section is devoted to the proof of Theorem 4.8. Let Assumption 4.2 be satisfied. First,
let us justify the definition of

αmax =
1
2

(
1 −

d
2

(1 −
2
ϱ

)
)
.

Proposition 8.1. Let Assumption 4.2 be satisfied. Then (9) is satisfied: for all α ∈ [0, αmax),
all T ∈ (0,∞), and all p ≥ 2,

Mα,p(Q
1
2 , T ) < ∞.

Proof of Proposition 8.1. Let ς =
ϱ

ϱ−2 > 1, and note that 1 =
2
ϱ

+
1
ς

.
Using the ideal property for γ -Radonifying operators and the regularizing properties (3) of

the semigroup,∫ T

0
∥et A(−A)αQ

1
2 ∥

2
R(L2,L p)dt ≤

∫ T

0
∥e

t
2 A(−A)α∥2

L(L p,L p)∥e
t
2 A Q

1
2 ∥

2
R(L2,L p)dt

≤ Cα,p

∫ T

0
t−2α

⏐⏐ ∑
n∈N

qn(et A fn)2
⏐⏐

L
p
2

dt.

Using the Hölder inequality, for all ξ ∈ D, and all t > 0,∑
n∈N

qn
(
et A fn

)2(ξ ) ≤
(∑

n∈N

q
ϱ
2

n
) 2
ϱ

(∑
n∈N

(
et A fn

)2ς (ξ )
) 1
ς

≤ C(Q)
(

sup
k∈N

(
et A fk

) 2(ς−1)
ς (ξ )

)(∑
n∈N

(
et A fn

)2(ξ )
) 1
ς
.

On the one hand, Assumption 2.6 and the property (5) of the kernel K imply that for all
ξ ∈ D,

sup
k∈N

|et A fk(ξ )| ≤

∫
D

K (t, ξ, ·)sup
k∈N

| fk |L∞ ≤ C.

On the other hand,
(

fn
)

n∈N is a complete orthonormal system of L2, hence∑
n∈N

(
et A fn

)2(ξ ) =

∑
n∈N

⟨K (t, ξ, ·), fn⟩
2

= |K (t, ξ, ·)|2L2

=

∫
D

K (t, ξ, η)2dη

≤ Ct−
d
2

∫
D

K (t, ξ, η)dη = Ct−
d
2 ,

using the properties (5) of the kernel K .
Finally, for all t > 0 and all z ∈ D, one obtains⏐⏐ ∑

n∈N

qn(et A fn)2
⏐⏐

L
p
2

≤ Ct−
d

2ς ,

thus ∫ T

0
∥et A(−A)αQ

1
2 ∥

2
R(L2,L p)dt ≤ C

∫ T

0
t−2α−

d
2ς dt.
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It remains to check that 2α −
d

2ς = 2α −
d
2 (1 −

2
ϱ

) < 1 for α < αmax =
1
2

(
1 −

d
2

(1 −
2
ϱ

)
)
.

This concludes the proof of Proposition 8.1. □

The approximation argument is based on the following estimate.

Lemma 8.2. Let Assumption 4.2 be satisfied. For all α ∈ [0, αmax), γ ∈ [0, γmax), such that
α ≥ γ and α + γ ≤ 1, all T ∈ (0,∞) and p ≥ 2, there exists Cα,γ,p(Q, T ) ∈ (0,∞), such
that for all δ ∈ (0, 1),

Tr(e2δA Q) + M1−γ,p(eδA Q
1
2 , T ) ≤ Cα,γ,p(Q, T )δα+γ−1. (49)

Proof of Lemma 8.2. First, note that

M1−γ,p(eδA Q
1
2 , T ) ≤ ∥(−A)1−γ−αeδA

∥L(L p,L p) Mα,p(Q
1
2 , T ),

and that ∥(−A)1−γ−αeδA
∥L(L p,L p) ≤ Cα,γ δ

γ+α−1, in the regime α + γ ≤ 1.
To deal with the trace term, we use the Hölder type inequality for Schatten norms ∥·∥Lϱ(L2),

with parameter ϱ ∈ [1,∞], see for instance [24, Corollary D.2.4, Appendix D]. One obtains

Tr(e2δA Q) = ∥e2δA Q∥L1(L2) ≤ ∥e2δA
∥Lς (L2)∥Q∥L ϱ

2
(L2),

where 1 =
2
ϱ

+
1
ς

. By assumption, ∥Q∥L ϱ
2

(L2) < ∞. In addition,

∥e2δA
∥
ς

Lς (L2)
≤

∑
n∈N

|e2δAen|
ς

L2 ≤

∑
n∈N

e−2ςδλn ≤ Cςδ
−

d
2 ,

using λn ∼n→∞ cdn
2
d . Indeed, assume that δ ∈ [ 1

N2/d ,
1

(N−1)2/d ], with N ∈ N, N ≥ 2. Then, for
some c > 0, a comparison argument between a Riemann sum and an integral yields∑

n∈N

e−2ςδλn ≤

∑
n∈N

e−c n2/d

N2/d = N ×
1
N

∑
n∈N

e−c n2/d

N2/d

≤ N
∫

+∞

0
e−cx2/d

dx ≤ C
1
δd/2 ,

where in the last inequality the condition N − 1 ≤ δ−
d
2 is used. Since N is arbitrary, this

concludes the argument. As a consequence,

Tr(e2δA Q) ≤ Cςδ
−

d
2ς = Cςδ

2αmax−1
≤ Cςδ

2α−1,

using the definition of αmax =
1
2

(
1 −

d
2 (1 −

2
ϱ

)
)

=
1
2

(
1 −

d
2ς

)
.

Finally, one concludes using 2α − 1 ≤ α + γ − 1 ≤ 0. □

The result of Lemma 8.2 motivates the introduction of the following auxiliary SPDE
problems, where Q

1
2 is replaced by eδA Q

1
2 . For all δ ∈ (0, 1) (this parameter will be chosen

below), X ϵ
δ and X δ are solutions of

d X ϵ
δ (t) = AX ϵ

δ (t)dt + F
(
X ϵ
δ (t), Y ϵ(t)

)
dt + eδAdW Q(t),

d X δ(t) = AX δ(t)dt + F(X (t))dt + eδAdW Q(t),
(50)

with initial conditions X ϵ
δ (0) = X δ = x0.
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Then Theorem 4.8 follows from Lemmas 8.3 and 8.4 stated below.
First, thanks to Lemma 8.2, the strong and weak convergence results, with orders 1

2 and 1,
from Theorem 4.5 and 4.7 may be applied when considering the auxiliary processes X ϵ

δ and
X δ defined by (50).

Lemma 8.3. Let Assumption 4.2 be satisfied. Let T ∈ (0,∞), and assume that the initial
conditions x0, y0, satisfy

|(−A)1−γ x0|L8 + |(−A)γ+κ y0|L8 < ∞,

with γ ∈ (0, γmax) and κ ∈ (0, γmax − γ ).
Let ϕ be a nice test function.
For all α ∈ (0, αmax), there exist Cα,γ (T, x0, y0, Q) ∈ (0,∞) and Cα,γ (T, x0, y0, Q, ϕ) ∈

(0,∞), such that for all ϵ ∈ (0, 1) and δ ∈ (0, 1),

sup
t∈[0,T ]

(
E|X ϵ

δ (t) − X δ(t)|
2
L2

) 1
2 ≤ Cα,γ (T, x0, y0, Q)δ−

1−α−γ
2 ϵ

1
2

and

sup
t∈[0,T ]

|E[ϕ(X ϵ
δ (t))] − E[ϕ(X δ(t))]| ≤ Cα,γ (T, x0, y0, Q, ϕ)δ−(1−α−γ )ϵ.

Second, the distances between X ϵ
δ and X ϵ , and between X δ and X , are estimated in the

following result, using standard arguments.

Lemma 8.4. Let Assumption 4.2 be satisfied. Let T ∈ (0,∞), and assume that x0 ∈ L2 and
y0 ∈ L2. Let ϕ be a nice test function. Let α ∈ [0, αmax). There exist Cα(T, x0, y0, Q) ∈ (0,∞)
and Cα(T, x0, y0, Q, ϕ) ∈ (0,∞) such that for all ϵ ∈ (0, 1) and δ ∈ (0, 1), one has

sup
t∈[0,T ]

(
E|X ϵ

δ (t) − X ϵ(t)|2L2

) 1
2 + sup

t∈[0,T ]

(
E|X δ(t) − X (t)|

2
L2

) 1
2 ≤ Cα(T, x0, y0, Q)δα.

and

sup
t∈[0,T ]

|E[ϕ(X ϵ
δ (t))] − E[ϕ(X ϵ(t))]| + sup

t∈[0,T ]
|E[ϕ(X δ(t))] − E[ϕ(X (t))]|

≤ Cα(T, x0, y0, Q, ϕ)δ2α.

Proof of Lemma 8.3. This is a straightforward application of Theorems 4.5 and 4.7 combined
with Lemma 8.2. □

Proof of Lemma 8.4. Consider first the estimates of the strong error. Since the nonlinear oper-
ators F and F are globally Lipschitz continuous, it is sufficient to prove the following estimate:

E
⏐⏐ ∫ t

0
e(t−s)A(

eδA
− I

)
dW Q(s)

⏐⏐2
L2ds =

∫ t

0
∥es A(

eδA
− I

)
Q

1
2 ∥

2
R(L2,L2)ds

≤ ∥(eδA
− I )(−A)−α∥2

L(L2,L2)

×

∫ t

0
∥es A(−A)αQ

1
2 ∥

2
R(L2,L2)ds

≤ Cαδ
2αMα,2(Q, T )2,

and the strong error estimates are straightforward consequences of the Gronwall Lemma.
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It remains to prove the estimates of the weak error. Since the argument is the same for both
estimates, we only deal with the second one. Note that

E[ϕ(X δ(t))] − E[ϕ(X (t))] = E[u(0, X δ(t))] − E[u(t, X δ(0))],

where u is defined by the expression (38). Observe that, even if Assumption 4.2 is satisfied
instead of Assumption 4.1, the regularity estimates on spatial derivatives of u stated in
Proposition 7.1 remain valid without modification.

Using Itô formula, one obtains

E[ϕ(X δ(t))] − E[ϕ(X (t))]

= E
∫ t

0

∑
n∈N

qn

(
D2u(t − s, X δ(s)).(eδA fn, eδA fn)

− D2u(t − s, X δ(s)).( fn, fn)
)

ds

= E
∫ t

0

(
Tr

(
D2u(t − s, X δ(s))eδA QeδA)

− Tr
(
D2u(t − s, X δ(s))Q

))
ds

= E
∫ t

0
Tr

(
D2u(t − s, X δ(s))

(
eδA

− I
)
QeδA)

ds

+ E
∫ t

0
Tr

(
D2u(t − s, X δ(s))Q

(
eδA

− I
))

ds,

where D2u(t, x) is interpreted as a bounded, self-adjoint, linear operator from L2 to L2, instead
of a symmetric, bilinear form on L2, using Riesz Theorem: for all h ∈ L2, D2u(t, x).h ∈ L2

is characterized by

⟨D2u(t, x)h, ·⟩ = D2u(t, x).(h, ·).

Let α ∈ (0, αmax) and κ ∈ (0, αmax − α). Then, using the Hölder type inequality for Schatten
norms, for all 0 ≤ s < t ≤ T ,⏐⏐Tr

(
D2u(t − s, X δ(s))

(
eδA

− I
)
QeδA)⏐⏐ = ∥D2u(t − s, X δ(s))

(
eδA

− I
)
QeδA

∥L1(L2)

≤ ∥D2u(t − s, X δ(s))(−A)1−2κ
∥L∞(L2)∥(−A)−1+2κ (I − eδA)∥Lς (L2)∥Q∥L ϱ

2
(L2),

where 1 =
2
ϱ
+

1
ς

. By assumption, one has ∥Q∥L ϱ
2
< ∞. In addition, thanks to Proposition 7.1,

one has

∥D2u(t − s, X δ(s))(−A)1−2κ
∥L∞(L2) = ∥D2u(t − s, X δ(s))(−A)1−2κ

∥L(L2,L2)

≤ Cκ (t − s)−1+2κ .

Finally, (−A)−1+2κ (I − eδA) is a self-adjoint, compact, linear operator, thus, for α ≤
1
2 , using

the standard inequality 0 ≤ 1 − e−x
≤ 21−αxα for all x ∈ [0,∞), with x = λnδ, one has

∥(−A)−1+2κ (I − eδA)∥ςLς (L2)
=

∑
n∈N

λ−(1−2κ)ς
n (1 − e−δλn )ς

≤ Cαδ
2ας

∑
n∈N

λ−(1−2κ−2α)ς
n .

Finally, with the condition α+κ < αmax =
1
2 (1−

d
2ς ), one has (1−2κ−2α)ς > d

2 , thus (using

λn ∼ cdn
2
d ) one has

∑
n∈N λ

−(1−2κ−2α)ς
n < ∞.
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Finally, one obtains⏐⏐Tr
(
D2u(t − s, X δ(s))

(
eδA

− I
)
QeδA)⏐⏐ ≤ Cαδ

2α(t − s)−1+2κ ,

and similarly⏐⏐Tr
(
D2u(t − s, X δ(s))Q

(
eδA

− I
))⏐⏐ ≤ Cαδ

2α(t − s)−1+2κ .

It is then straightforward to conclude that⏐⏐E[ϕ(X δ(t))] − E[ϕ(X (t))]
⏐⏐ ≤ Cαδ

2α.

This concludes the proof of Lemma 8.4. □

We are now in position to provide the proof of Theorem 4.8, which consists in choosing δ
in terms of ϵ to maximize the order of convergence.

Proof of Theorem 4.8. Thanks to the strong and weak error estimates from Lemmas 8.3 and
8.4, one obtains, for all ϵ ∈ (0, 1) and δ ∈ (0, 1),

sup
t∈[0,T ]

(
E|X ϵ(t) − X (t)|

2
L2

) 1
2 ≤ Cα,γ (T, x0, y0, Q)

(
δ−

1−α−γ
2 ϵ

1
2 + δα

)
,

sup
t∈[0,T ]

|E[ϕ(X ϵ(t))] − E[ϕ(X (t))]| ≤ Cα,γ (T, x0, y0, Q, ϕ)
(
δ−(1−α−γ )ϵ + δ2α

)
.

It remains to choose the regularization parameter δ in terms of ϵ, in order to minimize the
right-hand sides in the estimates above. Choosing

δ = ϵ
1

1+α−γ ,

the two error terms are equal. Since αmax − α and γmax − γ are arbitrarily small, the orders
of convergence can be rewritten in the form given by Theorem 4.8, in terms of the parameter
βmax and this concludes the proof. □

Remark 8.5. Let us replace Assumption 4.2 by the following condition: αmax ∈ [0, 1) is such
that for all α ∈ [0, αmax) and all p ≥ 2, one has ∥(−A)α−

1
2 Q

1
2 ∥R(L2,L p) < ∞. Then the results

of this section can be generalized as follows, using similar techniques. Lemma 8.3 holds true,
whereas Lemma 8.4 needs to be modified: the strong error remains bounded by Cαδ

α , and
the weak error is bounded by Cαδ

min(1,2α). On the one hand, if αmax ≤
1
2 , the situation is the

same as in Theorem 4.8. On the other hand, if αmax ≥
1
2 , the strong and the weak rates one

obtains using the approximation approach considered above, are αmax
1+αmax−γmax

and 1
2−αmax−γmax

respectively. This statement and the approach are not satisfactory in this case since the weak
order is not equal to twice the strong order anymore. Whether this issue can be fixed, and
whether the rates of convergence given above are optimal, are left for future works.

9. Efficient numerical approximation of the slow component

The objective of this section is to describe a multiscale numerical scheme (for temporal
discretization) for the approximation of the slow component X ϵ , in the regime ϵ → 0. This
task is challenging and crucial: indeed a direct discretization for the system

(
X ϵ(t), Y ϵ(t)

)
t≥0

requires to choose a time step size h satisfying a condition h = o(ϵ), since Y ϵ(t) = Y (t/ϵ).
Such a condition is prohibitive, and to circumvent this issue one may benefit from the averaging
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principle: when ϵ → 0, it is more appropriate to approximate the solution X of the averaged
equation, for which the time step size ∆t is not constrained anymore by the value of ϵ.
However, at this stage, in general the averaged coefficient F is not known. Using for instance
the following interpretation of F(x),

F(x) =

∫
F(x, y)dµ(y) = lim

T →∞

1
T

∫ T

0
F(x, Y (t))dt,

it suffices to estimate the averaged coefficient F(x) using a numerical scheme for Y with time
step size τ (or equivalently a numerical scheme for Y ϵ with time step size δ = τϵ).

The resulting scheme belongs to the class of Heterogeneous Multiscale Methods, see [4]
and references therein. It consists of a macro-scheme combined with the use of a micro-
scheme at each step. It is crucial to note that the two time step sizes ∆t and τ may be
chosen independently when using such strategies. The multiscale scheme is closely related
to the averaging principle. Indeed, the analysis of the full error of the scheme requires as a
preliminary step to estimate the error in the averaging principle, using the main results of this
article given in Section 4. Finally, choosing some parameters of the scheme in an appropriate
way is shown to reproduce an averaging principle at the discretized level.

The construction of the multiscale scheme is presented in Section 9.1. An analysis of the
convergence of the scheme (using the results of Section 4) is provided in Section 9.2.

The setting is different from the earlier work [4]. On the one hand, it is simpler since the
fast component does not depend on the slow component. On the other hand, contrary to [4],
the slow component is driven by a Wiener process which changes orders of convergence of the
macro scheme and complicates the analysis. In addition, regularity of the processes X and Y
depends on the parameter αmax and γmax.

9.1. Construction of the scheme

As explained above, the main parameters of the multiscale scheme are the macro-time step
size ∆t > 0 and the micro-time step size τ > 0. In addition, two other integer parameters
M and Ma ∈ {1, . . . ,M} are used, in order to estimate the averaged coefficient in terms of
temporal averages along the micro-scheme, at each step of the macro-scheme.

In this section, to avoid cumbersome notation, precise regularity conditions, and dependence
in error estimates, on the initial conditions x0, y0 are not indicated.

9.1.1. Micro-scheme
Let

(
Y τ

m

)
m∈N0

be computed using a numerical scheme Φτ for the stochastic process(
Y (t)

)
t≥0. If this process is solution of a SPDE of the type dY (t) = AY (t)dt + G(Y (t))dt +

dwq (t), this means that the scheme is of the form Ym+1 = Φτ
(
Ym, w

q ((m + 1)τ ) − wq (mτ )
)
,

where the mapping Φτ depends on the chosen scheme.
First, it is assumed that, for all (sufficiently small) values of τ > 0, the discrete-time

process
(
Y τ

m

)
m∈N0

is an ergodic Markov chain. Let µτ denote its unique invariant probability
distribution.

Even if the temporal discretization preserves the ergodicity of the process, in general µτ

is not equal to µ. To estimate the error between µτ and µ, let ϑmax > 0 and assume that the
following estimate is satisfied: for all functions ϕ : L2

→ R of class C2, with bounded first
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and second order derivatives, and for every ϑ ∈ (0, ϑmax), there exists Cϑ (ϕ) ∈ (0,∞) such
that

|

∫
ϕdµτ −

∫
ϕdµ| ≤ Cθ (ϕ)τϑ . (51)

For instance, assume that the fast component is solution of a SPDE of the type dY (t) =

AY (t)dt + G(Y (t))dt + dwq (t), driven by a q-Wiener process. Then the parameter γmax arises
from assumptions on the covariance operator q, and one checks that this parameter describes
the spatial and temporal regularity of the process Y : almost surely, the trajectories are γ -Hölder
continuous, for all γ ∈ (0, γmax). In such situations, a standard numerical scheme has a strong
order equal to γmax and a weak order equal to 2γmax, see for instance [6] or [29]. Thus in this
case, it is legitimate to assume that ϑ = 2γmax. See [5] for a full analysis of the approximation
of the invariant distribution when γmax =

1
4 and d = 1, i.e. when the fast process is driven by

space–time white noise.
For a given time step size τ > 0, introduce the averaged coefficient F

τ
with respect to the

probability distribution µτ :

F
τ
(x) =

∫
F(x, y)dµτ (y), ∀x ∈ L2. (52)

The mapping F
τ

is globally Lipschitz continuous, uniformly with respect to τ > 0, owing
to Assumption 2.3. More generally, the estimates of Proposition 3.2 are also satisfied by F

τ
,

uniformly with respect to τ > 0.
The error estimate (51) is generalized as follows: assume that, for all ϑ ∈ [0, ϑmax) and

κ ∈ (0, 1 −
d
4 ), there exists Cϑ,κ ∈ (0,∞), such that

sup
x∈L2

⏐⏐(−A)−
d
4 −κ

(
F(x) − F

τ
(x)

)⏐⏐
L2 ≤ Cϑ,κτ

ϑ . (53)

To obtain (53) from the error estimate (51), it suffices to use a duality argument, and to
apply (51) with the test function ϕ = ⟨h, (−A)−

d
4 −κ (F − F

τ
)⟩, which is sufficiently regular

using (7) and regularity properties of DF
τ
.

To state convergence results, some notation concerning the speed of convergence to
equilibrium is introduced. Let ρ : (0,∞) → (0,∞) be a non-increasing function, such that
ρ(t) →t→∞ 0. It is assumed that for every globally Lipschitz function ϕ : L2

→ R, there
exists C(ϕ) ∈ (0,∞) such that

|E[ϕ(Y τ
m)] −

∫
ϕdµτ | ≤ C(ϕ)ρ(mτ ), (54)

and that

sup
x∈L2

⏐⏐E[F(x, Y τ
m)] − F

τ
(x)

⏐⏐
L2 ≤ Cρ(mτ ). (55)

The error estimates stated below depend on the following quantities,

R1(M,Ma, τ ) =
1

Ma

M∑
m=M−Ma+1

ρ(mτ ) , R2(M,Ma, τ )

=
1

M2
a

∑
M−Ma+1≤m1<m2≤M

ρ((m2 − m1)τ ), (56)



Please cite this article as: C.-E. Bréhier, Orders of convergence in the averaging principle for SPDEs: The case of a stochastically forced slow
component, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.09.015.

36 C.-E. Bréhier / Stochastic Processes and their Applications xxx (xxxx) xxx

which depend on the auxiliary parameters Ma (number of terms in the averages) and M
(maximal value of m in the average).

If it straightforward to check that, for fixed τ , one has R1(M,Ma, τ ) → 0 and R2(M,Ma, τ )
→ 0 if Ma → ∞. In addition, R1(M,Ma, τ ) → 0 if M − Ma → ∞. More precise estimates
are derived if the convergence is exponentially fast: when ρ(t) = e−ct for some c > 0, there
exists C ∈ (0,∞) such that for all Ma ≤ M and all τ > 0, one has

R1(M,Ma, τ ) ≤
Ce−c(M−Ma+1)τ

Maτ + 1
, R2(M,Ma, τ ) ≤

C
Maτ + 1

.

9.1.2. Macro-scheme
We are now in position to define the macro-scheme, and the resulting multiscale scheme.

The guideline is to approximate the solution X (t) of the averaged problem, instead of X ϵ(t),
owing to the averaging principle, and to estimate the error by Theorems 4.5, 4.7 and 4.8.

Set Y τ
n,m = Y τ

nM+m for all n ∈ N, and m ∈ {0, . . . ,M}. The macro-scheme is based on the
linear implicit Euler scheme: define

Xn+1 = S∆t
(
Xn + ∆t F̃n + ∆W Q

n

)
, (57)

where X0 = x0, S∆t = (I − ∆t A)−1, ∆W Q
n = W Q

(
(n + 1)∆t

)
− W Q

(
n∆t

)
are Wiener

increments, and with the following approximation of F(Xn),

F̃n =
1

Ma

M∑
m=M−Ma+1

F(Xn, Y τ
n,m), (58)

computed as a temporal average along the micro-scheme, depending on the parameters Ma and
M .

9.1.3. Auxiliary processes
In order to analyze the multiscale scheme given by (57)–(58), and to give a clear discussion,

two auxiliary processes are introduced.
First, applying the same integrator as in (57), i.e. the linear implicit Euler scheme, to

discretize the averaged SPDE (22), set

Xn+1 = S∆t
(
Xn + ∆t F(Xn) + ∆W Q

n

)
, X0 = x0.

If the averaged coefficient F was known, this scheme may be used directly, without the need
to consider the multiscale scheme (indeed, the role of the micro-scheme is to provide an
approximation of the averaged coefficient).

The following strong and weak error estimates for the discretization of the averaged equation
are assumed to be satisfied: for all T ∈ (0,∞), all α ∈ [0, αmax), and all test functions ϕ of
class C2

b ,

sup
0≤t≤T

(
E|X (n∆t) − Xn|

2) 1
2 ≤ Cα(T )∆tmin(α, 1

2 ),

sup
0≤t≤T

⏐⏐E[ϕ(X (n∆t))] − E[ϕ(Xn)]
⏐⏐ ≤ Cα(T, ϕ)∆tmin(2α,1).

(59)

Indeed, observe that the trajectories of the process X are almost surely α-Hölder continuous, for
all α ∈ (0,min(α, 1

2 )). When applying a simple numerical scheme such as the linear implicit
Euler scheme, the strong and weak orders of convergence are directly related to the Hölder
regularity of trajectories, see for instance [25,29,33] for references on numerical methods for



Please cite this article as: C.-E. Bréhier, Orders of convergence in the averaging principle for SPDEs: The case of a stochastically forced slow
component, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.09.015.

C.-E. Bréhier / Stochastic Processes and their Applications xxx (xxxx) xxx 37

SPDEs. The fact that the weak order is twice the strong order is expected, see for instance [6]
and references therein.

Second, recall that the invariant distribution µτ of the discrete-time process is not equal to
µ in general. Using the averaged coefficient F

τ
defined by (52), set

d X
τ
(t) = AX

τ
(t)dt + F

τ
(X

τ
(t))dt + dW Q(t), X

τ
(0) = x0,

and the associated numerical discretization

X
τ

n+1 = S∆t
(
X
τ

n + ∆t F
τ
(X

τ

n) + ∆W Q
n

)
, X

τ

0 = x0, (60)

which also uses the same integrator as in (57).

9.2. Convergence of the multiscale scheme (57) –(58)

9.2.1. Error estimates
Proposition 9.1 states a general convergence result, depending on the parameters ∆t , τ , M

and Ma . To simplify the analysis, it is assumed that F is bounded, however this restriction may
be removed by proving moment estimates for the numerical scheme.

Let βmax =
1
2 when Assumption 4.1 is satisfied, whereas βmax =

αmax
1+αmax−γmax

when
Assumption 4.2 is satisfied, where the parameters αmax and γmax are defined in
Asssumptions 2.6 and 2.7. Recall that in many cases, the order of convergence for the
approximation of the invariant distribution µ using the micro-scheme (see (51)) can be chosen
equal to ϑmax = 2γmax, however results are stated for a general value of ϑmax.

Proposition 9.1. For all T ∈ (0,∞), all α ∈ [0, αmax), ϑ ∈ [0, ϑmax), and β ∈ [0, βmax),
there exists Cα,ϑ,β(T ) ∈ (0,∞) such that the strong error is of size

sup
0≤n∆t≤T

(
E|Xn − X ϵ(n∆t)|2L2

) 1
2 ≤ Cα,ϑ,β(T )

(
ϵβ + ∆tmin(α, 1

2 )
+ τϑ

)
+ Cα,ϑ,β(T )

( √
R1(M,Ma, τ )

+
√
∆t

( 1
√

Ma
+

√
R2(M,Ma, τ )

) )
.

(61)

In addition, for all test functions ϕ of class C2
b , there exists Cα,ϑ,β(T, ϕ) ∈ (0,∞) such that the

weak error is of size

sup
0≤n∆t≤T

⏐⏐E[ϕ(Xn)] − E[ϕ(X ϵ(n∆t))]
⏐⏐ ≤ Cα,ϑ,β(T, ϕ)

(
ϵ2β

+ ∆tmin(2α,1)
+ τϑ

)
+ Cα,ϑ,β(T, ϕ)

(
R1(M,Ma, τ )

+ ∆t
( 1

Ma
+ R2(M,Ma, τ )

) )
.

(62)

Finally, for all test functions ψ of class C2
b , there exists Cϑ (ψ) ∈ (0,∞), such that,

sup
n∈N

|E[ψ(YnM )] −

∫
ψdµ| ≤ Cϑ (ψ)

(
τϑ + ρ(nMτ )

)
. (63)

In fact, Proposition 9.1 is a straightforward corollary of Proposition 9.2, combined with
results stated above:

• Theorems 4.5 and 4.7, or Theorem 4.8, to deal with the error in the averaging principle,
which are the main results of this article,
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• strong and weak error estimates (59) for the macro-scheme applied to the averaged
SPDE (22),

• the estimate (53) (sampling error between the invariant distributions µ and µτ ), which
gives an error estimate sup0≤n∆t≤T

(
E|Xn − X

τ

n |
2) 1

2 ≤ Cϑτ
ϑ using a Gronwall type

argument.

Note that (63) is a straightforward consequence of (51) and (54).

Proposition 9.2. One has the following strong and weak error estimates.

(1) For all T ∈ (0,∞), there exists C(T ) ∈ (0,∞) such that, for all ∆t ∈ (0, 1), τ ∈ (0, 1),
and 1 ≤ Ma ≤ M, one has

sup
0≤n∆t≤T

(
E|Xn − X

τ

n |
2
L2

) 1
2 ≤ C(T )

(√
R1(M,Ma, τ )+

√
∆t

( 1
√

Ma
+

√
R2(M,Ma, τ )

))
.

(64)

(2) For all test functions ϕ of class C2
b , there exists C(T, ϕ) ∈ (0,∞) such that, for all

∆t ∈ (0, 1), τ ∈ (0, 1), and 1 ≤ Ma ≤ M, one has

sup
0≤n∆t≤T

⏐⏐E[ϕ(Xn)]−E[ϕ(X
τ

n)]
⏐⏐ ≤ C(T, ϕ)

(
R1(M,Ma, τ )+∆t

( 1
Ma

+R2(M,Ma, τ )
))
.

(65)

Observe that Proposition 9.2 implies the convergence of the macro-scheme (57) to the
scheme (60), when Ma → ∞, for any fixed values of ∆t and τ . Note that to respect
time-scales in (1), it is appropriate to choose parameters such that Mτ = ϵ−1∆t , and also
Maτ = M̃aϵ

−1∆t , thus the convergence property stated above may be interpreted as arising
from taking the limit ϵ → 0, and as an averaging principle at the discrete-time level. The limit
scheme (60) is not an integrator for the averaged equation (22), but to a modified equation,
with a residual depending on the micro time-step size τ .

We refer to [4] for a full analysis of the cost of the multiscale scheme (57)–(58).

9.2.2. Proof of Proposition 9.2
In order to prove the weak error estimate (65), an auxiliary function is introduced: for all

n ∈ N0 and x ∈ L2,

uτ (n, x) = E[ϕ(X
τ

n)
⏐⏐X

τ

0 = x], (66)

where the Markov chain
(
X
τ

n

)
n≥0 is given by (60). The function uτ is a discrete-time version

of the function u studied in Proposition 7.1. Similarly, the spatial derivatives of uτ satisfy
estimates given in Lemma 9.3.

Lemma 9.3. Let ϕ : L2
→ R be a nice test function, and let T ∈ (0,∞). There exists

C(T ) ∈ (0,∞), such that for all τ > 0, all ∆t ∈ (0, T ), and all x, h, h1, h2 ∈ L2, one has

sup
n∆t≤T

|Dx uτ (n, x).h| ≤ C(T )|h|L2 , sup
n∆t≤T

|D2
x uτ (n, x).(h1, h2)| ≤ C(T )|h1|L2 |h2|L2 .

The arguments in the proof are similar to those employed for the proof of Proposition 7.1,
but are somehow simpler since no regularization effect is required in the remainder of the
analysis.
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Proof. The first and second order spatial derivatives of uτ are expressed as follows: for all
n ∈ N and x, h, h1, h2 ∈ H , one has

Dx uτ (n, x).h = E
[
Dϕ(X

τ

n).ηh,τ
n

]
D2

x uτ (n, x).(h1, h2) = E
[
Dϕ(X

τ

n).ζ h1,h2,τ
n

]
+ E

[
D2ϕ(X

τ

n).(ηh1,τ
n , ηh2,τ

n )
]
,

where the process
(
ηh,τ

n

)
n≥0 and

(
ζ h,τ

n

)
n≥0 are solutions of

η
h,τ
n+1 = S∆t

(
ηh,τ

n + ∆t DF
τ
(X

τ

n).ηh,τ
n

)
,

ζ
h1,h2,τ
n+1 = S∆t

(
ζ h1,h2,τ

n + ∆t DF
τ
(X

τ

n).ζ h1,h2,τ
n + ∆t D2 F

τ
(X

τ

n).(ηh1,τ
n , ηh2,τ

n )
)
,

with initial conditions ηh,τ
0 = h and ζ h1,h2,τ

0 = 0. By recursion, mild formulations are obtained:

ηh,τ
n = Sn

∆t h + ∆t
n−1∑
k=0

Sn−k
∆t DF

τ
(X

τ

k ).ηh,τ
k ,

ζ h1,h2,τ
n = ∆t

n−1∑
k=0

Sn−k
∆t DF

τ
(X

τ

k ).ζ h,τ
k + ∆t

n−1∑
k=0

Sn−k
∆t D2 F

τ
(X

τ

k ).(ηh1,τ
k , η

h2,τ
k ).

The following inequalities are used: for all α ∈ [0, 1), there exists Cα ∈ (0,∞) such that for
all n ∈ N,

|(−A)αSn
∆t x |L2 ≤ Cα(n∆t)−α|x |L2 ,

see for instance [6, Lemma 5.2]. Combined with the inequality (7) and regularity properties of
F
τ

(which are the same as for F given in Proposition 3.2), one obtains

|ηh,τ
n |L2 ≤ C |h| + C∆t

n−1∑
k=0

|η
h,τ
k |L2 ,

|ζ h1,h2,τ
n |L2 ≤ C∆t

n−1∑
k=0

|ζ
h1,h2,τ
k |L2 + Cκ∆t

n−1∑
k=0

((n − k − 1)∆t)−
d
4 −κ

|η
h1,τ
k |L2 |η

h2,τ
k |L2 ,

with κ ∈ (0, 1 −
d
4 ). Using a discrete Gronwall Lemma, one obtains successively, when

n∆t ≤ T , the inequalities

|ηh,τ
n |L2 ≤ C(T )|h|L2 , |ζ h1,h2,τ

n |L2 ≤ C(T )|h1|L2 |h2|L2 ,

and using the assumption that ϕ is a nice test function then concludes the proof. □

We are now in position to prove Proposition 9.2.

Proof of Proposition 9.2. Let us first establish the strong error estimate (64). For all n ≥ 0,
one has the equality

Xn − X
τ

n = ∆t
n−1∑
k=0

Sn−k
∆t

(
F̃k − F

τ
(X

τ

k )
)

= ∆t
n−1∑
k=0

Sn−k
∆t

(
F
τ
(Xk) − F

τ
(X

τ

k )
)
+ ∆t

n−1∑
k=0

Sn−k
∆t

(
F̃k − F

τ
(Xk)

)
.
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On the one hand, thanks to the Lipschitz continuity of F
τ
, one has(

E
⏐⏐∆t

n−1∑
k=0

Sn−k
∆t

(
F
τ
(Xk) − F

τ
(X

τ

k )
)⏐⏐2

L2

) 1
2 ≤ C∆t

n−1∑
k=0

(
E|Xk − X

τ

k |
2
L2

) 1
2 .

On the other hand, writing | · |
2
L2 = ⟨·, ·⟩, and expanding the sums by bilinearity of the inner

product, one obtains

E
⏐⏐∆t

n−1∑
k=0

Sn−k
∆t

(
F̃k − F

τ
(Xk)

)⏐⏐2
L2 = ∆t2

n−1∑
k1,k2=0

E⟨Sn−k1
∆t

(
F̃k1 − F

τ
(Xk1 )

)
,

Sn−k2
∆t

(
F̃k2 − F

τ
(Xk2 )

)
⟩

≤ ∆t2
n−1∑
k=0

E|F̃k − F
τ
(Xk)|

2
L2

+ 2∆t2
∑

0≤k1<k2≤n−1

E⟨Sn−k1
∆t

(
F̃k1 − F

τ
(Xk1 )

)
, Sn−k2

∆t

(
F̃k2 − F

τ
(Xk2 )

)
⟩

= E1 + E2.

The error term E1 is treated as follows. Using the definition (58) of F̃k as an average, and using
the same type of expansion as above, one gets

E|F̃k − F
τ
(Xk)|

2
L2 ≤

1
M2

a

M∑
m=M−Ma+1

E|F(Xk, Y τ
k,m) − F

τ
(Xk)|

2

+
2

M2
a

∑
M−Ma+1≤m1<m2≤M

E⟨F(Xk, Y τ
k,m1

) − F
τ
(Xk), F(Xk, Y τ

k,m2
)

− F
τ
(Xk)⟩.

On the one hand, the assumption that F is bounded yields the inequality

1
M2

a

M∑
m=M−Ma+1

E|F(Xk, Y τ
k,m) − F

τ
(Xk)|

2
≤

C
Ma
.

On the other hand, owing to a conditioning argument, combined with boundedness of F and
the estimate (55), one obtains, when m1 < m2, the estimate⏐⏐E⟨F(Xk, Y τ

k,m1
) − F

τ
(Xk), F(Xk, Y τ

k,m2
) − F

τ
(Xk)⟩

⏐⏐ ≤ Cρ((m2 − m1)τ ).

Gathering the estimates and using (56), one obtains

E|F̃k − F
τ
(Xk)|

2
L2 ≤ C

( 1
Ma

+ R2(M,Ma, τ )
)
,

and

E1 ≤ C∆t
( 1

Ma
+ R2(M,Ma, τ )

)
.

The error term E2 is treated as follows. Using again a conditioning argument, combined with
boundedness of F and the estimate (55), one obtains, when k1 < k2, the estimate⏐⏐E⟨Sn−k1

∆t

(
F̃k1 − F

τ
(Xk1 )

)
, Sn−k2

∆t

(
F̃k2 − F

τ
(Xk2 )

)
⟩
⏐⏐ ≤

C
Ma

M∑
m=M−Ma+1

ρ(mτ ),
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hence (using (56))

|E2| ≤ C R1(M,Ma, τ ).

Gathering the estimates yields(
E|Xn − X τ

n |
2
L2

) 1
2 ≤ C∆t

n−1∑
k=0

(
E|Xk − X

τ

k |
2
L2

) 1
2

+ C
(∆t

Ma
+ ∆t R2(M,Ma, τ ) + R1(M,Ma, τ )

) 1
2 .

It remains to apply a discrete Gronwall Lemma to conclude the proof of the strong error
estimate.

It remains to establish the weak error estimate (65).
The first and fundamental step in the analysis is to express the weak error in terms of the

auxiliary function uτ defined by (66): one has

E[ϕ(Xn)] − E[ϕ(X
τ

n)] = E[uτ (0, Xn)] − E[uτ (n, X0)]

=

n−1∑
k=0

(
E[uτ (n − k − 1, Xk+1)] − E[uτ (n − k, Xk)]

)
,

by a telescoping sum argument. Using the definitions (60) and (57) of the schemes, and the
Markov property, one obtains

E[uτ (n − k − 1, Xk+1)] = E[uτ (n − k − 1, S∆t
(
Xk + ∆t F̃k + ∆W Q

k

)
)],

E[uτ (n − k, Xk)] = E[uτ (n − k − 1, S∆t
(
Xk + ∆t F

τ
(Xk) + ∆W Q

k

)
)].

A second-order Taylor expansion, combined with Lemma 9.3, then implies that

E[uτ (n − k − 1,Xk+1)] − E[uτ (n − k, Xk)]

= ∆tE
[

⟨Dx uτ
(
n − k − 1, S∆t (Xk + ∆t F

τ
(Xk) + ∆W Q

k )
)
,

S∆t
(
F̃k − F

τ
(Xk)

)
⟩
]

+ O(∆t2)E|F̃k − F
τ
(Xk)|

2
L2

=
∆t
Ma

M∑
m=M−Ma+1

(
E[Ψ τ,∆t (n − k − 1, Xk, Y τ

k,m)]

−

∫
Ψ (n − k − 1, Xk, ·)dµτ

)
+ O(∆t2)E|F̃k − F

τ
(Xk)|

2
L2 ,

with the auxiliary function Ψ τ,∆t defined by:

Ψ τ,∆t (k, x, y) = E
[
Dx uτ

(
k, S∆t (x + ∆t F

τ
(x) + ∆W Q

0 )
)
.(S∆t F(x, y))

]
,

where the Wiener increment ∆W Q
0 is independent of the process

(
Y τ

k

)
k≥0.

In order to use (54), it suffices to check that the first and order derivative of Ψ τ,∆t with
respect to y satisfy the following estimates: for all T ∈ (0,∞) and κ ∈ (0, 1 −

d
4 ), there exists

Cκ (T ) ∈ (0,∞), such that for all x, y, h ∈ L2, all τ,∆t > 0, one has

sup
k∆t≤T

|DyΨ
τ,∆t (k, x, y).h| ≤ Cκ (T )|h|L2 . (67)
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This claim is proved as follows: one has the identity

DyΨ
τ,∆t (k, x, y).h = E

[
⟨Dx uτ

(
k, S∆t (x + ∆t F

τ
(x) + ∆W Q

0 )
)
., S∆t Dy F(x, y).h⟩

]
,

and Lemma 9.3 and Assumption 2.3 imply the estimate

|DyΨ
τ,∆t (k, x, y).h| ≤ C(T )|Dy F(x, y).h|L2 ≤ C(T )|h|L2 ,

which concludes the proof of (67). As a consequence, using (54) yields⏐⏐E[Ψ τ,∆t (n − k − 1, Xk, Y τ
k,m)] −

∫
Ψ (n − k − 1, Xk, ·)dµτ

⏐⏐ ≤ Cρ(mτ ).

In addition, the following error estimate has been proved above:

E|F̃k − F
τ
(Xk)|

2
L2 ≤ C

( 1
Ma

+ R2(M,Ma, τ )
)
.

Finally, one obtains⏐⏐E[uτ (n − k − 1, Xk+1)] − E[uτ (n − k, Xk)]
⏐⏐ ≤ C∆t R1(M,Ma, τ )

+ C∆t2( 1
Ma

+ R2(M,Ma, τ )
)
,

and taking the sum for k ∈ {0, . . . , n − 1} yields⏐⏐E[ϕ(Xn)] − E[ϕ(X
τ

n)]
⏐⏐ ≤ C R1(M,Ma, τ ) + C∆t

( 1
Ma

+ R2(M,Ma, τ )
)
,

which concludes the proof of (65). □
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