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Strong Rates of Convergence of a Splitting Scheme for Schr\"odinger Equations
with Nonlocal Interaction Cubic Nonlinearity and White Noise Dispersion\ast 

Charles-Edouard Br\'ehier\dagger and David Cohen\ddagger 

Abstract. We analyze a splitting integrator for the time discretization of the Schr\"odinger equation with nonlocal
interaction cubic nonlinearity and white noise dispersion. We prove that this time integrator has
order of convergence one in the pth mean sense, for any p \geq 1 in some Sobolev spaces. We prove
that the splitting schemes preserves the L2-norm, which is a crucial property for the proof of the
strong convergence result. Finally, numerical experiments illustrate the performance of the proposed
numerical scheme.
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1. Introduction. We consider the time discretization by a splitting scheme for the follow-
ing class of nonlinear Schr\"odinger equations with white noise dispersion:\Biggl\{ 

idu(t) + \Delta u(t) \circ d\beta (t) + V [u(t)]u(t) dt = 0,

u(0) = u0,
(1.1)

where the unknown u = u(t, \cdot ), with t \geq 0, is a complex valued random process defined on \BbbR d,

\Delta u =
\sum d

j=1
\partial 2u
\partial x2

j
denotes the Laplacian in \BbbR d, and \beta = \beta (t) is a real-valued standard Brown-

ian motion. The nonlinearity \Psi 0(u) = V [u]u in the stochastic partial differential equation
(SPDE) (1.1) is a nonlocal interaction cubic nonlinearity, V [u] = V \ast | u| 2 =

\int 
V (\cdot  - x)| u(x)| 2 dx,

where \ast denotes the convolution operator and the real-valued mapping V : \BbbR d \rightarrow \BbbR is at least
continuous and bounded; more precise regularity conditions are imposed below. Such long-
range interaction is a smooth version of the nonlinearity in the (deterministic) Hartree or
Schr\"odinger--Poisson equations (see, for instance, [14]). Splitting schemes for Schr\"odinger
equations driven by additive space-time noise with this type of nonlinearity were recently
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studied in [3]. Observe that the case of power-law nonlinearities cannot be treated by the tech-
niques employed in the present publication. The SPDE (1.1) is understood in the Stratonovich
sense, using the \circ symbol for the Stratonovich product.

Theoretical results on well-posedness of the SPDE (1.1) are relatively scarce and given
mostly for the case of a power-law nonlinearity (| u| 2\sigma u for \sigma a positive real number) in place
of the nonlocal interaction nonlinearities considered in this article. For instance, it has been
shown that SPDEs of the type (1.1) with power-law nonlinearities have solutions in H1 for
dimension d = 1 and \sigma = 2 [8, Theorem 2.2] and for \sigma < 2/d in any dimension [9, Theorem
2.3].

To the best of our knowledge, no strong convergence rates are know for a time discretiza-
tion of the SPDE (1.1) with the considered type of locally Lipschitz nonlinearity. However,
strong convergence results have been proved in the case of a globally Lipschitz nonlinearity
in place of the above nonlinearity. In addition, rates of convergence in probability for a pure
cubic nonlinearity in place of the above nonlocal interaction cubic nonlinearity have also been
obtained. We now review these known convergence results. The work [15] studies a Lie--
Trotter splitting integrator. The mean-square order of convergence of this explicit numerical
method is proven to be at least 1/2 for a (truncated) Lipschitz nonlinearity [15, sections 5 and
6]. Furthermore, [15] conjectures that this splitting scheme should have strong order one and
supports this conjecture numerically. Sharp order estimates for the same splitting scheme (but
applied to a more general problem) were recently presented in the preprint [16]. The authors
of [1] study a semi-implicit Crank--Nicolson scheme. In particular, they show that this time
integrator has mean-square order of convergence one for a truncated problem and order of
convergence in probability one in the case of a cubic nonlinearity. For the same problem, the
same convergence rates are obtained for a multisymplectic integrator in [7] and for an explicit
exponential scheme in [6]. We conclude this list of references with the recent work [13], which
considers a randomized exponential integrator for time discretization of related (nonrandom)
nonlinear modulated Schr\"odinger equations.

In the present publication, we consider an explicit splitting integrator for an efficient time
discretization of the nonlinear stochastic Schr\"odinger equation (1.1). In essence, the main
principle of splitting integrators is to decompose the vector field of the original differential
equation in several parts, such that the arising subsystems are exactly (or easily) integrated.
We refer interested readers to [12, 2, 17] for details on splitting schemes for ordinary and
partial differential equations. The splitting scheme considered in this publication is given by

un+1 = e\mathrm{i}(\beta (tn+1) - \beta (tn))\Delta 
\bigl( 
e\mathrm{i}\tau V [un]un

\bigr) 
,

where \tau denotes the time-step size, tn = n\tau , and un \approx u(tn) (see (4.2) below for details). In
the scheme above, e\mathrm{i}\tau V [un] acts as a pointwise multiplication operator.

The main result of this paper is a strong convergence result for the explicit and easy to
implement splitting integrator for the time discretization of (1.1) defined above (see section 4
for a precise statement). Theorem 4.5 states that the splitting scheme converges with order 1
in the Lp(\Omega , Hm(\BbbR d,\BbbC )) sense for all p \in [1,\infty ) (whereas only p = 2 is treated in related works
with truncated globally Lipschitz continuous nonlinearities). We also obtain convergence with
order 1 in probability and in the almost sure sense. A crucial property for showing these results
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is the fact that the splitting scheme exactly preserves the L2-norm as does the exact solution
to (1.1) (see Propositions 3.1 and 4.1).

Since the considered nonlinearity is not globally Lipschitz continuous, and since the pro-
posed scheme is explicit, we need to face several challenges in the strong error analysis. For
instance, we obtain moment bounds in Hm norms for the numerical solution, which follow
from the preservation of the L2-norm by the proposed integrator. This property is not satisfied
for the explicit exponential scheme from [6]. In addition, even if the L2-norm is preserved for
the implicit schemes studied in [1, 7], in these two references, strong error estimates are ob-
tained only for truncated (globally Lipschitz continuous) nonlinearities. In the present article,
the nonlocal interaction nonlinearity u \mapsto \rightarrow V [u]u is locally Lipschitz continuous from L2 to L2

(and even from Hm to Hm; see Lemma 2.2). Note that if one would replace the nonlinearity
in the SPDE (1.1) by a pure cubic nonlinearity u \mapsto \rightarrow | u| 2u (which is not locally Lipschitz con-
tinuous from L2 to L2) as in the references [1, 6, 7], the proposed splitting integrator would
still preserve the L2-norm but only convergence in probability would be obtained. However,
their authors do not establish the appropriate moment bounds in suitable Hm norms; this
explains why they cannot prove strong convergence results. For the considered nonlinearity,
we are able to establish the required moment bounds and to give a strong convergence result
with rate 1. It is worth mentioning that some error terms need to be controlled very carefully
to obtain order 1 instead of order 1/2, which is the expected strong order of convergence for
temporal discretization of stochastic problems (see Remark 5.2). Thus our main result and
its proof are not straightforward extensions of existing results.

To the best of our knowledge, Theorem 4.5 is the first strong convergence result obtained
for a time discretization scheme applied to the nonlinear Schr\"odinger equation with white
noise dispersion with a nonglobally Lipschitz continuous nonlinearity.

In order to show such convergence results, we begin the exposition by introducing some
notation and recalling useful results in section 2. Section 3 then provides various properties of
the exact solution to the SPDE (1.1). After that, we present the splitting scheme and its main
properties (preservation of the L2-norm, bounds for the Hm norms, symplecticity, asymptotic
preserving property) and analyze its strong convergence in section 4. The proof of the main
convergence result is given in section 5. Several numerical experiments in dimensions 1 and 2
illustrating the main properties of the proposed numerical scheme are presented in section 6.

Throughout this article, we denote by C a generic constant that may vary from line to
line. Furthermore, we set \BbbN = \{ 1, 2, . . .\} and \BbbN 0 = \{ 0, 1, . . .\} . Finally, the initial value u0
of the SPDE (1.1) is assumed to be nonrandom for ease of presentation. The results of this
paper can be extended to the case of random u0 (independent of the given Brownian motion
and with appropriate moment bounds).

2. Setting and useful results. We denote the classical Lebesgue space of complex func-
tions by L2 = L2(\BbbR d,\BbbC ), endowed with its real vector space structure, and with the inner
product

(u, v) = Re

\int 
\BbbR d

u\=v dx = Re

\int 
u\=v dx

as well as its norm denoted by \| \cdot \| L2 . For m \in \BbbN , we further denote by Hm = Hm(\BbbR d,\BbbC )
the Sobolev space of functions in L2, with weak derivatives of order 1, . . . ,m in L2. Let also
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H0 = L2. The Fourier transform of a tempered distribution v is denoted by \widehat v. With this
notation, Hm is the Sobolev space of tempered distributions v such that (1 + | \zeta | 2)m/2\widehat v \in L2.
The Sobolev space Hm is equipped with the norm defined by

\| v\| 2Hm =
\sum 

| \alpha | \leq m

\| \partial \alpha v\| 2L2 ,

where \alpha = (\alpha 1, . . . , \alpha d) \in \BbbN d
0 is a multi-index and | \alpha | =

\sum d
i=1 \alpha i. Note that if m1 \leq m2, one

has Hm2 \subset Hm1 and \| v\| Hm1 \leq \| v\| Hm2 for all v \in Hm2 . If \alpha and \gamma are two multi-indices,
it is said that \gamma \leq \alpha if \gamma i \leq \alpha i for all i = 1, . . . , d. If \gamma \leq \alpha , we also introduce the notation
\alpha  - \gamma = (\alpha i  - \gamma i)1\leq i\leq d and

\bigl( 
\alpha 
\gamma 

\bigr) 
=
\prod d

i=1

\bigl( 
\alpha i
\gamma i

\bigr) 
.

The Banach space \scrC m = \scrC m
b (\BbbR d,\BbbC ) of complex-valued continuous and bounded functions

that have continuous and bounded derivatives of order 1, . . . ,m is equipped with the norm

\| v\| \scrC m = sup
| \alpha | \leq m

sup
x\in \BbbR d

| \partial \alpha v(x)| .

Let us recall a version of the Leibniz rule. See, for instance, [11, section 5.2.3, Theorem 1]
for a proof in the case of smooth compactly supported functions v \in \scrC \infty 

c and [5, Theorem
8.25] for the argument to extend the result to v \in \scrC m.

Lemma 2.1 (Leibniz rule). For all m \in \BbbN , there exists Cm \in (0,\infty ) such that for all
u \in Hm and v \in \scrC m, one has uv \in Hm, and

\| uv\| Hm \leq Cm \| u\| Hm \| v\| \scrC m .

In addition, the Leibniz rule holds: for all \alpha \in \BbbN d
0 with | \alpha | \leq m, one has

\partial \alpha (uv) =
\sum 
\gamma \leq \alpha 

\biggl( 
\alpha 

\gamma 

\biggr) 
\partial \gamma u\partial \alpha  - \gamma v.

Let \beta =
\bigl( 
\beta (t)

\bigr) 
t\geq 0

be a standard real-valued Brownian motion defined on a filtered prob-

ability space (\Omega ,\scrF ,\BbbP , \{ \scrF t\} t\geq 0) satisfying the usual conditions.
For all t, s \geq 0, define the operator S(t, s) as follows (see, for instance, [8, section 3]

and [15, section 3]):

S(t, s) = e\mathrm{i}(\beta (t) - \beta (s))\Delta .(2.1)

Note that S(t, s) = \scrS (\beta (t)  - \beta (s)), where \scrS (r) = e\mathrm{i}r\Delta defines the standard group associated
with the linear Schr\"odinger equation idu(r) + \Delta u(r)dr = 0. In Fourier variables, one has the
expression

S(t, s)v\widehat (\zeta ) = exp
\Bigl( 
 - i | \zeta | 2 (\beta (t) - \beta (s))

\Bigr) \widehat v(\zeta )
for all t, s \geq 0, all \zeta \in \BbbR d, and any v \in Hm, m \in \BbbN 0.

The operators S(t, s) for t \geq s play an important role in this work: if v is an \scrF s-measurable
random function with values in Hm, then t \mapsto \rightarrow vs(t) = S(t, s)v is the solution of the stochastic
linear Schr\"odinger equation

idvs(t) + \Delta vs(t) \circ d\beta (t) = 0, t \geq s,

with vs(s) = v.
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Two properties of the operators S(t, s) will be used repeatedly in this article. First, for
all m \in \BbbN 0, all t, s \geq 0, and all v \in Hm, one has the isometry property

\| S(t, s)v\| Hm = \| v\| Hm .(2.2)

Second, for all m \in \BbbN 0, all t, s \geq 0, and all v \in Hm+2, one has

\| S(t, s)v  - v\| Hm \leq | \beta (t) - \beta (s)| \| v\| Hm+2 .(2.3)

Let us now study properties of the nonlinearity in the SPDE (1.1) defined by

\Psi 0(u) = V [u]u =
\bigl( 
V \ast | u| 2

\bigr) 
u.

If V \in \scrC m, the mapping \Psi 0 : H
m \rightarrow Hm is well-defined and is locally Lipschitz continuous.

More precisely, one has the following result.

Lemma 2.2. Let m \in \BbbN 0 and assume that V \in \scrC m. There exists Cm(V ) \in (0,\infty ) such that
the following properties hold.

First, for all u \in Hm, one has \Psi 0(u) \in Hm and

\| \Psi 0(u)\| Hm \leq Cm(V )\| u\| 2L2\| u\| Hm .(2.4)

In addition, \Psi 0 is locally Lipschitz continuous in Hm: for all u1, u2 \in Hm, one has

\| \Psi 0(u2) - \Psi 0(u1)\| Hm \leq Cm(V )
\Bigl( 
\| u1\| 2Hm + \| u2\| 2Hm

\Bigr) 
\| u2  - u1\| Hm .(2.5)

Finally, \Psi 0 is twice differentiable, and its first and second order derivatives satisfy the follow-
ing result: for all u, h, k \in Hm, one has\bigm\| \bigm\| \Psi \prime 

0(u).h
\bigm\| \bigm\| 
Hm \leq Cm(V ) \| u\| L2 \| u\| Hm \| h\| Hm(2.6)

and \bigm\| \bigm\| \Psi \prime \prime 
0(u).(h, k)

\bigm\| \bigm\| 
Hm \leq Cm(V ) \| u\| L2 \| h\| Hm \| k\| Hm .(2.7)

Proof of Lemma 2.2. Let m \in \BbbN 0 be fixed.
Using the definition of \Psi 0, the Leibniz rule (Lemma 2.1), and the property \| V [u]\| \scrC m =\bigm\| \bigm\| V \ast | u| 2

\bigm\| \bigm\| 
\scrC m \leq \| V \| \scrC m \| u\| 2L2 , the proof of (2.4) is straightforward: for all u \in Hm, one has

\| \Psi 0(u)\| Hm = \| V [u]u\| Hm \leq Cm \| V [u]\| \scrC m \| u\| Hm \leq Cm \| V \| \scrC m \| u\| 2L2 \| u\| Hm .

To prove (2.6) and (2.7), note that the expressions for the derivatives are given by

\Psi \prime 
0(u).h = V [u]h+ 2V \ast (Re(\=uh))u,

\Psi \prime \prime 
0(u).(h, k) = 4V \ast 

\bigl( 
Re(\=kh)

\bigr) 
u+ 2V \ast (Re(\=uk))h+ 2V \ast (Re(\=uh)) k.

Using the Leibniz rule (Lemma 2.1) again, one obtains
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0(u).h

\bigm\| \bigm\| 
Hm \leq \| V [u]\| \scrC m \| h\| Hm + 2 \| V \ast (Re(\=uh))\| \scrC m \| u\| Hm

\leq \| V \| \scrC m \| u\| 2L2 \| h\| Hm + 2 \| V \| \scrC m \| u\| L2 \| h\| L2 \| u\| Hm

and \bigm\| \bigm\| \Psi \prime \prime 
0(u).(h, k)

\bigm\| \bigm\| 
Hm

\leq 4
\bigm\| \bigm\| V \ast 

\bigl( 
Re(\=kh)

\bigr) \bigm\| \bigm\| 
\scrC m \| u\| Hm

+ 2 \| V \ast (Re(\=uk))\| \scrC m \| h\| Hm + 2 \| V \ast (Re(\=uh))\| \scrC m \| k\| Hm

\leq 4 \| V \| \scrC m (\| u\| Hm\| h\| L2\| k\| L2 + \| u\| L2\| h\| Hm\| k\| L2 + \| u\| L2\| h\| L2\| k\| Hm) .

Finally, in order to prove (2.5), it suffices to write

\Psi 0(u2) - \Psi 0(u1) =

\int 1

0
\Psi \prime 

0

\bigl( 
(1 - \xi )u1 + \xi u2

\bigr) 
.(u2  - u1) d\xi 

and to use (2.6). One then obtains

\| \Psi 0(u2) - \Psi 0(u1)\| Hm \leq Cm(V )(\| u1\| 2Hm + \| u2\| 2Hm) \| u2  - u1\| Hm .

This concludes the proof of Lemma 2.2.

3. Properties of the exact solution. In this section, we provide a well-posedness result
and some properties of the exact solution u(t) of the nonlinear Schr\"odinger equation with
white noise dispersion (1.1).

Proposition 3.1. Assume that V \in \scrC 0.
For any (nonrandom) initial condition u0 \in L2, there exists a unique mild solution

(u(t))t\geq 0 of the Schr\"odinger with white noise dispersion (1.1) in L2, which means that for
all t \geq 0 one has

u(t) = S(t, 0)u0 + i

\int t

0
S(t, r) (V [u(r)]u(r)) dr,(3.1)

where
\bigl( 
S(t, s)

\bigr) 
t\geq s\geq 0

is defined by (2.1).

In addition, one has conservation of the L2-norm: for all t \geq 0, one has almost surely

\| u(t)\| L2 = \| u0\| L2 .(3.2)

Furthermore, the SPDE (1.1) is a stochastic Hamiltonian system, in the sense of [7,
section 2], and thus its solution preserves the stochastic symplectic structure

\=\omega =

\int 
\BbbR d

dp \wedge dq dx almost surely,

where the overbar on \omega is a reminder that the two-form dp \wedge dq (with differentials made with
respect to the initial value) is integrated over \BbbR d. Here, p(t) = Re(u(t)) and q(t) = Im(u(t))
denote the real and imaginary parts of u(t).
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Moreover, one can bound the solution in Hm in the following sense. Let m \in \BbbN and
assume that V \in \scrC m. There exists Cm(V ) \in (0,\infty ) such that if u0 \in Hm, then almost surely
u(t) \in Hm for all t \geq 0, and

\| u(t)\| Hm \leq eCm(V )\| u0\| 2L2 t \| u0\| Hm .(3.3)

Finally, for all u0 \in Hm+2, T \in (0,\infty ), and p \in [1,\infty ), there exists Cp(T, \| u0\| Hm+2) \in (0,\infty )
such that for all 0 \leq t1 \leq t2 \leq T , one has\bigl( 

\BbbE [\| u(t2) - u(t1)\| pHm ]
\bigr) 1

p \leq Cp(T, \| u0\| Hm+2)(t2  - t1)
1
2 .(3.4)

Proof. Since \Psi 0 is locally Lipschitz continuous from Hm to Hm, if V \in \scrC m, local well-
posedness of mild solutions in Hm is a standard result.

To prove that solutions to (1.1) are global, we use a truncation argument. Let \theta : [0,\infty ) \rightarrow 
[0, 1] be a compactly supported Lipschitz continuous function, such that \theta (x) = 1 for x \in [0, 1].
For any R \in (0,\infty ), set V R(u) = \theta (R - 1 \| u\| L2)V [u] and FR(u) = V R(u)u. The mapping FR

is globally Lipschitz continuous, and the SPDE

iduR(t) + \Delta uR(t) \circ d\beta (t) + FR(uR(t)) dt = 0

with initial condition uR(0) = u0, admits a unique global mild solution
\bigl( 
uR(t)

\bigr) 
t\in [0,T ]

, where

T is an arbitrary positive real number. Applying It\^o's formula to a regularization of uR(t) as
in the proof of [8, Theorem 4.1], for instance, one checks that

\bigm\| \bigm\| uR(t)\bigm\| \bigm\| 
L2 =

\bigm\| \bigm\| uR(0)\bigm\| \bigm\| 
L2 for all

t \in [0, T ]. Choosing R > \| u0\| L2 shows that one can define u(t) = uR(t) for all t \geq 0. Then
u(t) is the unique solution on [0, T ] of the fixed point equation (3.1), i.e., u(t) is the unique
mild solution of (1.1), and one has the preservation of the L2-norm (3.2).

The fact that the problem (1.1) is a stochastic Hamiltonian system is seen, exactly as in
[7, section 2], by considering its real and imaginary parts and observing that the obtained
differential equations are indeed stochastic Hamiltonian systems. The preservation of the
stochastic symplectic structure follows also as in [7, section 2] since the potential V in (1.1)
is real-valued (as opposed to a power-law nonlinearity | u| 2\sigma in the above reference).

Let us now prove the bound in Hm (see (3.3)). Using Lemma 2.2, one obtains

\| V [u]u\| Hm \leq C \| V [u]\| \scrC m \| u\| Hm \leq C \| V \| \scrC m \| u\| 2L2 \| u\| Hm .

Then, using the isometry property for S(t, s) in Hm (see (2.2)), the mild formulation (3.1),
and the preservation of the L2-norm (3.2), one then obtains

\| u(t)\| Hm \leq \| u0\| Hm +

\int t

0
\| V [u(s)]u(s)\| Hm ds

\leq \| u0\| Hm + C

\int t

0
\| u(s)\| 2L2 \| u(s)\| Hm ds

\leq \| u0\| Hm + C

\int t

0
\| u0\| 2L2 \| u(s)\| Hm ds.

Applying Gronwall's lemma then yields (3.3).
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It remains to establish the temporal regularity property (3.4). Using the mild formula-
tion (3.1) and the isometry property (2.2), one obtains

\| u(t2) - u(t1)\| Hm \leq \| (S(t2, t1) - I)u(t1)\| Hm +

\int t2

t1

\| V [u(t)]u(t)\| Hm dt

\leq \| (S(t2, t1) - I)u(t1)\| Hm + C \| u0\| 2L2

\int t2

t1

\| u(t)\| Hm dt,

using the inequality \| V [u(t)]u(t)\| Hm \leq C \| u(t)\| 2L2 \| u(t)\| Hm \leq C \| u0\| 2L2 \| u(t)\| Hm , owing to
the preservation of the L2-norm (3.2).

Finally, using (2.3), the fact that
\bigl( 
\BbbE [| \beta (t2) - \beta (t1)| p]

\bigr) 1
p \leq Cp| t2  - t1| 

1
2 , and the bound for

the exact solution in the Hm norm (3.3), one obtains, for all 0 \leq t1 \leq t2 \leq T ,

(\BbbE [\| u(t2) - u(t1)\| pHm ])
1
p \leq Cp(t2  - t1)

1/2eCm+2(V )\| u0\| 2L2 t1 \| u0\| Hm+2

+ C(t2  - t1)e
Cm(V )\| u0\| 2L2 t2 \| u0\| 3Hm

\leq Cp(T, \| u0\| Hm+2)(t2  - t1)
1/2.

This yields (3.4) and concludes the proof of Proposition 3.1.

4. Numerical analysis of the splitting scheme. In this section, we propose and study
an efficient time integrator for the SPDE (1.1). We state and prove some properties of the
numerical solution, in particular preservation of the L2-norm (Proposition 4.1). Furthermore,
we state the main strong convergence result (Theorem 4.5) of the paper, namely, that the
splitting scheme has convergence rate 1. Finally, we deduce various auxiliary results from the
main theorem.

4.1. Presentation of the splitting scheme. Let T > 0 be a fixed time horizon and an
integer N \geq 1. We define the step size of the numerical method by \tau = T/N and denote
the discrete times by tn = n\tau for n = 0, . . . , N . Without loss of generality, we assume that
\tau \in (0, 1).

The main idea of a splitting integrator for the SPDE (1.1) is based on the observation
that the vector field of the original problem can be decomposed into two parts (linear and
nonlinear parts, resp.) that are exactly integrated.

On the one hand, the solution of the linear stochastic evolution equation

idu(t) + \Delta u(t) \circ d\beta (t) = 0, u(0) = u0,

is given by u(t) = S(t, 0)u0, where the random propagator S(t, 0) is defined by (2.1).
On the other hand, the solution of the nonlinear evolution equation

idu(t) + V [u(t)]u(t) dt = 0, u(0) = u0,

is given by u(t) = \Phi t(u0), where for all t \geq 0 and all u \in L2, one has

\Phi t(u) = e\mathrm{i}tV [u]u.(4.1)
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The Lie--Trotter splitting strategy yields the definition of the following time integrator for
the nonlinear Schr\"odinger equation with white noise dispersion (1.1):

un+1 = S(tn+1, tn)\Phi \tau (un).(4.2)

The following notation will be used in what follows: for all \tau \in (0, 1) and u \in L2, set

\Psi \tau (u) =
\Phi \tau (u) - u

i\tau 
.

4.2. Properties of the numerical solution. This subsection lists useful properties of the
numerical solution given by the splitting scheme (4.2).

Conservation of the \bfitL \bftwo -norm. The splitting scheme exactly preserves the L2-norm as
does the exact solution to the SPDE (1.1) (see (3.2) in Proposition 3.1). This conservation
property plays a crucial role in the error analysis presented below.

Proposition 4.1. Let u0 \in L2, \tau \in (0, 1) and let
\bigl( 
un
\bigr) 
n\in \BbbN 0

be given by the splitting scheme (4.2),

one then has conservation of the L2-norm: for all n \in \BbbN , one has almost surely

\| un\| L2 = \| u0\| L2 .(4.3)

Proof. Using the isometry property (2.2), then the definition (4.1) of the flow \Phi \tau , a direct
computation from the definition of the scheme (4.2) gives for all n \in \BbbN 0

\| un+1\| L2 = \| S(tn+1, tn)\Phi \tau (un)\| L2 = \| \Phi \tau (un)\| L2 = \| un\| L2 .

A straightforward recursion argument concludes the proof.

Bounds for the numerical solution in H\bfm .
Proposition 4.2 below states almost sure upper bounds for the numerical solution \| un\| Hm

for all n \in \BbbN 0 and m \in \BbbN .
Proposition 4.2. Let m \in \BbbN and assume that V \in \scrC m. There exists Cm(V ) \in (0,\infty ), such

that for any initial condition u0 \in Hm, the numerical solution un defined by the splitting
scheme (4.2) satisfies the following upper bound: for all n \in \BbbN 0, one has almost surely

\| un\| Hm \leq eCm(V )tn\| u0\| 2mL2 \| u0\| Hm .(4.4)

The proof of Proposition 4.2 requires the following auxiliary result.

Lemma 4.3. Let m \in \BbbN and assume that V \in \scrC m. There exists Cm(V ) \in (0,\infty ) such that
for all \tau \in (0, 1) and all u \in Hm, one has

\| \Phi \tau (u)\| Hm \leq 
\Bigl( 
1 + Cm(V )\tau (1 + \| u\| 2mL2 )

\Bigr) 
\| u\| Hm .

Proof of Lemma 4.3. Using the definition (4.1), one has the identity \Phi \tau (u) = e\mathrm{i}\tau V [u]u with
V [u] = V \ast | u| 2 \in \scrC m and e\mathrm{i}\tau V [u] \in \scrC m, since V \in \scrC m.

The following expression holds: for all u \in Hm one has

\Phi \tau (u) - u = \theta \tau (V [u])u,
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where \theta \tau (y) = e\mathrm{i}\tau y  - 1 for all y \in \BbbR . Applying the inequality from Lemma 2.1, one has, for
all u \in Hm,

\| \Phi \tau (u) - u\| Hm \leq Cm \| \theta \tau (V [u])\| \scrC m \| u\| Hm .

It remains to study the behavior of \| \theta \tau (V [u])\| \scrC m . The auxiliary function \theta \tau satisfies the
following properties: for all y \in \BbbR , all \tau \in (0, 1), and all k \in \BbbN ,

| \theta \tau (y)| \leq \tau | y| ,
| \theta (k)\tau (y)| \leq \tau k.

Using the Fa\`a di Bruno formula, one obtains the bounds

\| \partial \gamma \theta \tau (V [u])\| \scrC 0 \leq C

\Biggl\{ 
\tau \| V [u]\| \scrC 0 , \gamma = 0,

C| \gamma | \tau 
\Bigl( 
1 + \| V [u]\| | \gamma | \scrC | \gamma | 

\Bigr) 
, \gamma \not = 0.

Finally, using the inequality

\| V [u]\| | \gamma | \scrC | \gamma | =
\bigm\| \bigm\| \partial \gamma \bigl( V \ast | u| 2

\bigr) \bigm\| \bigm\| | \gamma | 
\scrC 0 \leq Cm(V ) \| u\| 2mL2 ,

if 1 \leq | \gamma | \leq m, then the proof of Lemma 4.3 concludes.

We are now in position to provide the proof of Proposition 4.2.

Proof of Proposition 4.2. Using the definition (4.2) of the splitting scheme, the isometry
property (2.2) of the random propagator S(tn+1, tn), and Lemma 4.3, one gets

\| un+1\| Hm = \| S(tn+1, tn)\Phi \tau (un)\| Hm = \| \Phi \tau (un)\| Hm

\leq 
\Bigl( 
1 + Cm(V ) \| un\| 2mL2 \tau 

\Bigr) 
\| un\| Hm .

Using the preservation property (4.3) of the L2-norm by the splitting integrator (see Propo-
sition 4.1), one then obtains the following estimate: for all n \in \BbbN 0,

\| un+1\| Hm \leq 
\Bigl( 
1 + Cm(V ) \| u0\| 2mL2 \tau 

\Bigr) 
\| un\| Hm .

Finally, a straightforward recursion argument yields the following bound: for all n \in \BbbN 0, one
has

\| un\| Hm \leq eCm(V )tn\| u0\| 2mL2 \| u0\| Hm .

All the estimates above hold in an almost sure sense. This concludes the proof of Propo-
sition 4.2.

Numerical preservation of the stochastic symplectic structure. As seen in Propo-
sition 3.1, the exact solution to the SPDE (1.1) preserves a stochastic symplectic structure.
The next result states that the same geometric structure is also preserved by the splitting
scheme (4.2).
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Proposition 4.4. Consider the numerical discretization of the Schr\"odinger equation with
white noise dispersion (1.1) by the splitting scheme (4.2). Then, the splitting scheme preserves
the stochastic symplectic structure

\=\omega n+1 = \=\omega n for n = 0, . . . , N  - 1 almost surely,

where \=\omega n =
\int 
\BbbR d dp

n \wedge dqn dx and pn, resp., qn, are the real, resp., imaginary parts of un.

Proof. The splitting integrator (4.2) is obtained by solving exactly sequentially the fol-
lowing differential equations:

idu(t) + V [u(t)]u(t) dt = 0

and
idu(t) + \Delta u(t) \circ d\beta (t) = 0.

Considering the real and imaginary parts of these differential equations and using the fact
that V is real-valued, one gets

dp(t) =  - V [(p(t), q(t))]q(t) dt, dq(t) = V [(p(t), q(t))]p(t) dt

and
dp(t) =  - \Delta q(t) \circ d\beta (t), dq(t) = \Delta p(t) \circ d\beta (t).

The above problems are infinite-dimensional stochastic Hamiltonian systems in the sense of
[7, equation (6)]. It thus follows, as in [7, Proposition 3.3], that the splitting scheme preserves
the stochastic symplectic structures of each of these Hamiltonian systems, as it is obtained as
composition of symplectic maps, and hence the statement.

Asymptotic preserving property. Let us mention an additional property of the pro-
posed splitting integrator: consider the slow-fast system\left\{     

idu\epsilon (t) + \Delta u\epsilon (t)
m\epsilon (t)

\epsilon 
dt+ V [u\epsilon (t)]u\epsilon (t) dt = 0,

dm\epsilon (t) =  - 1

\epsilon 2
m\epsilon (t)dt+

1

\epsilon 
d\beta (t),

where \epsilon \ll 1 is a small parameter, with u\epsilon (0) = u0 and m\epsilon (0) = 0. It is well-known that u\epsilon 

converges to the solution u of (1.1) when \epsilon \rightarrow 0 and that the good interpretation of the noise
in the limit is indeed the Stratonovich one (see, for instance, [15, Theorem 5.1]). When \epsilon \ll 1,
one may define the following scheme:\left\{     

u\epsilon n+1 = e\mathrm{i}
\tau m\epsilon 

n+1
\epsilon 

\Delta 
\bigl( 
e\mathrm{i}\tau V [u\epsilon 

n]u\epsilon n
\bigr) 
,

m\epsilon 
n+1 = m\epsilon 

n  - \tau 

\epsilon 2
m\epsilon 

n+1 +
(\beta (tn+1) - \beta (tn)

\epsilon 
.

This scheme is consistent with the multiscale model above for all values of \epsilon when \tau \rightarrow 0. In
addition, it is asymptotic preserving (see, for instance, [10, 15] for similar results for stochastic
Schr\"odinger equations, and [4] for the finite-dimensional situation): u\epsilon n \rightarrow un when \epsilon \rightarrow 0,
where un is defined by the proposed splitting integrator, which is consistent when \tau \rightarrow 0
with (1.1). The proposed integrator is thus stable when the white noise \circ d\beta (t) is approximated
by a smoother version m\epsilon (t)/\epsilon dt in a diffusion approximation regime.
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4.3. Convergence results. We are now in position to state the main result of this article.

Theorem 4.5. Let
\bigl( 
u(t)

\bigr) 
t\geq 0

, resp.,
\bigl( 
un
\bigr) 
n\in \BbbN 0

, be the solutions of the stochastic Schr\"odinger

equation (1.1), resp., of the splitting scheme (4.2), with (nonrandom) initial condition u0.
Let m \in \BbbN 0 and assume that V \in \scrC m+4. For all p \in [1,\infty ), all T \in (0,\infty ), and all

u0 \in Hm+4, there exists Cm,p(T, \| u0\| Hm+4) \in (0,\infty ) such that, for all \tau \in (0, 1), one has

sup
0\leq n\leq N

\bigl( 
\BbbE 
\bigl[ 
\| un  - u(tn)\| pHm

\bigr] \bigr) 1
p \leq Cm,p(T, \| u0\| Hm+4)\tau .(4.5)

The proof of Theorem 4.5 is postponed to section 5.
Note that contrary to previous works in the literature [15, 1, 6, 7], concerning the analysis

of numerical schemes for stochastic Schr\"odinger equations with white noise dispersion with
a globally Lipschitz continuous nonlinearity, in Theorem 4.5 we consider the moments of
arbitrary order p \in [1,\infty ), instead of only p = 2 (mean-square error). We also consider the
error in the Hm norm, for arbitrary m \in \BbbN 0. We could use the same strategy of proof as in
those references when p = 2, but we need to use a different strategy when p \not = 2 and directly
consider the general case p \in [1,\infty ).

Remark 4.6. If the initial condition u0 and the potential V are less regular than in The-
orem 4.5, it is possible to obtain the following result: assume that u0 \in Hm+2 and that
V \in \scrC m+2, then one has

sup
0\leq n\leq N

\bigl( 
\BbbE 
\bigl[ 
\| un  - u(tn)\| pHm

\bigr] \bigr) 1
p \leq Cm,p(T, \| u0\| Hm+2)\tau 

1
2 .

Further details are provided in Remark 5.2 below. In particular, we explain which parts of
the proof of Theorem 4.5 need to be modified to obtain the above result.

As immediate consequences of the main result of this article we obtain the following
corollaries.

Corollary 4.7. Under the assumptions of Theorem 4.5, one obtains the following error esti-
mate: for all \varepsilon \in (0, 1), there exists Cm,p,\varepsilon (T, \| u0\| Hm+4) \in (0,\infty ) such that, for all \tau \in (0, 1),
one has \Biggl( 

\BbbE 

\Biggl[ 
sup

0\leq n\leq N
\| un  - u(tn)\| pHm

\Biggr] \Biggr) 1
p

\leq Cm,p,\varepsilon (T, \| u0\| Hm+4)\tau 
1 - \varepsilon .(4.6)

Proof. The error estimate (4.6) follows from the first error estimate (4.5) by an elementary
argument. Let \varepsilon \in (0, 1) and p \in [1,\infty ), and choose q > max(p, \varepsilon  - 1). Using (4.5) one obtains

\BbbE 

\Biggl[ 
sup

0\leq n\leq N
\| un  - u(tn)\| qHm

\Biggr] 
\leq 

N\sum 
n=0

\BbbE 
\bigl[ 
\| un  - u(tn)\| qHm

\bigr] 
\leq T

\tau 

\bigl( 
Cm,q(T, \| u0\| Hm+4)\tau )

q

\leq TCm,q(T, \| u0\| Hm+4)
q\tau 

q(1 - 1
q
)

\leq Cm,q(T, \| u0\| Hm+4)\tau 
q(1 - \varepsilon ),
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where we recall that \tau = T/N . Finally, one obtains (4.6) as follows:

\Biggl( 
\BbbE 

\Biggl[ 
sup

0\leq n\leq N
\| un  - u(tn)\| pHm

\Biggr] \Biggr) 1
p

\leq 

\Biggl( 
\BbbE 

\Biggl[ 
sup

0\leq n\leq N
\| un  - u(tn)\| qHm

\Biggr] \Biggr) 1
q

\leq Cm,p,\varepsilon (T, \| u0\| Hm+4)\tau 
1 - \varepsilon .

The argument described above gives a slight reduction in the order of convergence from
1 to 1  - \varepsilon , with arbitrarily small \varepsilon > 0. It may be possible to obtain (4.6) with \varepsilon = 0 using
refined arguments in the analysis of the error. To keep the presentation simple, this is not
performed in what follows.

The fact that the main error estimate (4.5) holds with arbitrarily large p is important and
allows us to choose arbitrarily small \varepsilon . If one applies the argument detailed above only when
p = 2, for instance, one obtains an order of convergence 1

2 in (4.6).

Corollary 4.8. Consider the stochastic Schr\"odinger equation (1.1) on the time interval [0, T ]
with solution denoted by (u(t))t\in [0,T ]. Let un be the numerical solution given by the splitting
scheme (4.2) with time-step size \tau . Under the assumptions of Theorem 4.5, one has conver-
gence in probability of order one

lim
C\rightarrow \infty 

sup
\tau \in (0,1)

\BbbP (\| uN  - u(T )\| Hm \geq C\tau ) = 0,

where we recall that T = N\tau .
Moreover, consider the sequence of time-step sizes given by \tau L = T

2L
, L \in \BbbN . Then, for

every \varepsilon \in (0, 1), there exists an almost surely finite random variable C\varepsilon , such that for all
L \in \BbbN one has

\| u2L  - u(T )\| Hm \leq C\varepsilon 

\biggl( 
T

2L

\biggr) 1 - \varepsilon 

.

Proof. The result on convergence in probability is a straightforward consequence of
Markov's inequality followed by Theorem 4.5:

\BbbP (\| uN  - u(T )\| Hm \geq C\tau ) \leq 
\BbbE [\| uN  - u(T )\| Hm ]

C\tau 
=

Cm,1(T, \| u0\| Hm+4)

C
\rightarrow 

C\rightarrow \infty 
0.

To get the result on almost sure convergence, it suffices to observe that (again by applying
Theorem 4.5)

\infty \sum 
\ell =0

\BbbE [\| u2\ell  - u(T )\| Hm ]

\tau 1 - \varepsilon 
\ell 

< \infty ,

and thus
\| u2L

 - u(T )\| 
Hm

\tau 1 - \varepsilon 
L

\rightarrow 
L\rightarrow \infty 

0 almost surely.

5. Error analysis: Proof of Theorem 4.5. Before proceeding with the proof of the error
estimates (4.5), let us state and prove an auxiliary result on the mappings \Psi 0(u) = V [u]u and

\Psi \tau (u) =
\Phi \tau (u) - u

\mathrm{i}\tau .



466 CHARLES-EDOUARD BR\'EHIER AND DAVID COHEN

Lemma 5.1. Let m \in \BbbN 0 and assume that V \in \scrC m.
There exists Cm(V ) \in (0,\infty ) such that for all u \in Hm and all \tau \in (0, 1), one has

\| \Psi \tau (u) - \Psi 0(u)\| Hm \leq Cm(V )\tau 
\Bigl( 
1 + \| u\| \mathrm{m}\mathrm{a}\mathrm{x}(4,2m)

L2

\Bigr) 
\| u\| Hm .

Proof. Let us first observe that, by definitions of the operators \Psi \tau and \Psi 0, one has

\Psi \tau (u) - \Psi 0(u) = \Theta \tau (V [u])u,

where \Theta \tau (y) =
\mathrm{e}\mathrm{i}\tau y - 1 - \mathrm{i}\tau y

\mathrm{i}\tau for all y \in \BbbR .
Applying the inequality from Lemma 2.1, one obtains

\| \Psi \tau (u) - \Psi 0(u)\| Hm \leq Cm \| \Theta \tau (V [u])\| \scrC m \| u\| Hm .

It remains to study the behavior of \| \Theta \tau (V [u])\| \scrC m .
The auxiliary function \Theta \tau satisfies the following properties: for all k \in \BbbN 0, there exists

Ck \in (0,\infty ) such that, for all y \in \BbbR , one has
\bullet | \Theta \tau (y)| \leq C0\tau | y| 2,
\bullet | \Theta \prime 

\tau (y)| \leq C1\tau | y| ,
\bullet | \Theta (k)

\tau (y)| \leq Ck\tau 
k - 1 \leq Ck\tau for all integers k \geq 2 and all \tau \in (0, 1).

Using the Fa\`a di Bruno formula, one obtains the bounds

\| \partial \gamma \Theta \tau (V [u])\| \scrC 0 \leq C

\Biggl\{ 
\tau \| V [u]\| 2\scrC 0 , \gamma = 0,

\tau 
\Bigl( 
1 + \| V [u]\| | \gamma | \scrC | \gamma | 

\Bigr) 
, \gamma \not = 0.

Using the inequality

\| V [u]\| | \gamma | \scrC | \gamma | =
\bigm\| \bigm\| \partial \gamma V \ast | u| 2

\bigm\| \bigm\| | \gamma | 
\scrC 0 \leq Cm(V ) \| u\| 2mL2 ,

if | \gamma | \leq m, then the proof of Lemma 5.1 concludes.

We are now in position to give the proof of Theorem 4.5.

Proof of Theorem 4.5. Let us first perform a change of unknowns: for all t \geq 0 and n \in \BbbN 0,
set

v(t) = S(0, t)u(t) = S(t, 0) - 1u(t) and vn = S(0, tn)un = S(tn, 0)
 - 1un,

where u(t) is the solution of (1.1) whereas un is defined by the splitting scheme (4.2). Owing
to the isometry property (2.2) for the random propagator, one has the equality

\| un  - u(tn)\| Hm = \| S(tn, 0) (vn  - v(tn))\| Hm = \| vn  - v(tn)\| Hm

for all m \in \BbbN 0 and for all n \in \BbbN 0. Thus, it is sufficient to prove estimates for the error
En = vn  - v(tn).

Using the mild form (3.1) for u(t) and the definition of the splitting scheme (4.2), for all
t \geq 0 and n \in \BbbN 0, one has the following expressions:
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v(t) = u0 + i

\int t

0
S(0, s)\Psi 0(u(s)) ds,

v(tn+1) = v(tn) + i

\int tn+1

tn

S(0, t)\Psi 0(u(t)) dt,

vn+1 = S(0, tn)\Phi \tau (un) = vn + i\tau S(0, tn)\Psi \tau (un).

The expressions above then give the following decomposition of the error:

En+1 = vn+1  - v(tn+1) = En + \epsilon 1n + \epsilon 2n + \epsilon 3n + \epsilon 4n + \epsilon 5n

with local error terms defined by

\epsilon 1n = i\tau S(0, tn) (\Psi \tau (un) - \Psi 0(un)) ,

\epsilon 2n = i\tau S(0, tn) (\Psi 0(un) - \Psi 0(u(tn))) ,

\epsilon 3n = i

\int tn+1

tn

(S(0, t) - S(0, tn)) (\Psi 0(u(tn)) - \Psi 0(u(t))) dt,

\epsilon 4n = i

\int tn+1

tn

(S(0, tn) - S(0, t))\Psi 0(u(tn)) dt,

\epsilon 5n = i

\int tn+1

tn

S(0, tn) (\Psi 0(u(tn)) - \Psi 0(u(t))) dt.

For j = 1, . . . , 5, set Ej
n =

\sum n - 1
k=0 \epsilon 

j
k. Then a straightforward recursion argument yields the

equality

En =

5\sum 
j=1

Ej
n =

5\sum 
j=1

n - 1\sum 
k=0

\epsilon jk,

and applying Minkowski's inequality one obtains, for p \in [1,\infty ),\bigl( 
\BbbE 
\bigl[ 
\| En\| pHm

\bigr] \bigr) 1
p \leq 

5\sum 
j=1

\Bigl( 
\BbbE [
\bigm\| \bigm\| Ej

n

\bigm\| \bigm\| p
Hm ]

\Bigr) 1
p
.

It remains to prove error estimates for (\BbbE [
\bigm\| \bigm\| \bigm\| Ej

n

\bigm\| \bigm\| \bigm\| p
Hm

])
1
p , for j = 1, . . . , 5 and p \in [2,\infty ) (the case

p \in [1, 2) is treated using H\"older's inequality). The estimates of the error terms for j = 1, 2, 3
follow from straightforward arguments, whereas more work is required to deal with the cases
j = 4 and j = 5 (in order to obtain order of convergence equal to 1, instead of the order 1/2
corresponding to the temporal H\"older regularity of the solution; see equation (3.4)).

We now provide detailed error estimates of those five terms.
\bullet Let us start with the first term. Using Minkowski's inequality and the isometry property (2.2)
of the random propagator, one has\Bigl( 

\BbbE 
\Bigl[ \bigm\| \bigm\| E1

n

\bigm\| \bigm\| p
Hm

\Bigr] \Bigr) 1
p \leq 

n - 1\sum 
k=0

\Bigl( 
\BbbE 
\Bigl[ \bigm\| \bigm\| \epsilon 1k\bigm\| \bigm\| pHm

\Bigr] \Bigr) 1
p

\leq 
n - 1\sum 
k=0

(\BbbE [\| i\tau S(0, tk) (\Psi \tau (uk) - \Psi 0(uk))\| pHm ])
1
p

\leq \tau 

n - 1\sum 
k=0

(\BbbE [\| \Psi \tau (uk) - \Psi 0(uk)\| pHm ])
1
p .
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Applying Lemma 5.1 and using first the preservation of the L2-norm property (4.3) for the
numerical scheme (Proposition 4.1) and second the almost sure bound (4.4) for the Hm-norm
of the numerical solution (Proposition 4.2), one finally obtains, for all n = 0, . . . , N ,\bigl( 

\BbbE 
\bigl[ \bigm\| \bigm\| E1

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq C\tau 2

n - 1\sum 
k=0

\Bigl( 
\BbbE 
\Bigl[ \Bigl( 

1 + \| uk\| 
\mathrm{m}\mathrm{a}\mathrm{x}(4,2m)
L2

\Bigr) p
\| uk\| pHm

\Bigr] \Bigr) 1
p

\leq C\tau 2
n - 1\sum 
k=0

\Bigl( 
1 + \| u0\| \mathrm{m}\mathrm{a}\mathrm{x}(4,2m)

L2

\Bigr) p \bigl( 
\BbbE 
\bigl[ 
\| uk\| pHm

\bigr] \bigr) 1
p

\leq Cm,p(T, \| u0\| Hm)\tau .

\bullet For the second term, using Minkowski's inequality and the isometry property (2.2) of the
random propagator, one has\bigl( 

\BbbE 
\bigl[ \bigm\| \bigm\| E2

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq 

n - 1\sum 
k=0

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| \epsilon 2k\bigm\| \bigm\| pHm

\bigr] \bigr) 1
p

\leq 
n - 1\sum 
k=0

\bigl( 
\BbbE 
\bigl[ 
\| i\tau S(0, tk) (\Psi 0(uk) - \Psi 0(u(tk)))\| pHm

\bigr] \bigr) 1
p

\leq \tau 
n - 1\sum 
k=0

\bigl( 
\BbbE 
\bigl[ 
\| \Psi 0(uk) - \Psi 0(u(tk))\| pHm

\bigr] \bigr) 1
p .

Using the local Lipschitz continuity property (2.5) of \Psi 0 (Lemma 2.2), then the almost sure
bounds for the Hm norm of the exact solution (equation (3.3) from Proposition 3.1) and of
the numerical solution (equation (4.4) from Proposition 4.2), one obtains, for all n = 0, . . . , N ,\bigl( 

\BbbE 
\bigl[ \bigm\| \bigm\| E2

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq C\tau 

n - 1\sum 
k=0

\Bigl( 
\BbbE 
\Bigl[ \Bigl( 

\| uk\| 2Hm + \| u(tk)\| 2Hm

\Bigr) p
\| uk  - u(tk)\| pHm

\Bigr] \Bigr) 1
p

\leq C(T, \| u0\| Hm)\tau 
n - 1\sum 
k=0

\bigl( 
\BbbE 
\bigl[ 
\| Ek\| pHm

\bigr] \bigr) 1
p .

\bullet In order to estimate the third term, applying the Minkowski inequality yields\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E3

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq 

n - 1\sum 
k=0

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| \epsilon 3k\bigm\| \bigm\| pHm

\bigr] \bigr) 1
p .

Using the inequality (2.3) (combined with the Cauchy--Schwarz inequality) and the local
Lipschitz continuity property (2.5) of \Psi 0 (Lemma 2.2) then yields\Bigl( 

\BbbE 
\bigl[ \bigm\| \bigm\| \epsilon 3k\bigm\| \bigm\| pHm

\bigr] \Bigr) 1
p \leq 

\int tk+1

tk

\bigl( 
\BbbE 
\bigl[ 
\| (S(0, tk) - S(0, t)) (\Psi 0(u(t)) - \Psi 0(u(tk)))\| pHm

\bigr] \bigr) 1
p dt

\leq C\tau 
1
2

\int tk+1

tk

\Bigl( 
\BbbE 
\Bigl[ 
\| \Psi 0(u(t)) - \Psi 0(u(tk))\| 2pHm+2

\Bigr] \Bigr) 1
2p

dt

\leq C\tau 
1
2

\int tk+1

tk

\biggl( 
\BbbE 
\biggl[ \Bigl( 

\| u(t)\| 2Hm+2 + \| u(tk)\| 2Hm+2

\Bigr) 2p
\| u(t) - u(tk)\| 2pHm+2

\biggr] \biggr) 1
2p

dt.
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Using the almost sure bound (3.3) for the Hm+2-norm of the exact solution (Proposition 3.1)
and the temporal regularity estimate (3.4), one finally obtains

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| \epsilon 3k\bigm\| \bigm\| pHm

\bigr] \bigr) 1
p \leq C(T, \| u0\| Hm+4)\tau 

1
2

\int tk+1

tk

(t - tk)
1
2 dt \leq C(T, \| u0\| Hm+4)\tau 

2,

and finally one has, for all n = 0, . . . , N ,

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E3

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq 

n - 1\sum 
k=0

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| \epsilon 3k\bigm\| \bigm\| pHm

\bigr] \bigr) 1
p \leq Cm,p(T, \| u0\| Hm+4)\tau .

\bullet Let us now focus on the the fourth term. As explained above, one needs to be careful to
obtain an order of convergence equal to 1. Indeed, for the fourth term, applying (2.3) directly
(and appropriate bounds) would only give order of convergence 1/2 of the splitting scheme.

Let us define auxiliary processes: for all n \in \BbbN 0 and all t \in [tn, tn+1], set

vn(t) = S(0, t)\Psi 0(u(tn)).

Note that vn(t) = S(tn, t)vn(tn) = e - \mathrm{i}(\beta (t) - \beta (tn))\Delta vn(tn) for all t \in [tn, tn+1]. As a consequence,
the process (vn(t))t\in [tn,tn+1]

is the solution of the linear stochastic evolution equation

dvn(t) =  - i\Delta vn(t) \circ d\beta (t) =  - i\Delta vn(t) d\beta (t) - 
1

2
\Delta 2vn(t) dt

with vn(tn) = S(0, tn)\Psi 0(u(tn)).
The local error term \epsilon 4n is rewritten as follows in terms of the auxiliary process vn:

\epsilon 4n = i

\int tn+1

tn

(S(0, tn) - S(0, t))\Psi 0(u(tn)) dt

= i

\int tn+1

tn

(vn(tn) - vn(t)) dt

=

\int tn+1

tn

\int t

tn

\Delta vn(s) d\beta (s) dt - 
i

2

\int tn+1

tn

\int t

tn

\Delta 2vn(s) dsdt

= \epsilon 4,1n + \epsilon 4,2n

with

\epsilon 4,1n =

\int tn+1

tn

\int t

tn

\Delta vn(s) d\beta (s) dt

\epsilon 4,2n =  - i

2

\int tn+1

tn

\int t

tn

\Delta 2vn(s) ds dt.

Set also E4,1
n =

\sum n - 1
k=0 \epsilon 

4,1
k and E4,2

n =
\sum n - 1

k=0 \epsilon 
4,2
k . Using Minkowski's inequality, one then gets\bigl( 

\BbbE 
\bigl[ \bigm\| \bigm\| E4

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq 

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E4,1

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p +

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E4,2

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p .
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On the one hand, observe that applying the stochastic Fubini theorem gives the equality

\epsilon 4,1n =

\int tn+1

tn

\int tn+1

s
\Delta vn(s) dt d\beta (s) =

\int tn+1

tn

(tn+1  - s)\Delta vn(s) d\beta (s).

Introduce the (adapted) auxiliary process v, such that v(s) = (tk+1  - s)vk(s) for all s \in 
[tk, tk+1] and k = 0, . . . , N  - 1. Then the error term E4,1

n is rewritten as the It\^o integral

E4,1
n =

\int tn

0
\Delta v(s) d\beta (s),

and applying the Burkholder--Davis--Gundy and H\"older inequalities, for all p \geq 2, one obtains

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E4,1

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p =

\biggl( 
\BbbE 
\biggl[ \bigm\| \bigm\| \bigm\| \bigm\| \int tn

0
\Delta v(s) d\beta (s)

\bigm\| \bigm\| \bigm\| \bigm\| p
Hm

\biggr] \biggr) 1
p

\leq Cp(T )

\biggl( \int tn

0
\BbbE 
\bigl[ 
\| \Delta v(s)\| pHm

\bigr] 
ds

\biggr) 1
p

\leq Cp(T )

\biggl( \int tn

0
\BbbE 
\bigl[ 
\| v(s)\| p

Hm+2

\bigr] 
ds

\biggr) 1
p

.

By the definitions of v(s) and of vk(s), one obtains\int tn

0
\BbbE 
\bigl[ 
\| v(s)\| p

Hm+2

\bigr] 
ds =

n - 1\sum 
k=0

\int tk+1

tk

\BbbE 
\bigl[ 
\| (tk+1  - s)vk(s)\| pHm+2

\bigr] 
ds

\leq \tau p
n - 1\sum 
k=0

\int tk+1

tk

\BbbE 
\bigl[ 
\| S(0, s)\Psi 0(u(tk))\| pHm+2

\bigr] 
ds

\leq \tau p+1
n - 1\sum 
k=0

\BbbE 
\bigl[ 
\| \Psi 0(u(tk))\| pHm+2

\bigr] 
\leq C(T, \| u0\| Hm+2)\tau 

p,

using the isometry property (2.2), the inequality (2.4), and the exact preservation of the L2-
norm (3.2) as well as the almost sure bound (3.3) for the Hm+2 norm of the exact solution
(see Proposition 3.1).

On the other hand, for the second term, using Minkowski's inequality and the definition
of the auxiliary processes vk, one obtains\bigl( 

\BbbE 
\bigl[ \bigm\| \bigm\| E4,2

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq 

n - 1\sum 
k=0

\Bigl( 
\BbbE 
\Bigl[ \bigm\| \bigm\| \bigm\| \epsilon 4,2k

\bigm\| \bigm\| \bigm\| p
Hm

\Bigr] \Bigr) 1
p

\leq 1

2

n - 1\sum 
k=0

\int tk+1

tk

\int t

tk

\bigl( 
\BbbE 
\bigl[ 
\| vk(s)\| pHm+4

\bigr] \bigr) 1
p ds dt

\leq C\tau 2
n - 1\sum 
k=0

\bigl( 
\BbbE 
\bigl[ 
\| S(0, tk)\Psi 0(u(tk))\| pHm+4

\bigr] \bigr) 1
p

\leq C(T, \| u0\| Hm+4)\tau ,
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using the isometry property (2.2), the inequality (2.4), and the almost sure bound (3.3) for
the Hm+4 norm of the exact solution.

Gathering the estimates, one obtains the following estimate for the fourth error term: for
all n = 0, . . . , N , \bigl( 

\BbbE 
\bigl[ \bigm\| \bigm\| E4

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq Cm,p(T, \| u0\| Hm+4)\tau .

\bullet It remains to deal with the fifth error term. Using a second order Taylor expansion, one
has, for t \in [tn, tn+1],

\Psi 0(u(t)) - \Psi 0(u(tn)) = \Psi \prime 
0(u(tn)). (u(t) - u(tn))

+

\int 1

0
(1 - \xi )\Psi \prime \prime 

0((1 - \xi )u(tn) + \xi u(t)).(u(t) - u(tn), u(t) - u(tn)) d\xi 

= \Psi \prime 
0(u(tn)).

\biggl( 
(S(t, tn) - I)u(tn) + i

\int t

tn

S(t, s)\Psi 0(u(s)) ds

\biggr) 
+Rn(t),

using the mild formulation (3.1) for the exact solution, where one has defined the quantity
Rn(t) =

\int 1
0 (1 - \xi )\Psi \prime \prime 

0((1 - \xi )u(tn) + \xi u(t)).(u(t) - u(tn), u(t) - u(tn)) d\xi .
For all n = 0, . . . , N  - 1, set

\epsilon 5,1n =  - i

\int tn+1

tn

S(0, tn)\Psi 
\prime 
0(u(tn)). ((S(t, tn) - I)u(tn)) dt

\epsilon 5,2n =

\int tn+1

tn

S(0, tn)\Psi 
\prime 
0(u(tn)).

\biggl( \int t

tn

S(t, s)\Psi 0(u(s)) ds

\biggr) 
dt

\epsilon 5,3n =  - i

\int tn+1

tn

S(0, tn)Rn(t) dt

and E5,j
n =

\sum n - 1
k=0 \epsilon 

5,j
n , j = 1, 2, 3. Note that \epsilon 5n = \epsilon 5,1n + \epsilon 5,2n + \epsilon 5,3n and E5

n = E5,1
n +E5,2

n +E5,3
n

for all n = 0, . . . , N  - 1, and Minkowski's inequality yields\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq 

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,1

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p +

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,2

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p +

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,3

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p .

It remains to obtain estimates for each of the three error terms in the right-hand side above.
(i) To treat the first error terms E5,1

n and \epsilon 5,1n , one follows the same strategy as for the error
terms E4,1

n and \epsilon 4,1n above. Let us define auxiliary processes: for all n \in \BbbN 0 and t \in [tn, tn+1],
set

wn(t) = S(t, tn)u(tn).

For each n \in \BbbN 0, the process (wn(t))t\in [tn,tn+1]
is the solution of the linear stochastic evolution

dwn(t) = i\Delta wn(t) \circ d\beta (t) = i\Delta wn(t) d\beta (s) - 
1

2
\Delta 2wn(t) dt

with initial value wn(tn) = u(tn) (see the definition (2.1) of the random propagator S(t, s)).
The local error term \epsilon 5,1n is rewritten as follows in terms of the auxiliary process wn:
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\epsilon 5,1n =  - i

\int tn+1

tn

S(0, tn)\Psi 
\prime 
0(u(tn)). (S(t, tn) - I)u(tn) dt

=  - i

\int tn+1

tn

S(0, tn)\Psi 
\prime 
0(u(tn)). (wn(t) - wn(tn)) dt

=

\int tn+1

tn

S(0, tn)\Psi 
\prime 
0(u(tn)).

\int t

tn

\Delta wn(s) d\beta (s) dt

+
i

2

\int tn+1

tn

S(0, tn)\Psi 
\prime 
0(u(tn)).

\int t

tn

\Delta 2wn(s) ds dt

= \epsilon 5,1,1n + \epsilon 5,1,2n

with

\epsilon 5,1,1n =

\int tn+1

tn

S(0, tn)\Psi 
\prime 
0(u(tn)).

\int t

tn

\Delta wn(s) d\beta (s) dt

\epsilon 5,1,2n =
i

2

\int tn+1

tn

S(0, tn)\Psi 
\prime 
0(u(tn)).

\int t

tn

\Delta 2wn(s) ds dt.

Set also E5,1,1
n =

\sum n - 1
k=0 \epsilon 

5,1,1
k and E5,1,2

n =
\sum n - 1

k=0 \epsilon 
5,1,2
k . Using Minkowski's inequality, one then

gets \bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,1

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq 

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,1,1

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p +

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,1,2

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p .

On the one hand, observe that applying the stochastic Fubini theorem gives the equality

\epsilon 5,1,1n =

\int tn+1

tn

S(0, tn)\Psi 
\prime 
0(u(tn)).

\int t

tn

\Delta wn(s) d\beta (s) dt

= S(0, tn)\Psi 
\prime 
0(u(tn)).

\int tn+1

tn

\int tn+1

s
\Delta wn(s) dt d\beta (s)

= S(0, tn)\Psi 
\prime 
0(u(tn)).

\int tn+1

tn

(tn+1  - s)\Delta wn(s) d\beta (s).

Introduce the (adapted) auxiliary process w, such that, for all s \in [tk, tk+1] and k = 0, . . . , N - 
1, one has w(s) = (tk+1 - s)S(0, tk)\Psi 

\prime 
0(u(tk)).(\Delta wk(s)). Then the error term E5,1,1

n is rewritten
as the It\^o integral

E5,1,1
n =

\int tn

0
w(s) d\beta (s),

and applying the Burkholder--Davis--Gundy and H\"older inequalities, for all p \geq 2, one obtains

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,1,1

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p =

\biggl( 
\BbbE 
\biggl[ \bigm\| \bigm\| \bigm\| \bigm\| \int tn

0
w(s) d\beta (s)

\bigm\| \bigm\| \bigm\| \bigm\| p
Hm

\biggr] \biggr) 1
p

\leq Cp(T )

\biggl( \int tn

0
\BbbE 
\bigl[ 
\| w(s)\| pHm

\bigr] 
ds

\biggr) 1
p

.
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By the definitions of w(s) and of wk(s), one obtains\int tn

0
\BbbE 
\bigl[ 
\| w(s)\| pHm

\bigr] 
ds =

n - 1\sum 
k=0

\int tk+1

tk

\BbbE 
\bigl[ \bigm\| \bigm\| (tk+1  - s)S(0, tk)\Psi 

\prime 
0(u(tk)).\Delta wk(s)

\bigm\| \bigm\| p
Hm

\bigr] 
ds

\leq C\tau p
n - 1\sum 
k=0

\int tk+1

tk

\BbbE 
\bigl[ \bigm\| \bigm\| \Psi \prime 

0(u(tk)).\Delta S(s, tk)u(tk)
\bigm\| \bigm\| p
Hm

\bigr] 
ds

\leq C\tau p+1
n - 1\sum 
k=0

\BbbE 
\Bigl[ 
\| u(tk)\| 2pHm \| \Delta u(tk)\| pHm

\Bigr] 
\leq C\tau p+1

n - 1\sum 
k=0

\BbbE 
\Bigl[ 
\| u(tk)\| 3pHm+2

\Bigr] 
\leq C(T, \| u0\| Hm+2)\tau 

p,

using the isometry property (2.2), the inequality (2.6), and the almost sure bound (3.3) for
the Hm+2 norm of the exact solution.

On the other hand, for the second term, using Minkowski's inequality and the definition
of the auxiliary processes wk, one obtains\Bigl( 

\BbbE 
\bigl[ \bigm\| \bigm\| E5,1,2

n

\bigm\| \bigm\| p
Hm

\bigr] \Bigr) 1
p \leq 

n - 1\sum 
k=0

\Bigl( 
\BbbE 
\Bigl[ \bigm\| \bigm\| \bigm\| \epsilon 5,1,2k

\bigm\| \bigm\| \bigm\| p
Hm

\Bigr] \Bigr) 1
p

\leq 1

2

n - 1\sum 
k=0

\int tk+1

tk

\int t

tk

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| S(0, tk)\Psi \prime 

0(u(tk)).\Delta 
2S(s, tk)u(tk)

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p ds dt

\leq C\tau 2
n - 1\sum 
k=0

\Bigl( 
\BbbE 
\Bigl[ 
\| u(tk)\| 2pHm

\bigm\| \bigm\| \Delta 2u(tk)
\bigm\| \bigm\| p
Hm

\Bigr] \Bigr) 1
p

\leq C\tau 2
n - 1\sum 
k=0

\Bigl( 
\BbbE 
\Bigl[ 
\| u(tk)\| 3pHm+4

\Bigr] \Bigr) 1
p

\leq C(T, \| u0\| Hm+4)\tau ,

using the isometry property (2.2), the inequality (2.4), and the almost sure bound (3.3) for
the Hm+4 norm of the exact solution.

Gathering the estimates for E5,1,1
n and E5,1,2

n , one finally obtains, for all n = 0, . . . , N ,\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,1

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq Cm,p(T, \| u0\| Hm+4)\tau .

(ii) To deal with the error terms E5,2
n and \epsilon 5,2n , using Minkowski's inequality, the isometry

property (2.2), and the inequalities (2.6) and (2.4) (Lemma 2.2), one obtains\Bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,2

n

\bigm\| \bigm\| p
Hm

\bigr] \Bigr) 1
p \leq 

n - 1\sum 
k=0

\Bigl( 
\BbbE 
\Bigl[ \bigm\| \bigm\| \bigm\| \epsilon 5,2k

\bigm\| \bigm\| \bigm\| p
Hm

\Bigr] \Bigr) 1
p

\leq 
n - 1\sum 
k=0

\int tk+1

tk

\int t

tk

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| S(0, tk)\Psi \prime 

0(u(tk)). (S(t, s)\Psi 0(u(s)))
\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p dsdt
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\leq 
n - 1\sum 
k=0

\int tk+1

tk

\int t

tk

\Bigl( 
\BbbE 
\Bigl[ 
\| u(tk)\| 2pHm \| \Psi 0(u(s))\| pHm

\Bigr] \Bigr) 1
p
dsdt

\leq C\tau 

n - 1\sum 
k=0

\int tk+1

tk

\Bigl( 
\BbbE 
\Bigl[ 
\| u(tk)\| 2pHm \| u(s)\| 2p

L2 \| u(s)\| pHm

\Bigr] \Bigr) 1
p
ds.

Finally, using the almost sure bound (3.3) for the Hm norm of the exact solution, one obtains,
for all n = 0, . . . , N , \bigl( 

\BbbE 
\bigl[ \bigm\| \bigm\| E5,2

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq Cm,p(T, \| u0\| Hm)\tau .

(iii) To deal with the error terms E5,3
n and \epsilon 5,3n , using Minkowski's inequality gives

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,3

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq 

n - 1\sum 
k=0

\Bigl( 
\BbbE 
\Bigl[ \bigm\| \bigm\| \bigm\| \epsilon 5,3k

\bigm\| \bigm\| \bigm\| p
Hm

\Bigr] \Bigr) 1
p

\leq 
n - 1\sum 
k=0

\int tk+1

tk

\bigl( 
\BbbE 
\bigl[ 
\| S(0, tk)Rk(t)\| pHm

\bigr] \bigr) 1
p dt.

Using the isometry property (2.2) and the inequality (2.7) (Lemma 2.2), one obtains

\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5,3

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq C

n - 1\sum 
k=0

\int tk+1

tk

\Bigl( 
\BbbE 
\Bigl[ 
(\| u(t)\| Hm + \| u(tk)\| Hm)

p \| u(t) - u(tk)\| 2pHm

\Bigr] \Bigr) 1
p
dt

\leq Cp(T, \| u0\| Hm)
n - 1\sum 
k=0

\int tk+1

tk

\Bigl( 
\BbbE 
\Bigl[ 
\| u(t) - u(tk)\| 2pHm

\Bigr] \Bigr) 1
p
dt

\leq Cm,p(T, \| u0\| Hm+2)\tau ,

where the almost sure bound (3.3) for the Hm norm of the exact solution and the temporal
regularity estimate (3.4) (Proposition 3.1) have been used.

Gathering the estimates, one finally obtains the last required result: for all n = 0, . . . , N\bigl( 
\BbbE 
\bigl[ \bigm\| \bigm\| E5

n

\bigm\| \bigm\| p
Hm

\bigr] \bigr) 1
p \leq Cm,p(T, \| u0\| Hm+4)\tau .

\bullet We are now in position to obtain the error estimate (4.5). Gathering the previously obtained
estimates, one has, for all n = 0, . . . , N ,

\bigl( 
\BbbE 
\bigl[ 
\| En\| pHm

\bigr] \bigr) 1
p \leq 

5\sum 
j=1

\Bigl( 
\BbbE 
\Bigl[ \bigm\| \bigm\| Ej

n

\bigm\| \bigm\| p
Hm

\Bigr] \Bigr) 1
p

\leq Cm,p(T, \| u0\| Hm+4)\tau + C(T, \| u0\| Hm)\tau 

n - 1\sum 
k=0

\bigl( 
\BbbE 
\bigl[ 
\| Ek\| pHm

\bigr] \bigr) 1
p .

Applying the discrete Gronwall lemma then gives (4.5) and concludes the proof of Theo-
rem 4.5.



SPLITTING SCHEME FOR A RANDOM SCHR\"ODINGER EQUATION 475

Remark 5.2. Let us explain the main modifications that are required in the proof above
to obtain the result stated in Remark 4.6: if u0 \in Hm+2 and V \in \scrC m+2, the strong order of
convergence is 1/2 instead of 1.

The treatments of the error terms E1
n and E2

n are not modified, but the other terms need
to be estimated differently since it is not possible anymore to use estimates for the Hm+4

norm with the weakened regularity conditions on u0 and V .
To estimate the error term E3

n, since u(t) and u(tk) only belong to Hm+2, one can only
use the upper bound \| u(t)  - u(tk)\| Hm+2 \leq \| u(t)\| Hm+2 + \| u(tk)\| Hm+2 and the almost sure
bound (3.3) of the Hm+2 norm, instead of using the temporal regularity estimate (3.4).

The treatment of the error term E4
n is subtantially simplified: to estimate \epsilon 4n, it suffices to

exploit the inequality (2.3), the almost sure bound (3.3) of the Hm+2 norm, and the inequality
\BbbE 
\bigl[ 
| \beta (t) - \beta (tn)| 2p

\bigr] 
\leq Cp\tau 

p for | t - tn| \leq \tau .
Finally, the treatment of the error term E5

n is also substantially simplified: it suffices
to employ the local Lipschitz continuity property (2.5) of \Psi 0 and the temporal regularity
property (3.4). One concludes using the almost sure bounds (3.3) for the Hm+2 norm.

6. Numerical experiments. We present some numerical experiments in dimensions 1 and
2 in order to support and illustrate the above theoretical results. In addition, we shall compare
the behavior of the splitting scheme (4.2) (denoted by Split below) with the following time
integrators for the stochastic nonlinear Schr\"odinger equation (1.1):

\bullet the stochastic exponential integrator from [6] (adapted to the present nonlocal inter-
action cubic nonlinearity, denoted by Exp)

un+1 = S(tn+1, tn)un + i\tau S(tn+1, tn)V [un]un,

\bullet the semi-implicit midpoint scheme (denoted Mid)

i
un+1  - un

\tau 
+

\chi n\surd 
\tau 
\Delta un+1/2 + V [un]un = 0,

where un+1/2 = 1
2 (un + un+1) and \chi n = \beta (tn+1) - \beta (tn)\surd 

\tau 
. This is a modification of the

Crank--Nicolson from [1] for the nonlinear interaction nonlinearity studied here.
For the numerical experiments in dimension 1, unless stated otherwise, we consider the SPDE
(1.1) with the potential V (x) = cos(x) on the one-dimensional torus with periodic boundary
conditions [0, 2\pi ]. The spatial discretization is done by a pseudospectral method with M
Fourier modes. The initial value is given by u0(x) = exp( - 0.5(x  - \pi )2). Parameters for the
numerical experiments in dimension 2 are provided in the dedicated subsection.

6.1. Evolution plots in dimension 1 (1d). To illustrate the interplay and the balance
between the random dispersion and the nonlinearity, in Figure 1, we display the evolution of
| un| 2 along one sample of the numerical solution obtained by the splitting integrator (4.2).
The discretization parameters are \tau = 2 - 14 and M = 210, and the time interval is given by
[0, 0.5].

6.2. Conservation of the \bfitL \bftwo -norm in dimension 1. It is known that the L2-norm (or
mass) of the solution to the SPDE (1.1) remains constant for all times (see Proposition 3.1).
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(a) Space-time evolution
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Figure 1. Space-time evolution in 1d and contour plot for the splitting integrator (4.2). The discretization
parameters are \tau = 2 - 14 and M = 210 Fourier modes.
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Figure 2. Preservation of the L2-norm in 1d: Splitting scheme (\square ), exponential integrator (\lozenge ), and
midpoint scheme (\times ).

Figure 2 illustrates the corresponding behavior of the above numerical integrators along one
sample path. For this numerical experiment, we consider the parameters \tau = 2 - 8 andM = 210

Fourier modes and the time interval [0, 1]. The initial value is as in the previous numerical
experiment, but normalized so that its L2-norm is one. Exact preservation of the L2-norm for
the splitting scheme is observed, as stated in Proposition 4.1, whereas a small drift is observed
for the exponential integrator and the midpoint scheme.

6.3. Strong convergence in dimension 1. We now illustrate the mean-square convergence
of the splitting scheme (4.2) stated in Theorem 4.5. M = 210 Fourier modes are used for the
spatial discretization. The mean-square errors

\BbbE [\| u\mathrm{r}\mathrm{e}\mathrm{f}(x, T\mathrm{e}\mathrm{n}\mathrm{d}) - uN (x)\| 2H1 ]
1/2
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Figure 3. Mean-square errors in 1d as a function of the time step: Splitting scheme (\square ), exponential
integrator (\lozenge ), and midpoint scheme (\times ). The dotted line has slope 1.

at time T\mathrm{e}\mathrm{n}\mathrm{d} = 1 are displayed in Figure 3 for various values of the time step \tau = 2 - \ell for
\ell = 10, . . . , 16. Here, we simulate the reference solution u\mathrm{r}\mathrm{e}\mathrm{f}(x, t) with the splitting scheme,
with a small time step \tau \mathrm{r}\mathrm{e}\mathrm{f} = 2 - 18. The expected values are approximated by computing
averages over Ms = 100 samples. In Figure 3, we observe convergence of order 1 for all time
integrators. Note that the strong order of convergence of the exponential scheme and midpoint
integrator are not known in the case of the considered nonlocal interaction potential, whereas
Figure 3 illustrates our main result, Theorem 4.5, for the splitting scheme.

6.4. Numerical experiments in dimension 2 (2d). Let us first compare the evolution
of the numerical solution given by the proposed splitting scheme (4.2) when applied to the
SPDE (1.1) as well as a deterministic version of it. In Figure 4, we present snapshots of
the numerical solutions obtained by the splitting integrator. The SPDE is considered in the
spatial domain [0, 2\pi ]\times [0, 2\pi ] and on the time interval [0, 0.3]. We take the following initial
condition u0(x, y) = 0.5 exp( - 0.9((x - \pi )2+(y - \pi )2)) exp( - i10x)+0.75 exp( - ((x - 3\pi /2)2+
(y  - 3\pi /2)2)) exp(i10y) and the discretization parameters are \tau = 10 - 4 and M = 28.

Next, we illustrate the preservation of the L2-norm (or mass) of solutions to the SPDE (1.1)
(see Proposition 3.1). Figure 5 illustrates the evolution of this quantity along one sample path
of the splitting integrator (4.2), the stochastic exponential integrator, as well as the midpoint
scheme. For this numerical experiment, we consider the same parameters as above and take
\tau = 10 - 4 and M = 28 Fourier modes and the time interval [0, 1]. Note that the initial value
is the same as in the previous numerical experiment, but normalized so that its L2-norm is
equal to one. As stated in Proposition 4.1, exact preservation of the L2-norm for the splitting
scheme is observed. As in the corresponding numerical experiment in 1d, the L2-norm is seen
not to be preserved for the exponential integrator and the midpoint scheme.

We conclude the paper by illustrating the mean-square convergence of the splitting scheme
(4.2) stated in Theorem 4.5. We take M = 27 Fourier modes for the spatial discretization and
compute the mean-square errors

\BbbE [\| u\mathrm{r}\mathrm{e}\mathrm{f}(\cdot , T\mathrm{e}\mathrm{n}\mathrm{d}) - uN (\cdot )\| 2H1 ]
1/2
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(a) Snapshot at time 0 (b) Snapshot at time 0.1 (c) Snapshot at time 0.3

(d) Snapshot at time 0 (e) Snapshot at time 0.1 (f) Snapshot at time 0.3

Figure 4. Snapshots of the evolution of the splitting integrator in 2d (up: deterministic case; down:
stochastic case).
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Figure 5. Evolution of the L2-norm in 2d: Splitting scheme (\square ), exponential integrator (\lozenge ), and midpoint
scheme (\times ).

at time T\mathrm{e}\mathrm{n}\mathrm{d} = 1 for the time steps \tau = 2 - \ell for \ell = 10, . . . , 17. Here, we simulate the reference
solution u\mathrm{r}\mathrm{e}\mathrm{f} with the splitting scheme, with a small time step \tau \mathrm{r}\mathrm{e}\mathrm{f} = 2 - 17. The expected values
are approximated by computing averages over Ms = 250 samples. The results are presented
in Figure 6, where one can observe the order 1 of convergence of the splitting scheme.
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Figure 6. Mean-square errors in 2d as a function of the time step: splitting scheme (\square ). The dotted line
has slope 1.
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