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ANALYSIS OF AN HMM TIME-DISCRETIZATION SCHEME FOR A
SYSTEM OF STOCHASTIC PDEs∗

CHARLES-EDOUARD BRÉHIER†

Abstract. We consider the discretization in time of a system of parabolic stochastic partial
differential equations with slow and fast components; the fast equation is driven by an additive
space-time white noise. The numerical method is inspired by the averaging principle satisfied by
this system and fits to the framework of heterogeneous multiscale methods. The slow and the fast
components are approximated with two coupled numerical semi-implicit Euler schemes depending on
two different time step sizes. We derive bounds of the approximation error on the slow component in
the strong sense—approximation of trajectories—and in the weak sense—approximation of the laws.
The estimates generalize the results of [W. E, D. Liu, and E. Vanden-Eijnden, Comm. Pure Appl.
Math., 58 (2005), pp. 1544–1585] in the case of infinite dimensional processes.
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1. Introduction. In this paper, we are interested in the numerical approxi-
mation of a randomly perturbed system of reaction-diffusion equations that can be
written

(1.1)

∂xε(t, ξ)

∂t
=

∂2xε(t, ξ)

∂ξ2
+ f(ξ, xε(t, ξ), yε(t, ξ)),

∂yε(t, ξ)

∂t
=

1

ε

∂2yε(t, ξ)

∂ξ2
+

1

ε
g(ξ, xε(t, ξ), yε(t, ξ)) +

1√
ε

∂ω(t, ξ)

∂t

for t ≥ 0, ξ ∈ (0, 1) with initial conditions xε(0, ξ) = x(ξ) and yε(0, ξ) = ξ, and homo-
geneous Dirichlet boundary conditions xε(t, 0) = xε(t, 1) = 0, yε(t, 0) = yε(t, 1) = 0.

The stochastic perturbation ∂ω(t,ξ)
∂t is a space-time white noise, and ε > 0 is a small

parameter.
In the recent article [3], we have proved that an averaging principle holds for such

a system, and we have exhibited an order of convergence—with respect to ε—in a
strong and in a weak sense: the slow component xε is approximated thanks to the
solution of an averaged equation. In this article, we analyze a numerical method of
time discretization which reproduces this averaging effect at the discrete time level.
More precisely, our aim is to build a numerical approximation of the slow component
xε, taking care of the stiffness induced by the time scale separation. The heterogeneous
multiscale method (HMM) procedure is used, as it is done in [14] for SDEs of the same
kind. First we recall the general principle of such a method, which has been developed
in various contexts, both deterministic and stochastic—see the review article [13] and
the references therein, as well as [11], [12], [20]. We also mention the paper [1], which
justifies the introduction of indirect methods for systems of SDEs with two time scales.
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Such systems of equations as (1.1) with two time scales may be used for the study
of problems in chemistry or in biology, and in finance, when two phenomena occur
at different speeds. An historical example where averaging occurs concerns celestial
mechanics. The book [18] is a good reference for multiscale systems of equations.
Precise assumptions on the coefficients f and g are given in section 3: they are
bounded and of class C2 with bounded derivatives.

In system (1.1), the two components evolve at different time scales; xε is the slow
component of the problem, while the fast component yε has fast variations in time.
We are indeed interested in evaluating the slow component, which can be thought
of as the mathematical model for a phenomenon appearing at the natural time scale
of the experiment, whereas the fast component can often be interpreted as data for
the slow component, taking care of effects at a faster time scale. Instead of using a
direct numerical method, which might require a very small time step size because of
the fast component, we use a different solver for each time scale: a macrosolver and
a microsolver. The macrosolver leads to the approximation of the slow component; it
takes into account data from the evolution at the fast time scale. The microsolver is
then a procedure for estimating the unknown necessary data, using the evolution at
the microtime scale, which also depends on the evolution at the macrotime scale. We
focus on the situation where both solvers are constructed thanks to a semi-implicit
Euler scheme, while in [14] the analysis is more general: first, we obtain a simple
method which already contains the fundamental technical difficulties of the HMMs,
and we use the results of [2] about the approximation of the invariant measure of a
stochastic partial differential equation (SPDE) thanks to a numerical scheme.

In section 4.1, we state the two main theorems of this article: we show a strong
convergence result—Theorem 4.1—as well as a weak convergence result—Theorem 4.2
—which are similar to the available results for SDEs. Compared to [14], we propose
modified and simplified proofs leading to apparently weaker error estimates; we made
this choice for various reasons. First, even if apparently we get weaker estimates,
under an appropriate choice of the parameters the cost of the method remains of the
same order. Second, the generalization of the finite dimensional results would not
yield the same bounds, due to the regularity assumptions we make on the nonlinear
coefficients of the equations. Finally, we extend the weak convergence result to the
situation where the fast equation only satisfies a weak dissipativity assumption.

In the case of a linear fast equation—when g is equal to 0—it is well known that the
second equation in (1.1) is dissipative. In the general case, we make assumptions on g
so that this property is preserved for yε—see Assumptions 3.7 and 3.8 below. The fast
equation with frozen slow component—defined by (5.1) in the abstract framework—
then admits a unique invariant probability measure, which is ergodic and strongly
mixing, with exponential convergence to equilibrium. Under the strict dissipativity
condition 3.7, we prove that the averaging principle holds in the strong and in the weak
sense; moreover the fast numerical scheme has the same asymptotic behavior as the
continuous time equation. If we assume only weak dissipativity of Assumption 3.8, the
averaging principle holds only in the weak sense, and we can not prove uniqueness of
the invariant law of the fast numerical scheme. Nevertheless, in the general setting [2]
gives an approximation result of the invariant law of the continuous time equation with
the numerical method which is used to prove Theorem 4.2; the order of convergence
is 1/2 with respect to the time step size—the precise result is recalled in Theorem
5.11.

The paper is organized as follows. In section 2, we give the definition of the
numerical scheme. We then state the main assumptions made on the system of equa-
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tions. In section 4.1 we state the two main theorems proved in this article, while in
section 4.2 we compare the efficiency of the HMM scheme with a direct one in order
to justify the use of a new method. Before proving the theorems, we give some useful
results on the numerical schemes. Finally the last two sections contain the proofs of
the strong and weak convergence theorems.

2. Description of the numerical scheme. Instead of working directly with
system (1.1), we work with abstract stochastic evolution equations in Hilbert spacesH :

(2.1)

dXε(t) = (AXε(t) + F (Xε(t), Y ε(t)))dt,

dY ε(t) =
1

ε
(BY ε(t) +G(Xε(t), Y ε(t)))dt +

1√
ε
dW (t)

with initial conditions Xε(0) = x ∈ H , Y ε(0) = y ∈ H .
To get system (2.1) from (1.1), we take H = L2(0, 1); the linear operators A

and B are Laplace operators with homogeneous Dirichlet boundary conditions and
the nonlinearities F and G are Nemytskii operators—see Example 3.9. The process
(W (t))t≥0 is a cylindrical Wiener process on H . For precise assumptions on the
coefficients, we refer to section 3.

We recall the idea of the averaging principle proved in the previous article [3]:
when ε goes to 0, Xε can be approximated by X defined by the averaged equation

(2.2)

dX(t)

dt
= AX(t) + F (X(t)),

X(t = 0) = x ∈ H ;

the error is controlled in a strong sense by Cε1/2−r and in a weak sense by Cε1−r,
where r > 0 can be chosen as small as necessary and where C is a constant.

The averaged coefficient F—see (5.4)—satisfies

F (X) =

∫
H

F (X, y)μX(dy) = lim
s→+∞E[F (X,YX(s, y))],

where μX is the unique invariant probability measure of the fast process YX with
frozen slow component—more details are given in section 5.1.

To apply the HMM strategy, we need to define a macrosolver and a microsolver.
We denote by Δt the macrotime step size, and by δt the microtime step size. Let also
T > 0 be a given final time.

The construction of the macrosolver is deeply based on the averaging principle:
for nΔt ≤ T Xε(nΔt) can be approximated by X(nΔt). If the averaged coefficient F
was known, one could build an approximation with a deterministic numerical scheme
on the averaged equation; nevertheless in general it is not the case, and the idea is to
calculate an approximation of this coefficient on-the-fly, by using the microsolver.

Therefore the macrosolver is defined in the following way: for any 0 ≤ n ≤
� T
Δt� := n0,

Xn+1 = Xn +ΔtAXn+1 +ΔtF̃n

with the initial condition X0 = x. F̃n has to be defined; before that, we notice that
the above definition leads to a semi-implicit Euler scheme—we use implicitness on the
linear part, but the nonlinear part is explicit. If we define a bounded linear operator
on H by SΔt = (I −ΔtA)−1, we instead use the following explicit formula

(2.3) Xn+1 = SΔtXn +ΔtSΔtF̃n.
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We want F̃n to be an approximation of F (Xn). The role of the microsolver is
to give an approximation of YXn , the fast process with frozen slow component Xn,
when n is fixed; moreover we compute a finite number M of independent replicas of
the process in order to approximate theoretical expectations by discrete averages over
different realizations of the random variables, in a Monte Carlo spirit. Therefore the
microsolver is defined in the following way: we fix a realization index j ∈ {1, . . . ,M}
and a macrotime step n; then for any m ≥ 0

Yn,m+1,j = Yn,m,j +
δt

ε
BYn,m+1,j +

δt

ε
G(Xn, Yn,m,j) +

√
δt

ε
ζn,m+1,j.

As above we give an explicit formula

(2.4) Yn,m+1,j = R δt
ε
Yn,m,j +

δt

ε
R δt

ε
G(Xn, Yn,m,j) +

√
δt

ε
R δt

ε
ζn,m+1,j,

where for any τ > 0 Rτ = (I − τB)−1.
The noises ζn,m,j are defined by

ζn,m+1,j =
W

(n,j)
(m+1)δt −W

(n,j)
mδt√

δt
,

where (W (n,j))1≤j≤M,0≤n≤n0 are independent cylindrical Wiener processes on H . It is
essential to use independent noises at each macrotime step. It is important to remark
that this equation is well-posed in the Hilbert space H since Rτ is a Hilbert–Schmidt
operator from H to H , under assumptions given in section 3.

The missing definition can now be written: F̃n is given by

(2.5) F̃n =
1

MN

M∑
j=1

nT+N−1∑
m=nT

F (Xn, Yn,m,j).

nT is the number of microtime steps that are not used in the evaluation of the average
in F̃n, while N is the number of microtime steps that are then used for this evaluation.
Each macrotime step then requires the computation of m0 = nT + N − 1 values of
the microsolver.

At each macrotime step Yn,m,j must be initialized at time m = 0. In our proofs,
this is not as important as in [14], but for definiteness we use the same method; we
initialize with the last value computed during the previous macrotime step:

(2.6)
Yn+1,0,j = Yn,m0,j for n ≥ 0,

Y0,0,j = y.

The aim of the analysis for HMM schemes is to prove that under an appropri-
ate choice of the parameters nT , N,M of the scheme, we can bound the error by
expressions of the following kind, where r > 0 is chosen as small as necessary: for
n = n0 = � T

Δt�, we have the strong error estimate

E|Xε(nΔt)−Xn| ≤ C

(
ε1/2−r +Δt1−r +

(
δt

ε

)1/2−r
)
,
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and if Φ is a test function of class C2, bounded and with bounded derivatives, we have
the weak error estimate

|EΦ(Xε(nΔt))− EΦ(Xn)| ≤ C

(
ε1−r +Δt1−r +

(
δt

ε

)1/2−r
)
.

The origin of the three error terms appears clearly in the proofs (see sections 6 and
7): the first one is the averaging error, the second one is the error in a deterministic
scheme with the macrotime step, and the third one is the weak error in a scheme for
stochastic equations with the microtime step. We recall that in the SPDE case the
strong order of the semi-implicit Euler scheme for the microsolver used here is 1/4,
while the weak order is 1/2, while in the SDE situation the respective orders are 1/2
and 1. The macrosolver is deterministic, so that the order is 1. Precise results for
any choice of nT , N,M are given in Theorems 4.1 and 4.2 below, while the choice of
these parameters is explained in section 4.2.

3. Assumptions. As mentioned above, system (2.1) satisfies an averaging prin-
ciple, and strong and weak order of convergence can be given. The HMM method
relies on that idea. The natural assumptions are basically the same as the hypothesis
needed to prove those results but must be strengthened sometimes.

3.1. Assumptions on the linear operators. First, we have to specify some
properties of the linear operators A and B coming into the definition of system (2.1);
we assume that the linear parts are of parabolic type with space variable ξ ∈ (0, 1).

We assume that A and B are unbounded linear operators with domains D(A)
and D(B), which satisfy the following assumptions.

Assumption 3.1.

1. There exist complete orthonormal systems of H , (ek)k∈N, and (fk)k∈N, and
(λk)k∈N and (μk)k∈N nondecreasing sequences of real positive numbers such
that

Aek = −λkek for all k ∈ N,

Bfk = −μkfk for all k ∈ N.

We use the notation λ := λ0 > 0 and μ := μ0 > 0 for the smallest eigenvalues
of A and B.

2. For every k ∈ N, fk is Lipschitz continuous and bounded on [0, 1] with a
uniform control with respect to k: there exists C > 0 such that for any
ξ1, ξ2 ∈ [0, 1]

|fk(ξ1)| ≤ C and |fk(ξ1)− fk(ξ2)| ≤ C
√
μk|ξ1 − ξ2|.

3. The sequences (λk) and (μk) go to +∞; moreover we have some control of
the behavior of (μk) given by

+∞∑
k=0

1

μα
k

< +∞ ⇔ α > 1/2.

In the abstract setting, powers of −A and −B with their domains are easily
defined.
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Definition 3.2. For a, b ∈ [0, 1], we define the operators (−A)a and (−B)b by

(−A)ax =

∞∑
k=0

λa
kxkek ∈ H and (−B)by =

∞∑
k=0

μb
kykfk ∈ H

with domains

D(−A)a =

{
x =

+∞∑
k=0

xkek ∈ H ; |x|2(−A)a :=
+∞∑
k=0

(λk)
2a|xk|2 < +∞

}
;

D(−B)b =

{
y =

+∞∑
k=0

ykfk ∈ H, |y|2(−B)b :=

+∞∑
k=0

(μk)
2b|yk|2 < +∞

}
.

On D(−A)a, the norm | . |(−A)a and the Sobolev norm of H2a are equivalent:
when x belongs to a space D(−A)a, the exponent a represents some regularity of the
function x.

When a ≥ 0, we also define a bounded linear operator (−A)−a in H with

(−A)−ax =

+∞∑
k=0

λ−a
k xk ∈ H,

where x =
∑+∞

k=0 xkek ∈ H .
Under the previous assumptions on the linear coefficients, the following stochastic

integral is well defined in H for any t ≥ 0 when (W (t))t≥0 is a cylindrical Wiener
process on H (see [7] for the definition and the properties of W ):

(3.1) WB(t) =

∫ t

0

e(t−s)BdW (s).

It is called a stochastic convolution, and it is the unique mild solution of

dZ(t) = BZ(t)dt+ dW (t), Z(0) = 0.

Under the second condition of Assumption 3.1, there exists δ > 0 such that for
any t > 0 we have

∫ t

0
1
sδ |esB|2L2(H)ds < +∞; it is then proved that WB has continuous

trajectories—via the factorization method ; see [7]—and that for any 1 ≤ p < +∞,
any 0 ≤ γ < 1/4, there exists a constant C(p, γ) < +∞ such that for any t ≥ 0

(3.2) E|WB(t)|p(−B)γ ≤ C(p, γ).

3.2. Assumptions on the nonlinear coefficients. We now give the assump-
tions on the nonlinear coefficients F,G : H ×H → H . First, we need some regularity
properties.

Assumption 3.3. We assume that there exists 0 ≤ η < 1
2 and a constant C such

that the following directional derivatives are well defined and controlled:
• For any x, y ∈ H and h ∈ H , |DxF (x, y).h| ≤ C|h|H and |DyF (x, y).h| ≤
C|h|H .

• For any x, y ∈ H , h, k ∈ H , if the right-hand side is finite, we have

|D2
..F (x, y).(h, k)|H ≤ C|h|H |k|(−D),

where D2
.. stands for a second directional derivative with respect to either x

or y and with D = (−A)η or D = (−B)η according to the situation.
We moreover assume that F is bounded.
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We also need the following.
Assumption 3.4. For η defined in the previous Assumption 3.3, we have for any

x, y ∈ H and h, k ∈ H

|(−A)−ηD2
..F (x, y).(h, k)| ≤ C|h|H |k|H .

We assume that the fast equation is a gradient system: for any x the nonlinear
coefficient G(x, .) is the derivative of some potential U . We also assume regularity
assumptions as for F .

Assumption 3.5. The function G is defined through G(x, y) = ∇yU(x, y) for
some potential U : H ×H → R. Moreover we assume that G is bounded and that the
regularity assumptions given in Assumption 3.3 are also satisfied for G.

This condition only plays a role when we get the expression of the invariant prob-
ability measure of the fast process with frozen slow component, given by (5.3). This
expression is essential to study the regularity properties of the averaged coefficient
with respect to the x variable given in Proposition 5.5. Such results are required to
obtain the orders of convergence in the averaging principle, given in [3]. We recall
that the averaging principle still holds if this gradient assumption is removed—see
[4]—but that the order of the convergence is then a priori unknown.

For G, we need a stronger hypothesis than for F in order to get Proposition 5.5.
Assumption 3.4 becomes the following.

Assumption 3.6. We have for any x, y ∈ H , h, k ∈ H , z ∈ L∞(0, 1)

|〈DxxG(x, y).(h, k), z〉H | ≤ C|h|H |k|H |z|L∞(0,1).

Finally, we need to assume some dissipativity of the fast equation. Assumption 3.7
is necessary to obtain strong convergence in the averaging principle, while Assumption
3.8 is weaker and leads to the weak convergence.

Assumption 3.7 (strict dissipativity). Let Lg denote the Lipschitz constant of G
with respect to its second variable; then

(SD) Lg < μ,

where μ is defined in Assumption 3.1.
Assumption 3.8 (weak dissipativity). There exist c > 0 and C > 0 such that for

any y ∈ D(B)

(WD) 〈By +G(y), y〉 ≤ −c|y|2 + C.

The second assumption is satisfied as soon as G is bounded, while the first one
requires some knowledge of the Lipschitz constant of G.

Example 3.9. We give some fundamental examples of nonlinearities for which the
previous assumptions are satisfied:

• Functions F,G : H ×H → H of class C2, bounded and with bounded deriva-
tives, such that G(x, y) = ∇yU(x, y) fit in the framework with the choice
η = 0.

• Functions F and G can be Nemytskii operators: let f : (0, 1) × R
2 → R be

a bounded measurable function such that for almost every ξ ∈ (0, 1) f(ξ, .)
is twice continuously differentiable, bounded and with bounded derivatives,
uniformly with respect to ξ. Then F is defined for every x, y ∈ H = L2(0, 1)
by

F (x, y)(ξ) = f(ξ, x(ξ), y(ξ)).
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For G, we assume that there exists a function g with the same properties as f
above, such that G(x, y)(ξ) = g(ξ, x(ξ), y(ξ)). The assumption (SD) is then
satisfied when

sup
ξ∈(a,b),x∈R,y∈R

∣∣∣∣∂g∂y (ξ, x, y)
∣∣∣∣ < μ.

The conditions in Assumption 3.3 are then satisfied for F and G as soon
as there exists η < 1/2 such that D(−A)η and D(−B)η are continuously
embedded into L∞(0, 1).

We then deduce that the system (2.1) is well-posed for any ε > 0 on any finite
time interval [0, T ]. Under Assumptions 3.1, 3.3, 3.5, the nonlinearities F and G are
Lipschitz continuous, and the following Proposition is classical (see [7]).

Proposition 3.10. For every ε > 0, T > 0, x ∈ H, y ∈ H, system (2.1) admits
a unique mild solution (Xε, Y ε) ∈ (L2(Ω, C([0, T ], H)))2: for any t ∈ [0, T ],

(3.3)

Xε(t) = etAx+

∫ t

0

e(t−s)AF (Xε(s), Y ε(s))ds,

Y ε(t) = e
t
εBy +

1

ε

∫ t

0

e
(t−s)

ε BG(Xε(s), Y ε(s))ds+
1√
ε

∫ t

0

e
(t−s)

ε BdW (s).

4. Convergence results.

4.1. Statement of the theorems. We can now state the main results: the
numerical process (Xn) defined by (2.3) approximates the slow component Xε(nΔt)
of system (2.1) with strong and weak error estimates given in the theorems.

If the strict dissipativity assumption, Assumption 3.7, is satisfied, we prove the
following.

Theorem 4.1 (strong convergence). Assume that x, y ∈ H. With (SD), for any
0 < r < 1/2, 0 < κ < 1/2, T > 0, ε0 > 0, Δ0 > 0, τ0 > 0, there exists C > 0
such that for any 0 < ε ≤ ε0, 0 < Δt ≤ Δ0, δt > 0 such that τ = δt

ε ≤ τ0 and

1 < n ≤ n0 = � T
Δt�

(4.1)

E|Xε(nΔt)−Xn| ≤ C

(
ε1/2−r +

1

n
+Δt1−r

)

+ C

(
(
δt

ε
)1/2−κ +

1√
N δt

ε + 1
e−cnT

δt
ε

)

+ C

√
Δt√

M(N δt
ε + 1)

.

Under the more general weak dissipativity assumption, Assumption 3.8, we prove
the following:

Theorem 4.2 (weak convergence). Assume that x ∈ D((−A)θ) and y ∈ H for
some θ ∈]0, 1]. Let Φ : H → R bounded, of class C2, with bounded first and second
order derivatives. Then with (WD), for any 0 < r < 1, κ < 1/2, T > 0, ε0 > 0,
Δ0 > 0, τ0 > 0, there exists C > 0 such that for any 0 < ε ≤ ε0, 0 < Δt ≤ Δ0, δt > 0
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such that τ = δt
ε ≤ τ0 and 1 < n ≤ n0 = � T

Δt�

(4.2)

|EΦ(Xε(nΔt))− EΦ(Xn)|

≤ C

(
ε1−r +

1

n
+Δt1−r

)

+ C

((
δt

ε

)1/2−κ
(
1 +

1

((nT − 1) δtε )
1/2−κ

)
+

1

N δt
ε + 1

e−cnT
δt
ε

)
.

Remark 4.3. If we indeed assume (SD) in Theorem 4.2, the factor
(1 + 1

((nT−1) δt
ε )1/2−κ ) can be replaced by 1. We also notice that this factor is ab-

sent in [14], where only strictly dissipative situations are considered.
If we look at the estimates of Theorems 4.1 and 4.2 at time n = n0, the factor 1

n
is of size Δt = O(Δt1−r).

The parameters r and κ are positive but can be chosen as small as necessary.
We remark that in both theorems we require no condition on the fast initial

condition y, while some regularity of the slow initial condition x is required in the
analysis of the weak error: we assume x ∈ D((−A)θ) with θ > 0. The reason lies in
the use of the estimate of the averaging error in the weak sense, given by Theorem 1.2
in [3].

The special structure in the error bounds is a consequence of the heterogeneity
in the treatment of the components in the numerical scheme.

4.2. Some comments on the convergence results.

4.2.1. Interpretation of the error terms. The proofs rely on the following
decomposition, which explains the origin of the different error terms:

(4.3) Xε(nΔt)−Xn = Xε(nΔt)−X(nΔt) +X(nΔt)−Xn +Xn −Xn.

The numerical process (Xn) is defined in (5.11) below: it is the solution of the macro-
solver with a known F , while (Xn) is solution of the macrosolver using F̃n. The
continuous processes X and Xε are defined in (2.1) and (2.2).

The first term is bounded thanks to the averaging result, using strong and weak
order of convergence results obtained in [3]. The second term is the error in a de-
terministic numerical scheme, for which convergence results are classical; we recall
the estimate in Proposition 5.13. The third term is the difference between the two
numerical approximations, and the main task is the control of this part: we show that
an extension of the averaging effect holds at the discrete time level, where Xn plays
the role of an averaged process for Xn.

When we look at the Theorems 4.1 and 4.2, we first remark that we obtain the
same kind of bounds as in the finite dimensional case of [14]. However we notice
some differences; they are due both to the infinite dimensional setting and to different
proofs.

First, the weak order of the Euler scheme for SPDEs is only 1/2—see [9]—while it
is 1 for SDEs; we remark that in (4.1) and (4.2) only the weak order of the microsolver
appears, and this is one of the main theoretical advantages of the method. For
completeness, we recall that the strong order is 1/4 in the SPDE case—see [19]—
and 1/2 for SDEs. In fact, at least in the strictly dissipative case, we are comparing
the invariant measures of the continuous fast equation with the invariant measure of
its numerical approximation—see Theorem 5.11 and Corollary 5.12, obtained from [2].



1194 CHARLES-EDOUARD BRÉHIER

In the weakly dissipative case, we use the weak error estimates where the constants
do not depend on the final time.

The proofs of Theorems 4.1 and 4.2 are inspired by the ones in [14] but are
different. The strong error is analyzed in a global way, as in the proof of the strong
order theorem in [3]. Moreover we do not need a counterpart of Lemma 2.6 in [14]—
which gives an estimate of F̃n − F (Xn)—and we thus think that our method is more
natural. For the control of the weak error, we also introduce a new appropriate
auxiliary function to control everything in the weak sense: as a consequence we observe
that the number of independent realizations of the microsolver does not appear in
(4.2).

However, we also present some simplified proofs, and a comparison of the results
reveals the absence of a factor denoted by R in [14]: the difference is due to the way
we use the initialization of the microsolver at each macrotime step.

The only effect we use of the definition (2.6) is the control of the moments of the
fast numerical component Yn,m,j , uniformly with respect to n,m, j; see Lemma 5.8.
Precisely, two constraints are imposed on the variables Yn,0,j : we require that for
n ≥ 1 the variable Yn,0,j is measurable with respect to the σ-field Gn defined below
in (6.5) and that the estimate of Lemma 5.8 is satisfied.

4.2.2. Efficiency of HMM. We now show how the HMM used here is a more
efficient direct method when the parameter ε goes to 0.

The fundamental remark is that ε only appears in the expressions with τ = δt
ε and

that we never have Δt
ε in the scheme and in the convergence estimate. The parameter

τ can therefore be interpreted as the effective time step for the fast numerical scheme
defined with (2.4). The reason for this absence of ε relies in the construction of the
scheme: instead of approximating Xε, we approximate X thanks to the averaging
principle. As explained before, the microsolver is only used to get an approximation
of the averaged coefficient F ; the evolution in the macrosolver uses the time step Δt
and is linked with ε only through the definition of F̃n with only τ .

What is then important is to check that if Δt and τ are chosen small enough and
M , N , and nT are large enough, each error term due to the numerical scheme in the
Theorems 4.1 and 4.2 goes to 0.

The choices must be uniform with respect to ε. The error term due to the appli-
cation of the averaging principle is treated apart, since it only depends on ε.

To see this, we first choose Δt and τ .
Then we take nT such that nT τ → +∞; we observe that the corresponding error

terms go to 0 exponentially fast, as a consequence of the dissipation in the evolution.
It is better to choose nT before N and M , since the exponential convergence is faster
than the other convergences.

Apparently, the parameters M and N play no role: indeed in (4.1) the orders of
convergence with respect to Δt in the terms

Δt and

√
Δt√

M(Nτ + 1)

are not the same: a better choice is to choose M and N such that 1
MNτ and Δt go

to 0 at the same speed. Moreover, choosing Δt after M , N , and nT also changes the
analysis.

The question of an optimal joint choice of the parameters is related to the analysis
of the cost of the scheme. Even if the multiscale method seems more efficient than a



HMM SCHEME FOR STOCHASTIC PDEs 1195

direct one when ε goes to 0, we have to check that for a fixed value of the parameter
ε the approximation of the slow component at a fixed time T by our method does not
require too much computational time. Following the approach in [14], we consider as
a unit of time the computation of one realization of a step of the microsolver, i.e., the
computation of Yn,m+1,j knowing Yn,m,j . We consider that the computation of F̃n in
(2.5) requires a negligible amount of time and then that one step of the macrosolver
also requires 1 unit of time.

For each step of the macrosolver, m0.M steps of the microsolver are necessary;
then we require T

Δt macrosteps, so that we define the cost with T = 1:

cost(HMM) =
m0.M

Δt
;

for a direct scheme with time step δt, the corresponding cost is defined by

cost(direct) =
1

δt
=

1

ε

1

δt/ε
.

Working as in [14], we introduce a tolerance in the discretization error tol, and
we choose the parameters in order to bound the error with

CεΛ + tol

with Λ = 1/2− r for the strong estimate (4.1) and Λ = 1 − r for the weak estimate
(4.2) with r > 0 chosen as small as necessary. In other words, we only focus on the
difference betweenX(nΔt) andXn, and consider that the averaging error is negligible.
The costs are then functions of tol.

The computation of parameters satisfying the above condition can be done like
in [14] so we do not develop it here. The result is that for an appropriate choice of
the parameters, for a fixed value of tol, we have when ε → 0

cost(HMM)

cost(direct)
→ 0.

Finally, we have not treated here the discretization in space, since the main issue
is the presence of ε in the evolution in time of the system of SPDEs. To complete the
analysis, we need to take into account the cost of the discretization in space of one step
of the microsolver with an additional factor; then one realization of the microsolver
would not require one unit of time but a number of units depending on the size of the
discretization. The same remark also holds for a direct method, and we see that the
comparison of the costs of time discretization is sufficient to prove the better efficiency
of the HMM.

5. Preliminary results.

5.1. Known results about the fast equation and the averaged equation.
In this section, we just recall without proof the main results on the fast equation
with frozen slow component and on the averaged equation, defined below. Proofs are
found in [5] for the strict dissipative case, and the extension to the weakly dissipative
situation relies on arguments explained below.

If x ∈ H , we define an equation on the fast variable where the slow variable is
fixed and equal to x:

(5.1)
dYx(t, y) = (BYx(t, y) +G(x, Yx(t, y)))dt+ dW (t),

Yx(0, y) = y.

This equation admits a unique mild solution, defined on [0,+∞[.
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Since Y ε is involved at time t > 0, heuristically we need to analyze the properties
of Yx(

t
ε , y) with ε → 0, and by a change of time we need to understand the asymptotic

behavior of Yx(., y) when time goes to infinity.
Under the strict dissipativity assumption, Assumption (3.7), we obtain a contrac-

tivity of trajectories issued from different initial conditions and driven by the same
noise.

Proposition 5.1. With (SD), for any t ≥ 0, x, y1, y2 ∈ H we have

|Yx(t, y1)− Yx(t, y2)|H ≤ e−
(μ−Lg)

2 t|y1 − y2|H .

Under the weak dissipativity assumption, Assumption 3.8, we obtain such an
exponential convergence result for the laws instead of trajectories. This result is
based on a coupling argument; a detailed proof inspired from [15] and [17] is written
in [10]—see also [2] for further references.

Proposition 5.2. With (WD), there exist c > 0, C > 0 such that for any
bounded test function φ, any t ≥ 0, and any y1, y2 ∈ H

(5.2) |Eφ(Yx(t, y1))− Eφ(Yx(t, y2))| ≤ C‖φ‖∞(1 + |y1|2 + |y2|2)e−ct.

The proofs of Propositions 5.1 and 5.2 are only based on the respective dissipa-
tivity assumption; the gradient structure of the equation has not been used yet.

As a consequence, there exists a unique invariant probability measure μx associ-
ated with Yx, and the convergence to equilibrium is exponentially fast.

Proposition 5.3. If we assume (SD) or (WD), the fast process Yx with frozen
slow component x admits a unique invariant probability measure μx, and there exist
constants C, c > 0 such that for any bounded function φ : H → R or φ : H → H,
t ≥ 0 and x, y ∈ H, we have∣∣∣∣Eφ(Yx(t, y))−

∫
H

φ(z)μx(dz)

∣∣∣∣ ≤ C‖φ‖∞(1 + |y|2H)e−ct.

This result is not sufficient to obtain the orders of convergence in the averaging
principle of [3] and to prove Theorems 4.1 and 4.2. Thanks to the existence of a
potential U such that G = DyU , we are moreover able to give an explicit formula
(5.3) for μx.

Let ν = N (0, (−B)−1/2) be the centered Gaussian probability measure on H
with the covariance operator (−B)−1/2—which is positive and trace-class, thanks to
Assumption 3.1. Then μx satisfies

(5.3) μx(dy) =
1

Z(x)
e2U(x,y)ν(dy),

where Z(x) ∈]0,+∞[ is a normalization constant.
Now we define the averaged equation. First we define the averaged nonlinear

coefficient F .
Definition 5.4. For any x ∈ H,

(5.4) F (x) =

∫
H

F (x, y)μx(dy).

Using Assumptions 3.3 and 3.5 and the expression of μx, it is easy to prove that
F is bounded and Lipschitz continuous.
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Under Assumptions 3.3 and 3.5 and thanks to the expression (5.3) of μx, we have
the following properties on F .

Proposition 5.5. There exists 0 ≤ η < 1 and a constant C such that the
following directional derivatives of F are well defined and controlled:

• For any x ∈ H, h ∈ H, |DF (x).h| ≤ C|h|H .
• For any x ∈ H, h ∈ H, k ∈ D(−A)η, |D2F (x).(h, k)| ≤ C|h|H |k|(−A)η .

• For any x ∈ H, h, k ∈ H, |(−A)−ηD2F (x).(h, k)| ≤ C|h|H |k|H .
Moreover, F is bounded and Lipschitz continuous.

The last estimate above is a consequence of Assumptions 3.4 and 3.6 and of the
following fact: we have almost surely WB(t) ∈ L∞(0, 1) for any t ≥ 0, and

(5.5)

∫
H

|z|L∞(0,1)ν(dz) < +∞.

We notice that if η > 1/4—which is the right condition in the case of linear Laplace
operators and of nonlinear Nemytskii operators—we have

∫
H
|z|(−A)ην(dz) = +∞.

We thus need the restrictive condition in Assumption 3.6.
Remark 5.6. Even when F and G are Nemytskii operators, F is not such an

operator in general.
Then the averaged equation—see (2.2) in the introduction—can be defined:

dX(t)

dt
= AX(t) + F (X(t))

with initial condition X(0) = x ∈ H . For any T > 0, this deterministic equation
admits a unique mild solution X ∈ C([0, T ], H).

5.2. Estimates on the numerical solutions. We give uniform estimates on
Xn and Yn,m,j , defined by 2.3 and 2.4.

Lemma 5.7. There exists C > 0 such that we have P-almost surely

|Xn| ≤ C(1 + |x|)
for any 0 ≤ n ≤ n0.

Proof. The linear operator SΔt satifies |SΔt|L(H) ≤ 1
1+λΔt ; moreoverF is bounded,

so that by (2.5) we almost surely have for any n ≥ 0 |F̃n| ≤ ‖F‖∞. The end of the
proof is then straightforward; we also notice that C does not depend on the final
time T .

Lemma 5.8. There exists C > 0—which does not depend on T > 0, on N , on
nT , or on M—such that for any Δt > 0, τ = δt

ε > 0, 0 ≤ n ≤ n0, 0 ≤ m ≤ m0, and
1 ≤ j ≤ M , we have

E|Yn,m,j |2 ≤ C(|y|2 + 1).

Proof. We introduce ωn,m,j defined by the fast numerical scheme with no nonlinear
coefficient—see (2.4)—with the notation τ = δt

ε : for any 0 ≤ j ≤ M , 0 ≤ n ≤ n0, and
0 ≤ m ≤ m0

(5.6) wn,m+1,j = Rτwn,m,j +
√
τRτ ζn,m+1,j

with the initial condition wn,0,j = 0. It is a classical result that for any τ0 > 0, there
exists a constant C(τ0) such that for any 0 ≤ τ < τ0, 0 ≤ n ≤ n0, 1 ≤ j ≤ M , and
0 ≤ m ≤ m0 we have

E|ωn,m,j|2 ≤ C(τ0).
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Now for any 0 ≤ m ≤ m0 we define Dn,m,j = Yn,m,j − wn,m,j ; it is enough to
control |Dn,m,j|2, P-almost surely. By (2.4), we have the following expression: for any
0 ≤ m ≤ m0

Dn,m+1,j = RτDn,m,j + τRτG(Xn, Yn,m,j).

Since G is bounded, and using the inequality |Rτ |L(H) ≤ 1
1+μτ , we get

|Dn,m+1,j| ≤ 1

1 + μτ
|Dn,m,j|+ Cτ.

Therefore we have for any 0 ≤ m ≤ m0

(1 + μτ)m|Dn,m,j | ≤ |Dn,0,j |+ C[(1 + μτ)m − 1].

But Dn,0,j = Dn−1,m0,j. So we get

(1 + μτ)m0 |Dn+1,0,j | ≤ |Dn,0,j |+ C[(1 + μτ)m0 − 1].

Therefore

(1 + μτ)nm0 |Zn,0,j | ≤ |D0,0,j |+ C(1 + μτ)nm0 = |y|+ C(1 + μτ)nm0 .

As a consequence, we get for any 0 ≤ n ≤ n0 and any 0 ≤ m ≤ m0, |Dn,0,j| ≤
C(1 + |y|), and then |Zn,m,j| ≤ 2C(1 + |y|).

We remark that Lemma 5.8 is a consequence of the choice of the initialization of
the microsolver at each macrotime step (2.6) through the equality Dn,0,j = Dn−1,m0,j

appearing at the end of the proof. However, as mentioned earlier other choices for
Yn,0,j could lead to the same kind of estimate.

5.3. Asymptotic behavior of the “fast” numerical scheme. At the con-
tinuous time level, the averaging principle proved in [3] comes from the asymptotic
behavior of the fast equation with frozen slow component (5.1), as described in sec-
tion 5.1. The underlying idea of the HMM method in our setting is to prove a similar
averaging effect at the discrete time level: we therefore study the asymptotic be-
havior of the fast numerical scheme which defines the microsolver with frozen slow
component—in other words we are looking at the evolution of the microsolver during
one fixed macrotime step.

In section 5.1, we have seen that under the weak dissipativity assumption, As-
sumption 3.8, the fast equation with frozen slow component admits a unique invariant
probability measure μx. At the discrete time level, this assumption only yields the
existence of invariant laws; to get a unique invariant law μx,τ , we need (SD), and we
obtain the following.

Theorem 5.9. Under Assumption 3.7, for any τ > 0 and any x ∈ H, the
numerical scheme 5.8 admits a unique ergodic invariant probability measure μx,τ .
Moreover, we have convergence to equilibrium in the following sense: for any τ0 > 0,
there exist c > 0 and C > 0 such that for any 0 < τ ≤ τ0, x ∈ H, y ∈ H, any
Lipschitz continuous function φ from H to R, and m ≥ 0, we have

(5.7)

∣∣∣∣E(φ(Y x
m(y)))−

∫
H

φ(z)μx,τ (dz)

∣∣∣∣ ≤ C(1 + |y|)[φ]Lipe−cmτ .
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We recall the notation τ = δt
ε for the effective time step; the noise is defined with

a cylindrical Wiener process W̃ : ζ̃m+1 =
W̃(m+1)τ−W̃mτ√

τ
. If we fix the slow component

x ∈ H , we define

(5.8) Y x
m+1(y) = RτY

x
m(y) + τRτG(x, Y x

m(y)) +
√
τRτ ζ̃m+1

with the initial condition Y x
0 (y) = y.

The proof of Theorem 5.9 is divided into two steps. First in section 5.3.1 we focus
on the existence, which is obtained under (WD) thanks to the Krylov–Bogoliubov
criterion—see [8]. Second, in section 5.3.2 we show that uniqueness holds if (SD) is
satisfied.

In the case when (WD) is satisfied while (SD) is not true, it seems that there is
no general uniqueness result at the discrete time level.

5.3.1. Existence of an invariant law. With (5.8), we associate the transition
semigroup (P x,τ

m ): if φ is a bounded measurable function from H to R, y ∈ H , and
m ≥ 0,

(5.9) P x,τ
m φ(y) = E[φ(Y x

m(y))].

We also denote by νx,τm,y the law of Y x,τ
m (y); then

P x,τ
m φ(y) = E[φ(Y x,τ

m (y))] =

∫
H

φ(z)νx,τm,y(dz).

We notice that the semigroup (Pm) satisfies the Feller property: if φ is bounded and
continuous, then Pmφ ∈ is bounded and continuous.

The required tightness property for the use of the Krylov–Bogoliubov criterion
is a consequence of the following estimate, which is proved thanks to regularization
properties of the semigroup (Rm

τ )m: for any 0 < γ < 1/4, τ > 0, there exists C(γ, τ) >
0 such that for any m ≥ 1 and τ ≤ τ0

E|Ym(y)|2(−B)γ ≤ C(γ, τ).

Moreover if 0 < γ < 1/4, the embedding of D(−B)γ in H is compact.
We then see that for any y ∈ H the family of probability measures ( 1

m

∑m
k=1 ν

x,τ
k,y )

is tight.

5.3.2. Uniqueness under strict dissipativity. The key estimate to prove
uniqueness is the following contractivity property, which holds thanks to Assump-
tion 3.7.

Proposition 5.10. For any τ0 > 0, there exists c > 0 such that for any 0 < τ ≤
τ0, m ≥ 0, y1, y2 ∈ H, x ∈ H we have P-almost surely

(5.10) |Y x
m(y1)− Y x

m(y2)| ≤ e−cmτ |y1 − y2|.
Proof. If we define rm = Ym(y1)− Ym(y2), then we have the equation

rm+1 = rm + τBRm+1 + τ(G(x, Ym(y1))−G(x, Ym(y2))),

r0 = y1 − y2.

If we take the scalar product in H of this equation with rm+1, we get

|rm+1|2 − 〈rm, rm+1〉 = τ〈Brm+1, rm+1〉
+ τ〈G(x, Ym(y1))−G(x, Ym(y2)), rm+1〉.
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The left-hand side is equal to 1
2 (|rm+1|2 − |rm|2) + 1

2 |rm+1 − rm|2, and we get

1

2
(|rm+1|2 − |rm|2) ≤ −τ |(−B)1/2rm+1|2 + τLg|rm||rm+1|

≤ −μτ |rm+1|2 + 1

2
τLg(|rm+1|2 + |rm|2).

Therefore we have (1 + τ(2μ − Lg))|rm+1|2 ≤ (1 + τLg)|rm|2. We remark that (SD)
implies that for any τ0 > 0, there exists c > 0 such that if τ ≤ τ0 we have ρ =

1+τLg

1+τ(2μ−Lg)
≤ e−2cτ ; therefore

|rm|2 ≤ ρm|y1 − y2|2 ≤ e−2cmτ |y1 − y2|2.

As a consequence, there exists a unique ergodic invariant probability measure
μx,τ , which is strongly mixing. Moreover since there exists C > 0 such that for any
τ > 0 and any x ∈ H

∫
H |y|μx,τ (dy) ≤ C, we get

|E(φ(Y x
m(y)))−

∫
H

φ(z)μx,τ (dz)| = |E(φ(Y x
m(y)))−

∫
H

Eφ(Y x
m(z))μx,τ (dz)|

≤
∫
H

E|φ(Y x
m(y))− φ(Y x

m(z)|μx,τ(dz)

≤ [φ]Lip

∫
H

e−cmτ |y − z|μx,τ(dz)

≤ C(1 + |y|)[φ]Lipe−cmτ .

5.3.3. Approximation of the invariant law µx by the fast numerical
scheme. We recall that μx denotes the invariant law of the continuous time fast
equation with frozen slow component (5.1). Thanks to the fast numerical scheme, we
have an approximation result, which is proved in [2]: with test functions of class C2

b ,
we control the weak error for any time with a convergence of order 1/2 with respect
to the time step τ . Moreover the estimate is easily seen to be independent from the
slow component x.

We define for any Φ of class C2
b

‖Φ‖(2) = sup
y∈H

|Φ(y)|+ sup
y∈H,h∈H,|h|=1

|DyΦ(y).h|+ sup
y∈H,h,k∈H,|h|=|k|=1

|D2
yyΦ(y).(h, k)|.

For the convenience of the reader, we recall the following result from [2].
Theorem 5.11. With (WD), for any 0 < κ < 1/2, any τ0 > 0, there exists

C, c > 0 such that for any Φ of class C2
b , any x, y ∈ H, any 0 < τ ≤ τ0, and any

integer 2 ≤ m < +∞

|E[Φ(Yx(mτ, y))]− E[Φ(Y x
m(y))]| ≤ C‖Φ‖(2)(1 + |y|3)(((m− 1)τ)−1/2+κ + 1)τ1/2−κ.

We remark that this theorem is proved without requiring the gradient structure
of the fast equation with frozen slow component.

As explained in section 5.3, the existence of invariant probability measures for the
numerical scheme is true with only (WD), while uniqueness is a priori only satisfied
when the strict dissipativity assumption, Assumption 3.7, holds; the unique invariant
law is then denoted by μx,τ .
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Corollary 5.12. Under the assumptions of Theorem 5.11
(i) we have for any m ≥ 2∣∣∣∣
∫
H

Φdμx − E[Φ(Y x
m)]

∣∣∣∣ ≤ C‖Φ‖(2)(1 + |y|3)(((m− 1)τ)−1/2+κ + 1)τ1/2−κ

+ CN(Φ)(1 + |y|2)e−cmτ ,

(ii) if moreover (SD) is satisfied,∣∣∣∣
∫
H

Φdμx −
∫
H

Φdμx,τ

∣∣∣∣ ≤ C‖Φ‖(2)τ1/2−κ.

The result (i) is sufficient for the proof of Theorem 4.2, while the result (ii) is
necessary to obtain the strong convergence in Theorem 4.1.

We recall that in the case of Euler scheme for SDEs this kind of results holds with
the order of convergence 1.

5.4. Error in the deterministic scheme (5.11). We define a scheme based
on the macrosolver, for theoretical purposes, in the situation when F is known:

(5.11)
Xn+1 = SΔtXn +ΔtSΔtF (Xn),

X0 = x.

We look at the error between Xn, defined by (5.11), and X(nΔt), defined by
(2.2). Here quantities are deterministic, and the following result is classical—see [16],
[6], or the details of the proofs in [19].

Proposition 5.13. For any 0 < r < 1, Δt0 > 0, and T > 0, there exists C > 0,
such that for any 0 < Δt ≤ Δt0 and 1 ≤ n ≤ � T

Δt�

|Xn −X(nΔt)| ≤ C

n
+ C(1 + |x|)Δt1−r .

6. Proof of the strong convergence Theorem 4.1. The final time T is fixed
and we recall the notation n0 = � T

Δt�.
To simplify notation, we do not always make precise the range of summation in

the expressions below: the indices j, j1, j2 belong to {1, . . . ,M}, and m,m1,m2 belong
to {nT , . . . , nT +N − 1 = m0}.

We recall that according to the decomposition of the error (4.3), we have to control

(6.1)

E|Xε(nΔt)−Xn| ≤ E|Xε(nΔt)−X(nΔt)|
+ |X(nΔt)−Xn|
+ E|Xn −Xn|.

The first part is controlled thanks to the strong order theorem of [3]: for any 0 < r <
1/2, we have for any 0 ≤ n ≤ n0

E|Xε
nΔt −XnΔt| ≤ Cε1/2−r.

The second part is deterministic and is controlled thanks to Proposition 5.13:

|Xn −X(nΔt)| ≤ C

n
+ C(1 + |x|)Δt1−r ,

where C depends on T, r, x, y.



1202 CHARLES-EDOUARD BRÉHIER

It remains to focus on the third part en = Xn − Xn. Instead of analyzing the
local error like in [14], we adopt a global point of view, and we follow the idea of the
proof of Theorem 1.1 in [3]: for any 0 ≤ n ≤ n0

(6.2) Xn −Xn = Sn
Δtx+Δt

n−1∑
k=0

Sn−k
Δt F̃k − Sn

Δtx−Δt
n−1∑
k=0

Sn−k
Δt F (Xk).

The averaged coefficient F is Lipschitz continuous, and |SΔt|L(H) ≤ 1; moreover we

define the averaged coefficient F
τ
with respect to the invariant measure μx,τ of the

fast numerical scheme, which is unique since we assume strict dissipativity (SD): for
any x ∈ H

(6.3) F
τ
(x) =

∫
H

F (x, y)μx,τ (dy).

The error in (6.2) is then decomposed in the following way—the idea of looking
at the square of the norm in the second expression is an essential tool of the proof:

(6.4)

E|Xn −Xn| ≤ CΔt
n−1∑
k=0

E|Xk −Xk|

+

(
E|Δt

n−1∑
k=0

Sn−k
Δt F̃k − Sn−k

Δt F
τ
(Xk)|2

)1/2

+Δt

n−1∑
k=0

E|Sn−k
Δt F (Xk)− Sn−k

Δt F
τ
(Xk)|.

If we can control the two last terms by a certain quantity Q, by a discrete Gronwall
Lemma we get for any 0 ≤ k ≤ n0 E|Xn −Xn| ≤ eCTQ.

First, the third term in (6.4) is linked to the distance between the invariant
measures μx and μx,τ—since we assume strict dissipativity for this strong estimate—
which is evaluated thanks to Theorem 5.11 and Corollary 5.12 for test functions of class
C2
b . Since by regularization properties of the semigroups we have |(−A)ηSn−k

Δt |L(H) ≤
C

((n−k)Δt)η , we apply Corollary 5.12 with the regular test function Sn−k
Δt F , which

thanks to Assumption 3.4 satisfies for some constant C > 0 and for any x, h, k ∈ H

|(Sn−k
Δt F )(x)|H ≤ C, |Dx(S

n−k
Δt F )(x).h|H ≤ C|h|,

|D2
xx(S

n−k
Δt F )(x).(h, k)|H = |(−A)ηSn−k

Δt (−A)−ηD2
xx(S

n−k
Δt F )(x).(h, k)|

≤ C

((n− k)Δt)η
|h||k|.

We thus obtain

|Sn−k
Δt F (Xk)− Sn−k

Δt F
τ
(Xk)| ≤ C

((n− k)Δt)η
τ1/2−κ,

and summing we get

Δt
n−1∑
k=0

E|Sn−k
Δt F (Xk)− Sn−k

Δt F
τ
(Xk)| ≤ Cτ1/2−κ.
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The control of the other term is more complicated; in order to get a precise esti-
mate, we expand the square of the norm of the sum. We then use some conditional
expectations, which allow to use exponential convergence to equilibrium via Theo-
rem 5.9. Therefore we obtain the following expansion and we treat separately each
term:

E

∣∣∣∣∣Δt
n−1∑
k=0

Sn−k
Δt F̃k − Sn−k

Δt F
τ
(Xk)

∣∣∣∣∣
2

= Δt2
n−1∑
k=0

E|Sn−k
Δt (F̃k − F

τ
(Xk))|2

+ 2Δt2
∑

0≤k1<k2≤n−1

E〈Sn−k1

Δt (F̃k1 − F
τ
(Xk1)), S

n−k2

Δt (F̃k2 − F
τ
(Xk2))〉

=: Σ1 +Σ2.

(i) We first treat Σ1.
We introduce the following notation: En denotes conditional expectation with

respect to the σ-field

(6.5) Gn = σ(ζk,m,j , 0 ≤ k ≤ n− 1, 1 ≤ m ≤ m0, 1 ≤ j ≤ M).

We notice that Xn is Gn-measurable but that F̃n is not.
From (2.5), for any 0 ≤ k ≤ n− 1 we have

F̃k =
1

MN

M∑
j=1

nT+N−1∑
m=nT

F (Xk, Yk,m,j);

therefore we see that

E|Sn−k
Δt (F̃k − F

τ
(Xk))|2

=
1

M2N2

∑
j1,j2

∑
m1,m2

EEk〈Sn−k
Δt (F (Xk, Yk,m1,j1)− F

τ
(Xk)),

Sn−k
Δt (F (Xk, Yk,m2,j2)− F

τ
(Xk))〉

with the conditional expectation Ek with respect to Gk; see (6.5).

When j1 �= j2, ζ
(j1)
m and ζ

(j2)
m are independent, so that if we treat differently the

cases j1 = j2 and j1 �= j2 in the above summation we obtain

M2N2
E|Sn−k

Δt (F̃k − F
τ
(Xk))|2

=
∑
j1 
=j2

E

〈∑
m1

EkS
n−k
Δt (F (Xk, Yk,m1,j1)− F

τ
(Xk)),

∑
m2

EkS
n−k
Δt (F (Xk, Yk,m2,j2)− F

τ
(Xk))

〉

+
M∑
j=1

∑
m1,m2

E〈Sn−k
Δt (F (Xk, Yk,m1,j)− F

τ
(Xk)), S

n−k
Δt (F (Xk, Yk,m2,j)− F

τ
(Xk))〉.
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For the first part, we directly use the exponential convergence to equilibrium
result of (5.7), on each factor, to get a bound with(

1

N

m0∑
m=nT

e−cmτ

)2

≤
(
Ce−cnT τ

Nτ + 1

)2

.

For the second part, with no loss of generality we only treat the casem1 ≤ m2, and
we introduce the conditional expectation Ek,m1,j with respect to the σ-field generated

by Gk and (ζ
(j)
km0+m)0≤m≤m1−1 when m1 ≤ m2. The current time appearing in the

exponential convergence estimate is (m2 −m1)τ , and we get a bound with

2

MN2

∑
nT≤m1≤m2≤m0

e−c(m2−m1)τ ≤ C

M(Nτ + 1)
.

We therefore get

(6.6) Σ1 ≤ CΔt

((
e−cnT τ

Nτ + 1

)2

+
1

M(Nτ + 1)

)
.

(ii) We now consider Σ2, which corresponds to the cross-terms in the expansion
of the square of the norm of the quantity

∑
k S

n−k
Δt (F̃k − F

τ
(Xk)). By the definition

of F̃k, the general term with indices k1 < k2 in |Σ2| is bounded by

|E〈Sn−k1

Δt (F̃k1 − F
τ
(Xk1)), S

n−k2

Δt (F̃k2 − F
τ
(Xk2))〉|

≤ Δt2

M2N2

∣∣∣∣∣
∑
mi,ji

E〈Sn−k1

Δt (F (Xk1 , Yk1,m1,j1)− F
τ
(Xk1)),

Sn−k2

Δt (F (Xk2 , Yk2,m2,j2)− F
τ
(Xk2))〉

∣∣∣∣∣
≤ C

Δt2

MN

m0∑
m=nT

E|Ek2 [S
n−k2

Δt (F (Xk2 , Yk2,m,j)− F
τ
(Xk2)]|,

using conditional expectation Ek2 and the boundedness of F .
Using the exponential convergence result of (5.7) and Lemma 5.8, we get the

bound

E|Ek2 [S
n−k2

Δt (F (Xk2 , Yk2,m,j)− F
τ
(Xk2)]| ≤ Ce−mτ ,

so that the previous quantity is bounded by

C
Δt2

MN

m0∑
m=nT

M∑
j=1

e−cmτ ≤ CΔt2
e−cnT τ

Nτ + 1
.

Summing on k1 < k2, we can now conclude that

(6.7) Σ2 ≤ C
e−cnT τ

Nτ + 1
;

then by (6.6) and (6.7)

E

∣∣∣∣∣Δt

n−1∑
k=0

Sn−k
Δt F̃k − Sn−k

Δt F
τ
(Xk)

∣∣∣∣∣
2

≤ C

(
e−cnT τ

Nτ + 1
+Δt

(
e−cnT τ

Nτ + 1

)2

+
Δt

M(Nτ + 1)

)
,

and the result of Theorem 4.1 now follows from (6.4).
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7. Proof of the weak convergence Theorem 4.2. In order to get a better
bound for the weak error than for the strong error, we use an auxiliary function which
is a solution of a Kolmogorov equation.

The proof below only requires the weak dissipativity assumption, Assumption 3.8.
We divide the proof in two parts: the first one contains the elements of the proof,

while the second one is devoted to two technical lemmas.

7.1. Proof of the theorem. According to the decomposition (4.3), we want to
control for any 0 ≤ n ≤ n0

(7.1)

|EΦ(Xε(nΔt)) − EΦ(Xn)| ≤ |EΦ(Xε(nΔt))− EΦ(X(nΔt))|
+ |Φ(X(nΔt))− Φ(Xn)|
+ |Φ(Xn)− EΦ(Xn)|.

Thanks to the averaging theorem of [3], which is proved under (WD), the first term
above can be controlled by Crε

1−r, where Cr is a constant, depending on r,Φ, x, y, T
for any 0 < r < 1.

For the second term, since we look at the error made by using a deterministic
scheme to approximate a deterministic equation, there is no difference between the
strong and the weak orders since the test function Φ is Lipschitz continuous; so we
again use Proposition 5.13.

For the third term, we see that we have to control some error between two different
numerical schemes, in a weak sense. The usual strategy is to decompose this error by
means of an auxiliary function satisfying some kind of Kolmogorov equation.

More precisely, we use the deterministic scheme defining Xk in order to define for
any 0 ≤ k ≤ n

(7.2) un(k, x) = Φ(Xn−k(x)),

where we explicitly mention dependence of the numerical solution Xk on the initial
condition x.

Remark 7.1. We can easily prove that we have

un(n, x) = Φ(x),

un(k, x) = un(k + 1, SΔtx+ΔtSΔtF (x)) for any k < n.

This is the way this function is defined in [14].
We now analyze the error by identifying a telescoping sum:

(7.3)

|Φ(Xn)− EΦ(Xn)| = |un(0, x)− Eun(n,Xn)|

=

∣∣∣∣∣
n−1∑
k=0

(Eun(k,Xk)− Eun(k + 1, Xk+1))

∣∣∣∣∣
≤

n−1∑
k=0

|Eun(k,Xk)− Eun(k + 1, Xk+1)|.

According to Lemma 7.2 below, un is of class C2
b , and we can control the first and

second order derivatives.
Lemma 7.2. For any 0 < T < +∞, there exists CT > 0 such that for any

0 ≤ n ≤ n0 = � T
Δt� and 0 ≤ k ≤ n, we have for any x ∈ H, h ∈ H, h1, h2 ∈ H

|Dxun(k, x).h| ≤ CT |h|,
|D2

xxun(k, x).(h1, h2)| ≤ CT |h1||h2|.
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Moreover for any 0 ≤ k ≤ n− 1 and any x ∈ H, h ∈ H,

|Dxun(k, x).h| ≤ CT

(
Δt|h|+ |h|(−A)−η

((n− k)Δt)η

)
,

where η is defined in Assumption 3.3.
Since the auxiliary functions un are linked to the deterministic discrete time

process (Xn)n≥0, the proof does not use stochastic tools.
Moreover the second and the third estimates of this lemma reveal some smoothing

effect in the equation, due to the semigroup (Sn
Δt)n∈N. The necessity for such results

is specific to the infinite dimensional framework; we can also remark that a control of
the second derivative with C|h1||h2|(−A)η is not sufficient.

To make the proof of Theorem 4.2 clearer, we postpone the proof of Lemma 7.2
in section 7.2.

In the general term of (7.3), we proceed with a Taylor expansion, and using the
estimates of Lemma 7.2 we get

(7.4)

|Eun(k,Xk)− Eun(k + 1, Xk+1)|
= |Eun(k + 1, SΔtXk +ΔtSΔtF (Xk))− Eun(k + 1, SΔtXk +ΔtSΔtF̃k)|
≤ Δt|EDxun(k + 1, SΔtXk +ΔtSΔtF (Xk)).(SΔtF (Xk)− SΔtF̃k)|
+ CΔt2E|F̃k − F (Xk)|2.

Since F is bounded, the last term is of order O(Δt2), and when we sum over 0 ≤ k ≤
n− 1, we get a O(Δt) term, which is already dominated in the final estimate.

When k = n− 1, since un(n, .) = Φ,

(7.5) |Eun(n− 1, Xn−1)− Eun(n,Xn)| ≤ CΔt.

In the rest of the proof, we focus on the general case 0 ≤ k < n− 1.
For the first term, we do not exactly follow the proof of [14]; we rather define

auxiliary functions for 0 ≤ k ≤ n in order to keep on looking at a weak error term:

(7.6) Ψn(k, x, y) = Dxun(k, SΔtx+ΔtSΔtF (x)).(SΔtF (x, y)).

Then if we define Ψn(k + 1, x) =
∫
H
Ψn(k + 1, x, y)μx(dy) we have

|EDxun(k + 1, SΔtXk +ΔtSΔtF (Xk)).(SΔtF (Xk)− SΔtF̃k)|

≤ 1

MN

nT+N−1∑
m=nT

M∑
j=1

|EΨn(k + 1, Xk, Yk,m,j)− EΨn(k + 1, Xk)|.

By using conditional expectation Ek with respect to Gk defined by (6.5),

EΨn(k + 1, Xk, Yk,m,j) = EEkΨn(k + 1, Xk, Yk,m,j)

does not depend on j, so that in the sequel we fix j ∈ {1, . . . ,M}.
The following Lemma gives the regularity results for the auxiliary functions.
Lemma 7.3. For any 0 < T < +∞ and Δt0 > 0, there exists a constant C, such

that for any 0 < Δt ≤ Δt0, any 1 ≤ n ≤ n0 = � T
Δt�, and any 0 ≤ k ≤ n − 1, the

following derivatives exist and are controlled: for any x, y ∈ H, h, k ∈ H,

|DyΨn(k, x, y).h| ≤ C|h|H ,

|D2
yyΨn(k, x, y).h| ≤ C

(
1 +

C

((n− k)Δt)η

)
|h|H |k|H .
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Like in Lemma 7.2, the proof relies on the smoothing effect of the semigroup
(Sn

Δt)n∈N. The lemma is proved below in section 7.2.
We can then apply Theorem 5.11, using the conditional expectation Ek: for any

nT ≤ m ≤ m0 and k < n− 1

|EΨn(k+1, Xk, Yk,m,j)−EΨn(k+1, Xk)| ≤ Ce−cmτ+C

(
1 +

1

((m− 1)τ)1/2−κ

)
τ1/2−κ.

Therefore

|EDxun(k + 1, SΔtXk +ΔtSΔtF (Xk)).(SΔtF (Xk)− SΔtF̃k)|

≤ 1

MN

nT+N−1∑
m=nT

M∑
j=1

|EΨn(k + 1, Xk, Yk,m,j)− EΨn(k + 1, Xk)|

≤ C
e−cnT τ

Nτ + 1
+ Cτ1/2−κ + C

τ1/2−κ

((nT − 1)τ)1/2−κ
.

To conclude, it remains to use (7.3) and (7.1).
Remark 7.4. When the strict dissipativity assumption is satisfied, we can indeed

obtain a bound without 1
((m−1)τ)1/2−κ : we can control the distance between the in-

variant measures of the continuous and discrete time processes, thanks to the second
part of Corollary 5.12.

7.2. Proof of the auxiliary Lemmas 7.2 and 7.3.
Proof of Lemma 7.2. We use the following expression for Xn(x):

Xn(x) = Sn
Δtx+Δt

n−1∑
k=0

Sn−k
Δt F (Xk(x)).

By definition, for any 0 ≤ k ≤ n we have un(k, x) = Φ(Xn−k(x)); we see that the
derivatives in directions h, h1, h2 ∈ H are given by

Dxun(k, x).h = DΦ(Xn−k(x)).

(
d

dx
Xn−k(x).h

)
,

and

D2
xxun(k, x).(h1, h2) = DΦ(Xn−k(x)).

(
d2

dx2
Xn−k(x).(h1, h2)

)

+D2Φ(Xn−k(x)).

(
d

dx
Xn−k(x).h1,

d

dx
Xn−k(x).h2

)
.

Φ is of class C2 on H with bounded derivatives; therefore we just need to control
d
dxXn−k(x).h and d2

dx2Xn−k(x).(h1, h2). We use the following estimates of the deriva-

tives of F , given in Proposition 5.5: for any x ∈ H , h ∈ H , h1, h2 ∈ H ,

|DF (x).h| ≤ C|h|
|(−A)−ηD2F (x).(h1, h2)| ≤ C|h1||h2|.

(i) For any 0 ≤ n ≤ n0, we can write

d

dx
Xn(x).h = Sn

Δth+Δt
n−1∑
k=0

Sn−k
Δt DF (Xk(x))

(
d

dx
Xk(x).h

)
;
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therefore

∣∣∣∣ ddxXn(x).h

∣∣∣∣ ≤ |h|+ CΔt

n−1∑
k=0

∣∣∣∣ ddxXk(x).h

∣∣∣∣ ,
and a discrete Gronwall lemma then yields∣∣∣∣ ddxXn(x).h

∣∣∣∣ ≤ |h|eCnΔt ≤ |h|eCT .

(ii) For any 0 ≤ n ≤ n0, we can write

d2

dx2
Xn(x).(h1, h2)

= Δt

n−1∑
k=0

Sn−k
Δt (−A)η(−A)−ηD2F (Xk(x)).

(
d

dx
Xk(x).h1,

d

dx
Xk(x).h2

)

+Δt

n−1∑
k=0

Sn−k
Δt DF (Xk(x)).

(
d2

dx2
Xk(x).(h1, h2)

)
.

Since |Sn−k
Δt (−A)η| ≤ C

((n−k)Δt)η when k < n, and thanks to the previous estimates

on d
dxXk(x).h and D2F , we get

∣∣∣∣Sn−k
Δt (−A)η(−A)−ηD2F (Xk(x)).

(
d

dx
Xk(x).h1,

d

dx
Xk(x).h2

)∣∣∣∣
≤ C

((n− k)Δt)η
|h|1|h|2.

Therefore ∣∣∣∣ d2dx2
Xn(x).(h1, h2)

∣∣∣∣ ≤ C|h1||h2|

+ CΔt

n−1∑
k=0

∣∣∣∣ d2dx2
Xk(x).(h1, h2)

∣∣∣∣ ,
and a discrete Gronwall Lemma then yields

∣∣∣∣ d2dx2
Xn(x).(h1, h2)

∣∣∣∣ ≤ C|h1||h2|.

(iii) To prove the last estimate of the lemma, we write

∣∣∣∣ ddxXn(x).h

∣∣∣∣ =
∣∣∣∣∣Sn

Δth+Δt

n−1∑
k=0

Sn−k
Δt DF (Xk(x))

(
d

dx
Xk(x).h

)∣∣∣∣∣
≤ C

(nΔt)η
|h|(−A)−η + CΔt

n−1∑
j=0

∣∣∣∣ ddxXk(x).h

∣∣∣∣ .
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We obtain

(nΔt)η
∣∣∣∣ ddxXn(x).h

∣∣∣∣ ≤ C|h|(−A)−η + CΔt(nΔt)η |h|H

+ C(nΔt)ηΔt
n−1∑
j=1

1

(jΔt)η
(jΔt)η

∣∣∣∣ ddxXj(x).h

∣∣∣∣ .
To conclude, we use a Gronwall lemma to get

(nΔt)η
∣∣∣∣ ddxXn(x).h

∣∣∣∣ ≤ CT (|h|(−A)−η +Δt(nΔt)η).

Proof of Lemma 7.3.
(i) The first derivative with respect to y is easy to control: we have for any h ∈ H

DyΨn(k, x, y).h = Dxun(k, SΔtx+ΔtSΔtF (x)).(SΔtDyF (x, y).h),

and we get |DyΨn(k, x, y).h| ≤ C|h|H .
(ii) When we look at the second order derivative, we see that

D2
yyΨn(k, x, y).(h, k) = Dxun(k, SΔtx+ΔtSΔtF (x)).(SΔtD

2
yyF (x, y).(h, k)).

Thanks to the last estimate of Lemma 7.2, we can control the expression by

C

(
Δt|SΔtD

2
yyF (x, y).(h, k)|H +

|SΔtD
2
yyF (x, y).(h, k)|(−A)−η

((n− k)Δt)η

)
.

We then notice that

Δt|SΔtD
2
yyF (x, y).(h, k)|H ≤ CΔt1−η|(−A)−ηD2

yyF (x, y).(h, k)|
≤ C|h|H |k|H ,

since η < 1 and Δt is bounded, and thanks to Assumption 3.4; the other part is
controlled thanks to Assumption 3.4.
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