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a b s t r a c t

This article investigates the role of the regularity of the test
function when considering the weak error for standard spatial
and temporal discretizations of SPDEs of the form dX(t) =

AX(t)dt + dW (t), driven by space–time white noise. In previous
results, test functions are assumed (at least) of class C2 with
bounded derivatives, and the weak order is twice the strong
order.

We prove that to quantify the speed of convergence, it is cru-
cial to control some derivatives of the test functions, even if the
noise is non-degenerate. First, the supremum of the weak error
over all bounded continuous functions, which are bounded by 1,
does not converge to 0 as the discretization parameter vanishes.
Second, when considering bounded Lipschitz test functions, the
weak order of convergence is divided by 2, i.e. it is not better
than the strong order.

This is in contrast with the finite dimensional case, where the
Euler–Maruyama discretization of elliptic SDEs dY (t) = f (Y (t))dt
+ dBt has weak order of convergence 1 even for bounded
continuous functions.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The numerical analysis of Stochastic Partial Differential Equations (SPDEs) has received a lot of
attention in the last two decades, see for instance the recent monographs [19,24,26]. Many temporal
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and spatial discretization schemes have been studied in the literature: Euler schemes, exponential
Euler schemes, and spectral Galerkin methods, Finite Element methods.

In this article, we consider linear, parabolic, equations, with additive, space–time white noise, of
the type{ dX = ∂ξξXdt + dW , t > 0, ξ ∈ (0, 1),

X(0, t) = X(1, t) = 0,
X(ξ, 0) = x(ξ ),

on the interval (0, 1), with homogeneous Dirichlet boundary conditions. More precisely, we consider
Hilbert-space valued stochastic processes, which are solutions in H = L2(0, 1) of

dX(t) = AX(t)dt + dW (t), X(0) = x, (1)

in the framework of [12], see Eq. (6) and Section 2 for precise assumptions. The noise is given by a
cylindrical Wiener process, which is a mathematical model for Gaussian space–time white noise.

The extension of the results to the case of semilinear equations

dX(t) = AX(t)dt + F (X(t))dt + dW (t),

with sufficiently regular nonlinear operator F , is straightforward and is thus not considered with
details in this article.

We are interested in weak convergence rates for numerical approximations of X(T ), for arbitrary
time T ∈ (0, ∞). Recall that this notion corresponds to studying the weak error

E[φ(X(T ))] − E[φ(Xh(T ))], (2)

where Xh(T ) is the numerical approximation of X(T ), obtained by temporal and/or spatial discretiza-
tion of the equation (with discretization parameter h → 0), and φ : H → R is a bounded continuous
function. Test functions with polynomial growth may also be considered. Recall also that strong
convergence refers to the analysis of the strong error

E|X(T ) − Xh(T )|.

These notions have been extensively studied in the case of Stochastic Differential Equations (SDEs)
of the type

dYt = f (Yt )dt + σ (Yt )dBt , Y0 = y ∈ Rd, (3)

with smooth coefficients f and σ , and a d-dimensional Brownian Motion B, see for instance the
classic monographs [21,27].

Strong convergence for discretizations of the SPDEs (1), also with multiplicative noise pertur-
bation, has been studied, for instance, in [13,17,19,28,31,34] (the list is not exhaustive). Results
concerning weak convergence rates have essentially been obtained in the last decade, using different
approaches. In the case of the SPDE (1), which is linear with additive noise, see [15,16,22,23]. For
semilinear equations, see [2,6,14,30,32,33], for an approach related to the Kolmogorov equation. See
[11,18,20], where a mild Itô formula is used. Finally, for semilinear equations with additive noise,
see [1] and [7] for different approaches. Deriving weak convergence rates is fundamental in infinite
dimension, see for instance [25]. Moreover, it is the appropriate notion for the approximation of
invariant distribution (in the asymptotic regime T → ∞), see [5,8,9]. The extension of the results
of this article in this long time regime is straightforward.

The results in the references mentioned above can be roughly summarized as follows: if the
strong error converges with order r , then the weak error converges with order 2r , for functions
φ which are sufficiently smooth, i.e. of class Cp, bounded and with bounded derivatives of or-
der 1, . . . , p, with p ≥ 2 (p depends on the model, for instance whether noise is additive or
multiplicative):

E|X(T ) − Xh(T )|≤ C(T )hr ,
⏐⏐E[φ(X(T ))] − E[φ(Xh(T ))]

⏐⏐ ≤ C(T )∥φ∥ph2r , (4)
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where ∥φ∥p = supx∈H |φ(x)|+
∑p

j=1 supx∈H |Djφ(x)|. For spectral Galerkin discretization of the
SPDE (1), in dimension N , with h =

1
N , one may choose r ∈ [0, 1

2 ). For linear implicit Euler
discretization of (1), with time step size h = ∆t , one may choose r ∈ [0, 1

4 ).
In the SDE case, consider the Euler–Maruyama discretization of (3) (see (16)), with time step

size h. Under an appropriate hypoellipticity assumption (which is satisfied in the additive non-
degenerate noise case σ (x) = Id), using Malliavin calculus techniques and regularization effect
in the associated Kolmogorov equation, the authors in [3,4] (see also [10]), have proved that the
standard approach of [29], to prove the weak error estimate for sufficiently regular functions,

|E[φ(Y (T ))] − E[φ(Yh(T ))]|≤ C(T )∥φ∥ph

with p ≥ 2, can be extended with ∥φ∥0 instead of ∥φ∥p on the right-hand side. In other words, weak
convergence is also of order 1 when considering bounded continuous (or even only measurable) test
functions.

In the SPDE case, the situation is quite different, when the spatial discretization is performed by
the spectral Galerkin method, and the temporal discretization is performed by the linear implicit
Euler scheme. Let us formulate precisely what is the problem treated in this article. In the literature,
it is standard to study the weak error (2) for a single, given, test function φ. However, weak error
estimates of the type (4) are more relevant, since they reveal the interplay between the regularity
properties of the test functions φ, and the weak order of convergence.

The objective of this article is to provide answers to the following question.

Question 1. What are the values of r ≥ 0, such that, for any T ∈ (0, ∞), there exists Cr (T ) ∈ (0, ∞),
such that, for all (sufficiently small) h > 0, one has⏐⏐E[φ(X(T ))] − E[φ(Xh(T ))]

⏐⏐ ≤ Cr (T )∥φ∥phr ,

for the following two classes of test functions φ : H → R:

(i) bounded continuous functions?
(ii) bounded and Lipschitz continuous functions?

Let us insist that in Question 1 (and more generally in this article), the weak order of convergence
r is assumed not to depend on φ, except on its regularity properties, i.e. on the integer p.

Note that only bounded test functions, with bounded derivatives, are considered. This is not
restrictive: taking into account polynomial growth may be possible and would not change the
answers provided to Question 1, and to Question 2. In addition, note that for any given bounded
and continuous test function φ : H → R, one has

E[φ(Xh(T ))] →
h→0

E[φ(X(T ))],

thanks to strong convergence.
More precisely, the following reformulation of Question 1 is considered in this article. Indeed, it

is natural to consider the supremum of the error over test functions φ of a given regularity p, with
a condition ∥φ∥p ≤ 1 (by linearity, this condition is not restrictive).

Question 2. What is the order of convergence to 0, when h → 0, of

sup
φ∈Φ

⏐⏐E[φ(X(T ))] − E[φ(Xh(T ))]
⏐⏐, (5)

where

(i) Φ = {φ ∈ C0(H,R); ∥φ∥0 ≤ 1}?
(ii) Φ = {φ ∈ C0(H,R); ∥φ∥0 + Lip(φ) ≤ 1}?

Above, the Lipschitz semi-norm is defined as Lip(φ) = sup
x1 ̸=x2

|φ(x2)−φ(x1)|
|x2−x1|

.

Questions 1 and 2 are equivalent, since the orders of convergence in Question 1 are required not
to depend on φ, but only on its regularity properties.
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On the one hand, considering the supremum in (5) is convenient for the proofs below: instead
of exhibiting a single test function which would correspond to the worst case scenario for the weak
order of convergence in the given class of test function, the proof will use well-chosen parametrized
families, and appropriate limiting arguments to which make the relevant norms blow up.

On the other hand, the quantity (5) can be interpreted in terms of the Radon distance and of the
Wasserstein 1 distance between probability distributions, i.e. the laws of X(T ) and Xh(T ). This was
not the initial motivation of this work, and this point of view will not be discussed with details.

Note that the noise in the SPDE (1) is non-degenerate (the covariance operator is the identity).
With intuition built upon the SDE case, it might be expected that the order of convergence in
Question 2 does not depend on p, and is equal to the same order as when p = 2, i.e. r ∈ [0, 1)
if h =

1
N (spectral Galerkin discretization in dimension N) or r ∈ [0, 1

2 ) if h = ∆t (linear implicit
Euler scheme, with time step size ∆t).

However, maybe surprisingly, that intuition leads to uncorrect results. The main contribution of
this article is to provide the following answer to Question 2. First, in the case (i), then (5) does not
converge to 0 when h → 0. Second, in the case (ii), then the order of convergence for (5) is equal
to the associated strong order, i.e. one needs r ∈ [0, 1

2 ) if h =
1
N (spectral Galerkin discretization in

dimension N) or r ∈ [0, 1
4 ) if h = ∆t (linear implicit Euler scheme, with time step size ∆t). Precise

statements, Theorems 1 and 2, are provided in Section 3.
Those answers to Question 2 lead to the following conclusion: in general, the regularity of the

test functions, and the control of derivatives, is essential to quantify the speed of convergence of
the weak error (2) for numerical discretizations of SPDEs (1).

The proofs below use well-chosen families of functions which have low significance for concrete
numerical approximation. It may be possible to define smaller families of non-regular test functions,
for which uniform convergence of the numerical schemes holds true with better rates of conver-
gence. This is expected to be obtained by the generalization of the finite dimensional approach
of [3,4]: regularization effect in the Kolmogorov equation and Malliavin calculus techniques. The
identification of the appropriate setting is left for future works.

Why the regularity of the test functions matters for SPDEs may be explained by the properties
of the solutions of associated Kolmogorov equations. Indeed, as emphasized in [2,6,14], Sobolev-
type regularity properties for the spatial derivatives of the solution of this infinite dimensional PDE
are required to treat the most irregular terms in the error expansion. Similar arguments appear
in [11,15] and related articles. The regularity estimates have singularities at the initial time, even
when the test function (seen as the initial condition of the Kolmogorov equation) is regular.

For SDEs, the Kolmogorov equation preserves regularity of the initial condition. Singularities only
appear when a regularization effect is needed, in an hypoelliptic setting.

For SPDEs, exhibiting a rate of convergence in the error analysis is only possible when using some
spatial regularity property, as mentioned above. The better the spatial regularity, the greater the
order of convergence, but the stronger the singularity — with the constraint of remaining integrable.
This approach yields the optimal order of convergence for regular test functions. Weakening the
regularity condition on the test functions then introduces even stronger singularities, and less
spatial regularity may be used: in turn the order of convergence decreases. The optimality of these
heuristic arguments is validated by Theorems 1 and 2.

The article is organized as follows. Assumptions on the model and numerical discretization
schemes are introduced in Section 2. Section 2.3 describes important spatial regularity properties,
which are very different for the discretized versions, compared with the exact solution. Our main
results, Theorem 1 (bounded continuous functions) and Theorem 2 are stated in Section 3. Detailed
proofs are provided in Section 4.

2. Setting

2.1. Model and assumptions

The model in this article is given by a Stochastic Partial Differential Equation (SPDE),

dX(t) = AX(t)dt + dW (t), X(0) = 0, (6)
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i.e. by Eq. (3), with the initial condition set equal to 0. Extending the results of this article to arbitrary
initial conditions is straightforward.

2.1.1. Linear operator A
Denote by ⟨·, ·⟩, resp. |·|, the inner product, resp. the norm, in the separable Hilbert space

H = L2(0, 1).
The operator A in the SPDE is the Laplace operator with homogeneous Dirichlet boundary

conditions, and thus it satisfies the following conditions.

Assumption 1. The mapping A is an unbounded, self-adjoint, linear operator on H .
Define, for all n ∈ N = {1, . . .},

λn = π2n2 , en =
√
2 sin

(
nπ ·

)
.

Then the operator A and its domain D(A) are given by

Ax =

∑
n∈N

−λn⟨x, en⟩ , ∀ x ∈ D(A) =

{
x ∈ H ;

∑
n∈N

λ2
n⟨x, en⟩

2 < ∞

}
.

Recall that
(
en

)
n∈N is a complete orthonormal system of H .

Introduce the following notation.

Definition 1.

(1) The operator A generates a strongly-continuous semigroup
(
etA

)
t≥0 on H , with

etAx =

∑
n∈N

e−λnt⟨x, en⟩ , ∀ x ∈ H, t ≥ 0.

(2) For all α ∈ [0, 1], set

|x|α=
(∑
n∈N

λ2α
n ⟨x, en⟩2

) 1
2 ∈ [0, ∞], ∀ x ∈ H.

2.1.2. Cylindrical Wiener process
Let

(
Ω,F,P

)
denote a probability space. The expectation operator is denoted by E.

Assumption 2. Let
(
βn

)
n∈N be a sequence of independent standard R-valued Wiener processes.

Then set, for all t ≥ 0,

W (t) =

∑
n∈N

βn(t)en. (7)

It is a standard fact that, for all t ≥ 0, almost surely the series in (7) does not converge in H .
However, if Φ ∈ L(H) is an Hilbert–Schmidt operator, then ΦW (t) =

∑
n∈N βn(t)Φen is a Wiener

process in H , with covariance operator ΦΦ⋆.

2.1.3. Mild solution
Solutions of the SPDE (6) are interpreted in the mild sense: the unique solution, which is often

called stochastic convolution, is given by

X(t) =

∫ t

0
e(t−s)AdW (s) =

∑
n∈N

(∫ t

0
e−λn(t−s)dβn(s)

)
en, t ∈ (0, ∞).

With the notation Xn(t) = ⟨X(t), en⟩ =
∫ t
0 e−λn(t−s)dβn(s), the process

(
Xn(t)

)
t≥0 is independent

Ornstein–Uhlenbeck processes. Thus,
(
X(t)

)
t≥0 is a centered Gaussian process with values in H . Let
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µt denote the law of X(t), i.e. the centered Gaussian probability distribution on H with covariance
operator Qt ∈ L(H), given by

Qten =
1

2λn

(
1 − e−2λnt

)
en = E

[
|Xn(t)|2

]
en,

for all n ∈ N and t ≥ 0.

2.2. Numerical schemes

Space and time discretization schemes are defined below. One may also consider full-
discretization schemes obtained by combining these two procedures.

2.2.1. Space discretization: spectral Galerkin method
For every N ∈ N, let PN ∈ L(H) denote the orthogonal projection onto the finite-dimensional

subspace Span
(
e1, . . . , eN

)
:

PNx =

N∑
n=1

⟨x, en⟩en, ∀ x ∈ H.

The process X (N) obtained by discretization in space of the SPDE (6), is solution of

dX (N)(t) = AX (N)(t)dt + PNdW (t) , X (N)(0) = 0.

In fact, X (N)(t) = PNX(t), for all t ≥ 0 and N ∈ N.
Let then µ

(N)
t denote the law of the random variable X (N): it is a centered Gaussian probability

distribution, with covariance operator PNQt (PN )⋆ = PNQt .

2.2.2. Time discretization: linear implicit Euler scheme
Let ∆t > 0 denote a time-step size, without restriction we assume ∆t ∈ (0, 1). The scheme is

defined such that for all k ∈ N0 = {0, 1, . . .},

X∆t
k+1 = X∆t

k + ∆tAX∆t
k+1 + ∆Wk , X∆t

0 = 0,

with Wiener increments ∆Wk = W
(
(k + 1)∆t

)
− W

(
k∆t

)
.

Rigorously,

X∆t
k+1 = S∆tXk + S∆t∆Wk,

where S∆t =
(
I − ∆tA

)−1 is a linear self-adjoint Hilbert–Schmidt operator on H .
As a consequence, for every k ∈ N,

X∆t
k =

k−1∑
ℓ=0

Sk−ℓ
∆t ∆Wℓ,

and the law ν∆t
k of X∆t

k is a centered Gaussian probability distribution, with covariance operator

Q∆t
k = ∆t

k−1∑
ℓ=0

S2(k−ℓ)
∆t .

2.3. Space regularity properties

The aim of this section is to provide some important results concerning the moments
∫
H |x|2αµ(dx),

for different values of α ∈ [0, 1]. The parameter α is interpreted as indicating space regularity of
the process. We emphasize on the key observation: the behaviors are different when considering,
on the one hand, µ = µt , and, on the other hand, µ = µ

(N)
t or µ = ν∆t

n , which are obtained by
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the discretization schemes. We will take advantage of this property in the study of the orders of
convergence for bounded continuous test functions.

First, consider the law µt at time t , of the solution of the SPDE (6): for any t ∈ (0, ∞),∫
H
|x|2αµt (dx) =

∑
n∈N

1
2λ1−2α

n

(
1 − e−2λnt

)
< ∞ ⇐⇒ α ∈ [0,

1
4
). (8)

Now, consider the law µ
(N)
t , at time t , obtained by spatial discretization: for every t ∈ [0, ∞),∫

H
|x|2αµ

(N)
t (dx) < ∞, ∀ α ∈ [0, 1], ∀ N ∈ N,

sup
N∈N

∫
H
|x|2αµ

(N)
t (dx) < ∞ ⇐⇒ α ∈ [0,

1
4
).

(9)

Finally, consider the law ν∆t
k , at time k, obtained by the temporal discretization: for every k ∈ N

and every T ∈ (0, ∞),∫
H
|x|2αν∆t

k (dx) < ∞, ∀ α ∈ [0,
3
4
), ∀ ∆t ∈ (0, 1), ∀ k ∈ N,

sup
∆t∈(0,1)

∫
H
|x|2αν∆t

⌊
T
∆t ⌋

(dx) < ∞ ⇐⇒ α ∈ [0,
1
4
).

(10)

Observe that in (9) and (10), one recovers the same behavior as in (8), only when the supremum
over all discretization parameters (N ∈ N and ∆t ∈ (0, 1)) is computed. For fixed values of these
parameters, some larger values of α ≥

1
4 are allowed.

The proofs of estimates in (8) and (9) are straightforward. For completeness, let us give a detailed
proof of the estimates in (10). Similar arguments will be used again below.

To prove the first statement in (10), let ∆t > 0, k ∈ N, and α ∈ [0, 1], then∫
H
|x|2αν∆t

k (dx) =

∑
n∈N

λ2α
n ⟨Q∆t

k en, en⟩ = ∆t
∑
n∈N

λ2α
n

k∑
ℓ=1

1
(1 + λn∆t)2ℓ

=

∑
n∈N

λ2α
n

λn(2 + λn∆t)

(
1 −

1
(1 + λn∆t)2k

)
< ∞ ⇐⇒ α ∈ [0,

3
4
).

To prove the second statement, first assume α ∈ [0, 1
4 ), then 1 − 2α > 1

2 , thus for all ∆t ∈ (0, 1),∫
H
|x|2αν∆t

⌊
T
∆t ⌋

(dx) ≤

∑
n∈N

1
2λ1−2α

n
< ∞.

Now assume that α ≥
1
4 . By a monotonicity argument, it is sufficient to consider the case α =

1
4 .

Let M ∈ N be an auxiliary integer, and choose ∆t =
T
N2 , with N ∈ N, N ≥ M .∫

H
|x|21

4
ν

T
N2

N2 (dx) =

∑
n∈N

1

πn(2 + π2T n2
N2 )

(
1 −

1

(1 + π2T n2
N2 )2⌊TN

2⌋

)
≥

1
N

∑
n≥ N

M

1

π n
N (2 + π2T n2

N2 )

(
1 −

1

(1 + π2T n2
N2 )2⌊TN

2⌋

)
.

Note that for n ≥
N
M , one has 1

(1+π2T n2
N2 )2⌊TN2⌋

≤
1

(1+ π2T
M2 )2⌊TN2⌋

→
N→∞

0. Then, by a Riemann sum

argument, one obtains

lim inf
N→∞

∫
H
|x|21

4
ν

1
N2

N2 (dx) ≥

∫
∞

1
M

1
πz(2 + π2Tz2)

dz.
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Letting M → ∞ and using
∫

∞

0
1

πz(2+π2Tz2)
dz = ∞, one obtains

sup
∆t∈(0,1)

∫
H
|x|21

4
ν∆t

⌊
T
∆t ⌋

(dx) = ∞.

This concludes the proof of the equivalence statement (10).

3. Main results

Introduce the following notation:

• ∥φ∥0 = sup
x∈H

|φ(x)|, for φ ∈ C0(H,R), bounded and continuous functions from H to R,

• ∥φ∥1 = ∥φ∥0 + sup
x,y∈H,x̸=y

|φ(y)−φ(x)|
|y−x| , for φ ∈ C0,1(H,R), bounded and Lipschitz continuous

functions from H to R,
• ∥φ∥2 = sup

x∈H
|φ(x)|+ sup

x∈H,h∈H,|h|≤1
|Dφ(x).h|+ sup

x∈H,h1,h2∈H,|h1|≤1,|h2|≤1
|D2φ(x).(h1, h2)|, for φ ∈

C2(H,R), bounded functions from H to R of class C2, with bounded first and second order
derivatives.

3.1. Statements

The main result of this article is Theorem 1, which may be interpreted as follows: there is no
rate of convergence to 0, for the weak error, when considering the supremum over all bounded and
continuous functions.

Theorem 1. Let T ∈ (0, ∞). Then

lim sup
N→∞

sup
φ∈C0(H,R),∥φ∥0≤1

|

∫
φdµT −

∫
φdµ(N)

T |> 0,

lim sup
∆t→0

sup
φ∈C0(H,R),∥φ∥0≤1

|

∫
φdµT −

∫
φdν∆t

⌊
T
∆t ⌋

|> 0.
(11)

The proof of Theorem 1 is postponed to Section 4.1.
To explain why the statement of Theorem 1 may be surprising, recall that strong convergence

results, with order in [0, 1
4 ), are available: for every r ∈ [0, 1

4 ), and every T ∈ (0, ∞),

lim sup
N→∞

λ2r
N E

⏐⏐X(T ) − X (N)(T )
⏐⏐2 < ∞ , lim sup

∆t→0

1
∆t2r

E
⏐⏐X(T ) − X∆t

⌊
T
∆t ⌋

⏐⏐2 < ∞. (12)

Thus, for any bounded and continuous function φ ∈ C0(H,R), the convergence below is valid:∫
φdµ(N)

T →
N→∞

∫
φdµT ,

∫
φdν∆t

⌊
T
∆t ⌋

→
∆t→0

∫
φdµT .

However, the supremum of the error over all bounded continuous functions, bounded by 1, does
not converge to 0.

As will become clear in the proof of Theorem 1, see the stronger statement (18) below, the issue
is not the regularity of the functions φ – smooth functions are used – but the lack of control of the
growth of the derivatives.

It is also worth mentioning that if one considers the set of bounded measurable test functions,
instead of continuous test functions, in (11), the result is straightforward. Indeed, this corresponds
to looking at the total variation distance between µT , and µ

(N)
T of ν∆t

⌊
T
∆t ⌋

, and due to the results of
Section 2.3, these distributions are singular.

We also prove the following statement, Theorem 2, which may be interpreted as follows: the
best order of convergence, for the weak error, when considering the supremum over all bounded
and Lipschitz continuous functions, is equal to the strong order of convergence.
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Theorem 2. Let T ∈ (0, ∞). Then

lim sup
N→∞

λr
N sup

φ∈C0,1(H,R),∥φ∥1≤1
|

∫
φdµT −

∫
φdµ(N)

T |=

{
0, ∀ r ∈ [0, 1

4 )
∞, ∀ r ∈ ( 14 ,

1
2 ),

lim sup
∆t→0

1
∆t r

sup
φ∈C0,1(H,R),∥φ∥1≤1

|

∫
φdµT −

∫
φdν∆t

⌊
T
∆t ⌋

|=

{
0, ∀ r ∈ [0, 1

4 )
∞, ∀ r ∈ ( 14 ,

1
2 ).

(13)

The results in Theorem 2 in the regime r ∈ [0, 1
4 ) are not new, they are straightforward

applications of the strong convergence estimates in (12). The case r ∈ ( 14 ,
1
2 ) is treated in

Section 4.2.
For comparison, we state an additional result, considering test functions of class C2, bounded,

and with bounded first and second order derivatives.

Proposition 1. Let T ∈ (0, ∞).

lim sup
N→∞

λr
N sup

φ∈C2(H,R),∥φ∥2≤1
|

∫
φdµT −

∫
φdµ(N)

T |=

{
0, ∀ r ∈ [0, 1

2 )
∞, ∀ r ∈ ( 12 , 1),

lim sup
∆t→0

1
∆t r

sup
φ∈C2(H,R),∥φ∥2≤1

|

∫
φdµT −

∫
φdν∆t

⌊
T
∆t ⌋

|=

{
0, ∀ r ∈ [0, 1

2 )
∞, ∀ r ∈ ( 12 , 1).

(14)

The result of Proposition 1, in the regime r ∈ [0, 1
2 ), has been proved in a more general setting,

for semilinear versions of (6), see the references in the introduction. In the case of multiplicative
noise, the results require that φ is at least of class C3, however the order of convergence remains
equal to 1

2 for such test functions. The case r ∈ ( 12 , 1) is obtained using the lower bounds
from [11].

Note that Theorems 1 and 2 are also valid when looking at the regime T → ∞, i.e. at the level
of the invariant distributions of the process and of its discretized versions.

Comparing Theorems 1, 2 and Proposition 1 reveals that in infinite dimension, regularity of the
test functions and control of derivatives play an important role in the analysis of the numerical
error in the weak sense.

3.2. Comparison with the finite dimensional situation

The situation described by Theorems 1 and 2, and Proposition 1, is specific to the infinite
dimensional situation. Indeed, when considering Euler–Maruyama discretization of hypoelliptic
SDEs (in finite dimension), the order of convergence (equal to 1) does not change when considering
either bounded continuous functions, or bounded and Lipschitz continuous functions, or functions
of class C2.

Indeed, consider an SDE in Rd (see Eq. (3), with additive non-degenerate noise),

dY (t) = f (Y (t))dt + dBt , Y (0) = y0, (15)

where
(
Bt

)
t≥0 is a d-dimensional standard Wiener process, and f : Rd

→ Rd is a smooth bounded
function, with bounded derivatives.

Consider its Euler–Maruyama discretization, with time step size ∆t > 0: for k ∈ N0,

Y∆t
k+1 = Y∆t

k + ∆tf (Y∆t
k ) + B((k + 1)∆t) − B(k∆t) , Y∆t

0 = y0. (16)

The strong order of convergence in this case is equal to 1 (this is due to the fact that the noise is
additive, it would be equal to 1

2 in general):

lim sup
∆t→0

1
∆t2

E|Y (T ) − Y∆t
⌊

T
∆t ⌋

|
2
∈ (0, ∞).
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Then, it is a remarkable fact that when considering bounded continuous test functions, one still
obtains an error which is of order 1, see [3,4],

lim sup
∆t→0

1
∆t

sup
φ∈C0(H,R),∥φ∥0≤1

|Eφ(Y (T )) − Eφ(Y∆t
⌊

T
∆t ⌋

)|∈ (0, ∞),

for every T ∈ (0, ∞). Equivalently, there exists C(T ) ∈ (0, ∞), such that for every bounded
continuous function φ,

|Eφ(Y (T )) − Eφ(Y∆t
⌊

T
∆t ⌋

)|≤ C(T )∥φ∥0∆t. (17)

Theorem 1 indicates that in infinite dimension, the generalization of (17) is not valid, both for
the standard and widely used time and space discretization schemes we have considered.

4. Proofs

4.1. Bounded continuous test functions: proof of Theorem 1

In fact, a slightly stronger result than Theorem 1 is proved below:

lim sup
N→∞

sup
φ∈Φ

|

∫
φdµT −

∫
φdµ(N)

T |> 0 , lim sup
∆t→0

sup
φ∈Φ

|

∫
φdµT −

∫
φdν∆t

⌊
T
∆t ⌋

|> 0, (18)

where Φ ⊂ C∞(H,R) is such that ∥φ∥0 ≤ 1 for all φ ∈ Φ . In the examples given below, the
functions φ are smooth and have bounded derivatives of any order, however only ∥φ∥0 is uniformly
bounded over Φ — precisely, sup {∥φ∥1, φ ∈ Φ} = ∞.

We provide two different examples of sets Φ . The first family is constructed using the results
of Section 2.3, concerning regularity properties of the discretized versions of the SPDE. The second
family contains functions with arbitrarily fast oscillations, and is treated using some Riemann sums
arguments. This proof is instructive, similar arguments appear for proving Theorem 2.

4.1.1. First proof
Define Φ1

=
{
φ1

ϵ,M , ϵ ∈ (0, 1),M ∈ N
}
, where

φ1
ϵ,M (x) = exp

(
−ϵ|PMx|21

4

)
, ∀ x ∈ H. (19)

Then φ1
ϵ,M ∈ C∞(H,R), and ∥φ1

ϵ,M∥0 = 1. However, sup
{
∥φ∥1, φ ∈ Φ1

}
= ∞.

Remark 1. Observe that for all x ∈ H ,

lim
ϵ→0

lim
M→∞

φ1
ϵ,M (x) = φ1(x) = 1|x| 1

4
<∞,

where φ1 is only bounded and measurable. Then, thanks to the regularity results (8), (9) and (10)
for all N ∈ N and ∆t ∈ (0, 1),∫

φ1dµT = 0 ,

∫
φ1dµ(N)

T =

∫
φ1dν∆t

⌊
T
∆t ⌋

= 1.

This means that in total variance distance, the convergence of µ
(N)
T and of ν∆t

⌊
T
∆t ⌋

to µT does not hold

true. The current proof consists in adapting this statement by an approximating argument.

Let

δ11(N) = sup
φ∈Φ1

|

∫
φdµT −

∫
φdµ(N)

T |,

δ12(∆t) = sup
φ∈Φ1

|

∫
φdµT −

∫
φdν∆t

⌊
T
∆t ⌋

|.
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For every N ∈ N, ϵ ∈ (0, 1), letting M → ∞ gives

δ11(N) ≥
⏐⏐E[e

−ϵ|PMX(T )|21
4 ] − E[e

−ϵ|PMX (N)(T )|21
4 ]

⏐⏐ ≥
⏐⏐0 − E[e

−ϵ|X (N)(T )|21
4 ]|,

where almost surely |X (N)(T )|21
4
< ∞, thanks to (9). On the contrary, using (8), E|X(T )|21

4
= ∞, and

in fact almost surely |X(T )|21
4
= ∞. More precisely,

E[e
−ϵ|PMX(T )|21

4 ] =

M∏
m=1

E[e−ϵλ

1
2
m |⟨X(T ),em⟩|

2
]

=

M∏
m=1

(
1 +

ϵ
√

λm

λm
(1 − e−2λmT )

)−
1
2

= exp
(
−

1
2

M∑
m=1

log
(
1 +

ϵ
√

λm

λm
(1 − e−2λmT )

))
→

M→∞

0.

Similarly,

δ12(∆t) ≥ E[e
−ϵ|X∆t

⌊
T
∆t ⌋

|
2
1
4 ],

with |X∆t
⌊

T
∆t ⌋

|
2
1
4
< ∞ almost surely, thanks to (10).

Finally, letting ϵ → 0, for all N ∈ N and ∆t ∈ (0, 1)

δ11(N) ≥ 1 , δ12(∆t) ≥ 1.

Thus

lim sup
N→∞

sup
φ∈Φ1

|

∫
φdµT −

∫
φdµ(N)

T |= lim sup
N→∞

δ11(N) ≥ 1,

lim sup
∆t→0

sup
φ∈Φ1

|

∫
φdµT −

∫
φdν∆t

⌊
T
∆t ⌋

|= lim sup
∆t→0

δ12(∆t) ≥ 1,

hence (11) is validated. This concludes the first proof of Theorem 1.

4.1.2. Second proof
Define Φ2

=
{
φ2
M , M ∈ N

}
, where

φ2
M (x) = exp

(
i
√
M⟨θM , x⟩

)
, θM =

M∑
m=

M
2

em, ∀ x ∈ H.

In this example, it is convenient to consider complex-valued functions, however it is straightforward
to get rid of this issue.

Like above, Φ2
⊂ C∞(H,C), ∥φ∥0 = 1 for all φ ∈ Φ2, and sup

{
∥φ∥1, φ ∈ Φ2

}
= ∞. Let

δ21(N) = sup
φ∈Φ2

|

∫
φdµT −

∫
φdµ(N)

T | , δ22(∆t) = sup
φ∈Φ2

|

∫
φdµT −

∫
φdν∆t

⌊
T
∆t ⌋

|.

First, focus on δ21(N). Observe that for M ≥ 2N + 1, ⟨θM , X (N)(T )⟩ = 0 almost surely, hence∫
φ2
Mdµ(N)

T = 1. On the contrary,∫
φ2
MdµT = E[ei

√
M⟨θM ,X(T )⟩

] = exp
(
−M

M∑
m=

M
2

1
2λm

(1 − e−2λmT )
)
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= exp
(
−

1
M

M∑
m=

M
2

1

2π2
( m
M

)2 + o(1)
)

→
M→∞

exp
(
−

∫ 1

1
2

1
2π2z2

dz
)
,

using a Riemann sum argument, and M
∑M

m=
M
2

1
2λm

e−2λmT
= O

(
e
−2λ M

2
T )

→
M→∞

0.
As a consequence, for all N ∈ N, and letting M → ∞ (with M ≥ 2N + 1), one obtains

δ21(N) ≥ 1 − exp
(
−

∫ 1

1
2

1
2π2z2

dz
)

> 0.

Second, focus on δ22(∆t). In order to use a Riemann sum argument, it is convenient to choose
∆t =

T
M2 , and to write

δ22
( T
M2

)
≥ |

∫
φ2
MdµT −

∫
φ2
Mdν∆t

M2 |,

with
∫

φ2
MdµT →

M→∞

exp
(
−

∫ 1
1
2

1
2π2z2

dz
)
, as above, and∫

φ2
Mdν∆t

M2 = E
[
exp

(
i
√
M⟨θM , X∆t

M2⟩
)]

= exp
(
−M

M∑
m=

M
2

1
λm(2 + λm∆t)

(
1 −

1
(1 + λm∆t)2M2

))

= exp
(
−

1
M

M∑
m=

M
2

1
π2( mM )2(2 + π2( mM )2)

+ o(1)
)

→
M→∞

exp
(
−

∫ 1

1
2

1
π2z2(2 + π2z2)

dz
)
,

using a Riemann sum argument, and M
∑M

m=
M
2

1
λm(2+ λm

M2 )
1

(1+ λm
M2 )2M2 = O

( 1
(1+ 1

2 )
2M2

)
→

M→∞

0.

As a consequence, one obtains

lim sup
M→∞

δ22(
T
M2 ) ≥ exp

(
−

∫ 1

1
2

1
π2z2(2 + π2z2)

dz
)
− exp

(
−

∫ 1

1
2

1
2π2z2

dz
)

> 0.

Finally,

lim sup
N→∞

δ21(N) > 0 , lim sup
∆t→0

δ22(∆t) > 0,

hence (11) is validated. This concludes the second proof of Theorem 1.

4.2. Bounded Lipschitz test functions: proof of Theorem 2

As already explained, it is sufficient to focus on the case r ∈ ( 14 ,
1
2 ).

The proof is based on introducing a family Φ3
=

{
φ3

α,M , α ∈ ( 14 ,
1
2 ], M ∈ N

}
⊂ C0,1(H,R), of

bounded and Lipschitz continuous test functions, such that ∥φ∥1 ≤ 1 for all φ ∈ Φ3. Precisely, for
α ∈ ( 14 ,

1
2 ] and N ∈ N, set

φ3
α,M (x) =

exp
(
−

∑
∞

m=M
|⟨x,em⟩|

λα
m

)
1 +

(∑
∞

m=1
1

λ2αm

) 1
2

.
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In contrast with the families Φ1 and Φ2 introduced above, note that functions in the set Φ3 are not
smooth. Introduce the notation Lα = 1 +

(∑
∞

m=1
1

λ2αm

) 1
2 ∈ (0, ∞).

Let also

δ31(N) = sup
φ∈Φ3

|

∫
φdµT −

∫
φdµ(N)

T | , δ32(∆t) = sup
φ∈Φ3

|

∫
φdµT −

∫
φdν∆t

⌊
T
∆t ⌋

|.

Let us introduce the following auxiliary function f : [0, 1] → R:

f (θ ) = − log
(
E[e−θ |Z |

]
)
,

where Z is a standard real-valued Gaussian random variable.
It is straightforward to check that f is of class C∞ on [0, 1], that it is bounded, and that all its

derivatives are bounded. Moreover, f (0) = 0, and f ′(0) =

√
2
π
: it is crucial in the analysis below

that f ′(0) ̸= 0.

4.2.1. Spatial discretization
First, focus on δ31(N). For all N ∈ N, and α ∈ ( 14 ,

1
2 ], by the independence property of the

components of the process X ,

E[φ3
α,1(X(T ))] = L−1

α exp
(
−

∞∑
n=1

f
( σn(T )
√
2λnλα

n

))
,

E[φ3
α,1(X

(N)(T ))] = L−1
α exp

(
−

N∑
n=1

f
( σn(T )
√
2λnλα

n

))
,

with σn(T )2 = 1 − e−2λnT . Thus

E[φ3
α,1(X(T ))] − E[φ3

α,1(X
(N)(T ))] = E[φ3

α,1(X(T ))]
(
1 − exp

( ∞∑
n=N+1

f
( σn(T )
√
2λ

α+
1
2

n

)))
= E[φ3

α,1(X(T ))]
(
1 − exp

( ∞∑
n=N+1

(
f ′(0)

σn(T )
√
2λ

α+
1
2

n

+ ϵn(T )
)))

,

where ϵn(T ) = f
(

σn(T )
√
2λ

α+
1
2

n

)
− f ′(0) σn(T )

√
2λ

α+
1
2

n

= O
(

σn(T )2

2λ2α+1
n

)
.

On the one hand,
∑

∞

n=N+1 ϵn(T ) →
N→∞

0. On the other hand, when N → ∞,

∞∑
n=N+1

σn(T )
√
2λ

α+
1
2

n

=

∞∑
n=N+1

1
√
2n2α+1π2α+1

+ O(e−λN+1T )

∼
N→∞

Cα

N2α ,

with Cα =
∫

∞

1
1

√
2π2α+1z2α+1 dz ∈ (0, ∞), by a Riemann sum argument.

Finally,

E[φ3
α,1(X(T ))] − E[φ3

α,1(X
(N)(T ))] ∼

N→∞

f ′(0)E[φ3
α,1(X(T ))]Cα

λα
N

.

We are now in position to conclude. Let r ∈ ( 14 ,
1
2 ). Then, choosing α ∈ ( 14 , r),

lim sup
N→∞

λr
Nδ31(N) ≥ lim sup

N→∞

λr
N

⏐⏐E[φ3
α,1(X(T ))] − E[φ3

α,1(X
(N)(T ))]

⏐⏐ = ∞.

This concludes the proof of Theorem 2 for spatial discretization.
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Remark 2. Note that, contrary to the other proofs in this article, a stronger result than Theorem 2
is obtained: let α ∈ ( 14 ,

1
2 ), then φ3

α,1 is a test function for which the weak order of convergence is
equal to α.

4.2.2. Temporal discretization
Now, focus on δ32(∆t). It is convenient to choose ∆t =

T
M2 and to consider functions φ3

α,M . We
claim that, for any r ∈ ( 14 ,

1
2 ), choosing α ∈ ( 14 , r), then

lim sup
M→∞

M2r
⏐⏐E[φ3

α,M (X(T ))] − E[φ3
α,M (X∆t

M2 )]
⏐⏐ = ∞. (20)

On the one hand, the computations from the previous section prove that

E[φ3
α,M (X(T ))] = L−1

α exp
(
−

∞∑
m=M+1

f
( σm(T )
√
2λ

α+
1
2

m

))
= L−1

α

(
1 −

f ′(0)Cα

M2α + O(
1

M4α )
)
.

On the other hand, using similar arguments (in particular, a Riemann sum appears),

E[φ3
α,M (X∆t

M2 )] = L−1
α exp

(
−

∞∑
m=M+1

f
( σm(T ,M)

λ
α+

1
2

m (2 +
λm
M2 )

1
2

))
= L−1

α

(
1 −

f ′(0)Cα

M2α + O(
1

M4α )
)
,

with σm(T ,M)2 = 1 −
1

(1+ λm
M2 )2M2 , and

Cα =

∫
∞

1

1
√
2 + π2z2π2α+1z2α+1

dz < Cα.

Thus

E[φ3
α,M (X(T ))] − E[φ3

α,M (X∆t
M2 )] ∼

M→∞

f ′(0)(Cα − Cα)
LαM2α .

This expression implies the claim (20) holds true, hence

lim sup
∆t→0

1
∆t r

δ32(∆t) = ∞.

This concludes the proof of Theorem 2 for temporal discretization.
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