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Abstract.  The average time between two occurrences of the same event, 
referred to as its return time (or return period), is a useful statistical concept 
for practical applications. For instance insurances or public agencies may be 
interested by the return time of a 10 m flood of the Seine river in Paris. 
However, due to their scarcity, reliably estimating return times for rare events 
is very dicult using either observational data or direct numerical simulations. 
For rare events, an estimator for return times can be built from the extrema 
of the observable on trajectory blocks. Here, we show that this estimator 
can be improved to remain accurate for return times of the order of the 
block size. More importantly, we show that this approach can be generalised 
to estimate return times from numerical algorithms specifically designed to 
sample rare events. So far those algorithms often compute probabilities, rather 
than return times. The approach we propose provides a computationally 
extremely ecient way to estimate numerically the return times of rare events 
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for a dynamical system, gaining several orders of magnitude of computational 
costs. We illustrate the method on two kinds of observables, instantaneous 
and time-averaged, using two dierent rare event algorithms, for a simple 
stochastic process, the Ornstein–Uhlenbeck process. As an example of realistic 
applications to complex systems, we finally discuss extreme values of the drag 
on an object in a turbulent flow.

Keywords: classical Monte Carlo simulations, large deviations in non-
equilibrium systems, sampling algorithms, mixing, extreme value

Contents

1. Introduction	 3

2. Return times: definition and sampling methods	 5

2.1.  Computing return times from a timeseries.......................................................5

2.1.1.  Definition of return times.......................................................................5

2.1.2.  Return times and the distribution of successive events.........................7

2.1.3.  Sampling return times for rare events....................................................8

2.2.  Computing return times from a rare event algorithm....................................10

3. Return times sampled with the AMS algorithm	 11

3.1.  The TAMS algorithm.....................................................................................11

3.2.  Connection with the AMS algorithm for time-dependent observables...........14

3.3.  The optimal score function.............................................................................15

3.4.  Computing return times.................................................................................17

3.5.  Return times for the Ornstein–Uhlenbeck process from  
the TAMS algorithm.......................................................................................19

4. Return times sampled with the  
Giardina–Kurchan–Tailleur–Lecomte algorithm	 19

4.1.  The algorithm.................................................................................................20

4.2.  Return times for the time-averaged Ornstein–Uhlenbeck process  
from the GKTL algorithm...............................................................................22

5. Application: extreme drag force on an object immersed  
in a turbulent flow	 24

6. Conclusion	 27

Acknowledgments................................................................................. 28

Appendix A. Mean first-passage time for the  
Ornstein–Uhlenbeck process........................................................... 29

Appendix B. Statistical properties of AMS estimators........................ 30

References	 31

https://doi.org/10.1088/1742-5468/aab856


Computing return times or return periods with rare event algorithms

3https://doi.org/10.1088/1742-5468/aab856

J. S
tat. M

ech. (2018) 043213

1.  Introduction

In many physical systems, the mean state and the typical fluctuations about this state, 
usually studied in statistical physics, are not the only quantities of interest. Indeed, 
fluctuations far away from the mean state, although they are usually very rare, can 
play a crucial part in the macroscopic behaviour of the system. For instance, they can 
drive the system to a new metastable state, possibly with radically dierent properties 
[1]. Such transitions arise in a wide variety of situations, such as Josephson junctions 
[2], quantum oscillators [3], turbulent flows [4], magneto-hydrodynamics dynamos [5], 
diusion-controlled chemical reactions [6], protein folding [7], climate dynamics [8]. 
Even if the system returns to its original state after undergoing the large fluctuation, 
the impact of this event may be so large that it is worth being studied on its own. One 
may think for instance about heat waves [9] and tropical cyclones, rogue waves in the 
ocean [10], strong dissipative events in turbulent flows [11], shocks in financial markets 
[12]. Here, we are concerned with the study of such atypical fluctuations starting from 
the equations (deterministic or stochastic) which govern the dynamics of the system. 
This approach is dierent from and complementary to the purely statistical methods 
which try to extract the best possible information about the distribution of rare events 
from an existing timeseries, such as, for instance, extreme value statistics [13–15].

The theoretical framework which has been developed over the last decades in statis-
tical physics to tackle this problem is that of large deviation theory [16–20]. Numerical 
methods have also been developed to eciently sample rare events, which are not ame-
nable to classical Monte-Carlo methods [21–23]; see [24, 25] for general references on 
rare event simulation. Those algorithms can be roughly divided into two main classes: 
those which work in state space, and evolve a population of clones of the system accord-
ing to selection rules biased to favour the appearance of the desired rare event [26–30], 
and those which try to sample directly in path space the histories of the system which 
exhibit the phenomenon of interest [31–36]. They can be used either for stochastic 
processes or deterministic chaotic dynamical systems [37]. Most of those algorithms 
ultimately compute either one-time statistics (typically, the stationary probability dis-
tribution of the system, for which they sample eciently the tails, or alternatively, 
large deviation rate functions or scale cumulant generating functions), or reactive tra-
jectories corresponding to the transition between two metastable states.

From a modelling perspective, it is natural to assume that successive occurrences of 
a rare event are independent from one another [12, 38, 39]. Then, the average number 
of events occurring in a time interval is proportional to the length of that interval. This 
is the definition of a Poisson process. In this case, all the statistics are encoded in a 
single parameter, the rate of the Poisson process. In the following, we will assume that 
we are dealing with the simple case of a well identified process that can be described 
by a single return time or rate. This is often a sucient framework; indeed the long 
time behaviour of many systems can be described phenomenologically, or exactly in 
some limits, as a Markov process described by a set of transition rates describing inde-
pendent processes (see for instance [16] for systems driven by a weak noise). We note 
however that many other physical systems are not amenable to such a simple eective 
Markov process, for instance structural glasses or amorphous media.

https://doi.org/10.1088/1742-5468/aab856
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For many practical applications, the most useful information about a rare event 
is the return time: it is the typical time between two occurrences of the same event. 
This is how hydrologists measure the amplitude of floods for instance [40]. As a matter 
of fact, one of the motivations of Gumbel, a founding father of extreme value theory, 
was exactly this problem [41]. Other natural hazards, such as earthquakes [42] and 
landslides [43], are also ranked according to their return time. Similarly, climatologists 
seek to determine how the frequency of given heat waves [44, 45] or cold spells [46] 
evolves in a changing climate [47]. Public policies rely heavily on a correct estimate of 
return times: for instance, in the United States, floodplains were defined in the national 
flood insurance program in 1968 as areas vulnerable to events with a 100 year return 
time. Such definitions are then used to determine insurance policies for home owners. 
In the industry as well, return times are the metric used by engineers to design sys-
tems withstanding a given class of events. Another property describing rare events of 
a time series is the average time between successive records [48]; here, because of its 
importance in practical applications, we focus on the return time, i.e. the average time 
between events of a given amplitude. Just like the extreme values of any observable, 
the return time of a rare event is very dicult to estimate directly from observational 
or numerical data, because extremely long time series are necessary.

The return time may be estimated heuristically by interpreting it as a first-passage 
time. The first-passage time (sometimes also called first exit time) is defined as the time 
it takes a stochastic process to reach the boundary of a given domain for the first time; 
the properties of this random variable have been studied extensively in statistical phys-
ics [49, 50]. Then, the return time (or return period) r(a) for an event of amplitude a 
(return level) may be at first sight related to the inverse of the stationary probability ps: 
r(a) = τc(a)/ps(a), where the correlation time τc(a) usually depends on a but remains 
bounded when ps(a) goes to zero. This is true for instance for a system perturbed by a 

small-noise ε at the level of large deviations: r(a) �
ε→0

eU(a)/ε, where the quasi-potential 

U is defined by ps(a) �
ε→0

e−U(a)/ε [16]. However the return time is only roughly propor-

tional to the inverse of the stationary probability [51]. In order to compute τc(a) one 
has to go beyond large deviation theory. For instance for gradient dynamics and for 
first exit time problems, exact formulas exists [52–54], valid at leading order in ε (we 
stress that dierent formula are obtained depending on the hypothesis made on the 
domain that the particle exits). Generalisations to irreversible non gradient dynamics 
also exist (see [55] and references therein). From these computations, it appears clearly 
that τc(a) is not simply related to ps(a) and that the return time r(a) is a trajectory 
property, not amenable to a one point statistics like ps(a).

There is thus a need to develop rare event algorithms specifically designed for com-
puting return times, valid also when large deviation estimates are not relevant. This is 
the aim of this paper. The approach developed in this work relies on the combination of 
two observations. First, if one assumes that the occurrence of rare events are described 
by a Poisson process, then return times can be related to the probability of observing 
extrema over pieces of trajectories, which are of duration much larger than the correla-
tion time of the system, but typically much smaller than the computed return times. 
Second, several classes of rare event algorithms can be easily generalised to compute 
the probability of extrema over pieces of trajectories, rather than to compute single 
point statistics. We show that combining these two remarks enables us to build a 

https://doi.org/10.1088/1742-5468/aab856
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powerful tool to compute return times in an elementary way with simple and robust 
algorithms. As a side remark, we also discuss a new way to construct return time plots 
from a timeseries, which provides an important improvement for return times moder-
ately larger than the sampling time, even when we are not using a rare event algorithm.

We illustrate the method by computing return times, first for an instantaneous 
observable (one-point statistics) using the adaptive multilevel splitting (AMS) algo-
rithm [28, 56], and second for a time-averaged observable, using both the AMS algo-
rithm and the Del Moral–Garnier algorithm [27] (or equivalently the Giardina–Kurchan 
algorithm [57] in a non-stationary context). The computation of return times with the 
AMS algorithm leads us to define a generalisation called the trajectory-adaptive multi-
level splitting (TAMS) algorithm. This generalisation has several practical advantages: 
it computes directly return times r(a) for a full range of return level a rather than a 
single one, and it avoids the tricky estimation of time scale on an auxiliary ensemble, 
and the sampling from this auxiliary ensemble. As a test, we first carry out these com-
putations for a simple stochastic process, the Ornstein–Uhlenbeck (OU) process, for 
which analytical results are available and the accuracy and eciency of the algorithm 
can be tested thoroughly. Then, to demonstrate the usefulness of the method in realis-
tic applications, we briefly showcase a problem involving a complex dynamical system: 
extreme values of the drag on an object immersed in a turbulent flow.

The structure of this paper is as follows: in section 2, we introduce the method to 
compute return times from a timeseries and from rare event algorithms. We define 
the TAMS algorithm in section 3. We apply the method to compute return times for 
the instantaneous and time-averaged observables for an Ornstein–Uhlenbeck process, 
respectively, in section 3 (using the TAMS algorithm) and section 4 (using both the 
TAMS and the Giardina–Kurchan–Tailleur–Lecomte (GKTL) algorithms). Finally, we 
introduce the application to complex dynamical systems in section 5, before presenting 
our conclusions in section 6. We discuss in the conclusions the range of applicability of 
these algorithms.

2. Return times: definition and sampling methods

2.1. Computing return times from a timeseries

2.1.1. Definition of return times.  We consider a statistically time homogeneous ergodic 

process (a stationary timeseries) {A(t)}t�t0
. Typically, A : Rd → R is an observable on 

a system of interest, considered here as a Rd-valued stochastic process 
(
Xt

)
t�t0

, and we 

should denote A(t) = A(Xt). We are interested in the statistical distribution of events 
where the observable reaches a prescribed threshold a. The occurrence of such events is 
illustrated for a sample OU process, defined by dXt = −αXtdt+

√
2εdWt, on figure 1(a). 

We define the return time for a given threshold a as the average time one has to wait 
before observing the next event with A(t) > a. More precisely, we define the waiting time

τ(a, t) = min {τ � t |A (τ) > a} − t.� (1)
As an illustration, the waiting time τ(a, t) is shown for our sample Ornstein–Uhlenbeck 
process on figure 1(b). Then the return time r(a) for the threshold a is defined as

https://doi.org/10.1088/1742-5468/aab856
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r(a) = E [τ(a, t)] ,� (2)
where E is the average with respect to realisations of the process X with initial condi-
tion Xt0 = x0 (hence the notation E = Ex0,t0 in that case), or is a time average for an 
ergodic process. From now on, we shall omit the indices when there is no ambiguity. 
The return time r(a) is independent of time because the process is homogeneous.

The problem we consider in this section is that of estimating r(a) from a sample 

timeseries of duration Td : {A(t)}0�t�Td
. The definition leads to an obvious estimator for 

r(a), the direct estimator r̂D defined by

r̂D(a) =
1

Td

∫ Td

0

τ(a, t) dt =
1

Td

Nd∑
n=1

τ 2n
2
,� (3)

where τn is the duration of the successive intervals over which A(t) � a, and Nd is the 
number of such intervals. The last identity in (3) is illustrated graphically in figure 1(b): 
the integral of τ(a, t) is given by computing the total area beneath the triangles.

In the limit of rare events, the return time will also be the average time between two 
successive independent events. However the definition (2) for the return time has the 
big advantage of not having to deal with the definition of independent events, which is 

(a)

(b)

Figure 1.  An example of a random process (a) and the waiting time (b) associated 
to events reaching a given threshold. (a) Sample timeseries (black curve), generated 
from an Ornstein–Uhlenbeck process (22) (α = 1, ε = 1/2; σ = 1/

√
2 is the standard 

deviation). We are interested in fluctuations which reach a prescribed threshold 
a (dashed red line). These events are identified by the red dots. (b) Time evolution 
of the waiting time τ(a, t) (see (1)) associated to the above timeseries: it is a 
succession of ane parts with slope  −1. Note that in principle, there should be 
small time intervals such that τ(a, t) = 0, corresponding to the duration of the 
event with A(t) > a, separating the triangles. Here, the duration of the events is 
too small for such intervals to be visible.

https://doi.org/10.1088/1742-5468/aab856
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cumbersome when time correlations are not negligible. We explain this further in the 
following section.

2.1.2. Return times and the distribution of successive events.  Estimating return 
times using (3) implies computing the time intervals τn between successive events 
with A(t) > a. When a is large enough, most of the times A(t) < a and very rarely 
A(t) > a. Then we can distinguish two kinds of contributions to the time intervals τn. 
On the one hand, we have correlated events corresponding to fluctuations around the 
threshold value a, on a timescale of the order of the correlation time. From our point 
of view, these correspond to the same event, with a finite duration. On the other 
hand, there are successive events such as those depicted in figure 1(a), which can 
be considered as statistically independent events. Therefore, we expect those events 
to form a Poisson point process, and the corresponding time intervals τn should 
be distributed according to the distribution of time intervals of a Poisson process: 
P (τ) = λ exp (−λτ) [12, 38, 39].

Figure 2(a) shows the probability density function (PDF) of the time interval 
between two occurrences of an event A(t) > a, drawn from a sample timeseries gener-
ated with an Ornstein–Uhlenbeck process. One can see that most of the contributions 
are indeed small intervals of the order of the correlation time. Discarding all the time 
intervals below the correlation time, one obtains the PDF displayed in figure  2(b), 
which coincides with the exponential distribution corresponding to a Poisson point 
process.

When a is large, r(a) � τc where τc is the correlation time of the process. Then the 
contribution of intervals τn of duration comparable to τc in the formula (3) becomes 
asymptotically negligible compared to the contribution of the time intervals τn � τc. 
Graphically, this may be seen as the fact that the sum in (3) is dominated by the 
contribution of very big triangles, while for small a all the triangles have roughly the 
same area. Then, the return time r(a) coincides with the average time between two 
statistically independent events exceeding the value a. In other words, rare fluctuations 

(a) (b)

Figure 2.  PDF of waiting times between two consecutive fluctuations of amplitude 
a  =  2.5, estimated from a timeseries of length Td = 106 of the Ornstein–Uhlenbeck 
process (22) with α = 1 and ε = 1/2 (blue triangles), and assuming the events 
follow a Poisson process with rate 1/r(a), P (τ) = e−τ/r(a)/r(a) (black solid line), 
where r(a) is computed from the timeseries. The correlation time of the Ornstein–
Uhlenbeck process is τc = 1/α = 1. (a) Taking all intervals into account, including 
those corresponding to oscillations around the threshold. (b) Discarding small 
intervals (τ < τc) linked to oscillations around the threshold.

https://doi.org/10.1088/1742-5468/aab856
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can be considered as independent from one another, their duration can be neglected 
compared to their return time, and the distribution of such events is well approximated 
by a Poisson process of rate λ = 1/r(a).

Neglecting the duration of the extreme events yields 
∑Nd

n=1 τn ≈ Td and then one can 
check that

1

Td

Nd∑
n=1

τ 2n
2

≈ Nd∑Nd

n=1 τn

1

Nd

Nd∑
n=1

τ 2n
2

→
Nd→∞

1

2

E [τ 2]

E [τ ]
=

1

λ(a)
= r(a),� (4)

where the average in this computation is taken with respect to the Poisson process 
interval PDF P (τ) made explicit above.

One may be tempted to use the estimator r̂′D(a) =
1
Nd

∑Nd

n=1 τn instead of the esti-

mator r̂D defined by (3). For an actual Poisson process, that would just give the same 
result. However this estimator would be more sensitive to the eect of a finite cor-
relation time, since the contributions from time intervals τn ≈ τc between successive 
events will only become negligible linearly in τc/r(a), as opposed to quadratically in 
formula (3).

From now on, we shall assume that the statistics of rare events are Poissonian. This 
is a reasonable approximation for many dynamical systems as long as there is a well-
defined mixing time after which the initial conditions are forgotten. Of course, it would 
not hold for systems with long-term memory. Note that this assumption is similar to 
the independent interval approximation used in the context of persistence [50]. In the 
next paragraph, we use this assumption to derive new expressions that allow for accu-
rate and ecient sampling of the return times.

2.1.3.  Sampling return times for rare events.  In this section we present an alternative 
way to compute return times, that provides an easier and more ecient way to draw 
return time plots for rare events than using the direct estimator (3). Let us divide the 

timeseries {A(t)}0�t�Td
 in M blocks of duration ∆T � τc, so that Td = M∆T , and let 

us define the block maximum

am = max {A(t) |(m− 1)∆T � t � m∆T } ,� (5)
and sm(a)  =  1 if am  >  a and 0 otherwise, for 1 � m � M .

For rare events, i.e. r(a) � τc, the number of events N(t) =
∑

m��t/∆T � sm(a) is 
well approximated by a Poisson process with density λ(a) = 1/r(a). Then, assuming 
τc � ∆T � r(a), the probability qm(a) that am be larger than a is well approximated 

by qm(a) � ∆T/r(a). As qm(a) can be estimated by 1
M

∑M
m=1 sm(a), an estimator of r(a) 

is the block maximum estimator:

r̂B(a) =
Td∑M

m=1 sm(a)
.� (6)

This is the classical method for computing the return time of rare events, valid when 
∆T � r(a) [58].

We now introduce a new, more precise estimator, also valid when ∆T/r(a) is of 
order one. It is obtained by using qm(a) = 1− e−∆T/r(a). Then, a better estimator of r(a) 
is the modified block maximum estimator:

https://doi.org/10.1088/1742-5468/aab856
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r̂′B(a) = − ∆T

ln
(
1− 1

M

∑M
m=1 sm(a)

) .
� (7)

To compute these estimators in practice, we sort the sequence {am}1�m�M  in decreas-
ing order and denote the sorted sequence {ãm}1�m�M  such that ã1 � ã2 � ... � ãM . 

Based on (6), we then associate to the threshold ãm the return time r(ãm) = M∆T/m. 
Indeed, 

∑M
�=1 s�(ãm) = m, which means that m events with amplitude larger than ãm 

have been observed over a duration M∆T . Alternatively, using the more precise esti-

mator r̂′B (7) we associate to the threshold ãm the return time r (ãm) = − ∆T

log(1−m
M )

. The 

return time plot represents ãm as a function of r (ãm), as illustrated for instance on 
figure 3. Let us stress again that formulas (6) and (7) and this method of plotting the 
return time are meaningful only if doing block maxima, and for ranges of parameters 
such that τc � ∆T � r(a) for (6) or τc � ∆T  for (7).

Figure 3 illustrates the three methods for computing return times from a timeseries: 
from the definition (3) and the two formulas (6) and (7). The sample timeseries used 
in this figure is extracted from an Ornstein–Uhlenbeck process, for which the return 
time curve can also be computed analytically. One can see that both formulas (6) and 
(7) lead to the same estimate for events with r(a) � ∆T . However, formula (6) fails to 
yield a correct estimate as soon as r(a) � ∆T .

For rare events, plotting return times using (6), as is classically done, proves itself 
much more convenient and ecient than the naive sampling using (3). It is impor-
tant to note however, that the use of (6) is valid only after computing maxima over 
an interval of duration ∆T  much larger than τc, a remark that was not considered in 
many previous publications. Moreover, the generalisation (7) we propose in this paper 
is much more accurate for events with a return time of order of ∆T . This procedure to 

Figure 3.  Return time plots for the Ornstein–Uhlenbeck process (22) with ε = 1/2, 
α = 1, estimated from a timeseries of length Td = 106 using the direct estimator 
r̂D (3) (pentagrams), the block maximum estimator r̂B (6) (∆T = 100, solid blue 
line), and the enhanced block maximum estimator r̂′B (7) (∆T = 100, solid red line 
and white triangles). These estimates are compared to the analytical solution (A.6) 
(dashed black line).
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compute return time plots can also be generalised in combination with the use of rare 
event algorithms, as we shall see in the next section.

2.2. Computing return times from a rare event algorithm

In section 2.1, we defined the return time for a time-homogeneous stochastic process 
and explained how to eciently compute it for rare events from a timeseries. However, 
a major diculty remains as we still have to generate numerically the rare events in 
the timeseries, which comes at a large computational cost. In the present section, we 
explain how to apply the above method to the data produced by algorithms designed 
to sample eciently rare events instead of direct simulations.

Rare event algorithms provide an eective ensemble of M trajectories {Xm(t)}0�t�Ta 
(1 � m � M ). Note that the length Ta of the trajectories generated by the algorithm 
does not necessarily coincide with the length Td of the trajectory generated by direct 
sampling: in practice, as we shall see, Ta � Td. For each of these trajectories, we compute 
the maximum of the observable over the time evolution am = max0�t�Ta (A(Xm(t))). 
This is similar to the block maximum method described in section 2.1.3, with each tra-
jectory playing the role of a block. There is however a major dierence: unlike in the 
block maximum method, the dierent trajectories sampled by the rare event algorithm 
do not have identical statistical weight. To each trajectory Xm(t), and thus to each 
maximum am, is associated a probability pm computed by the algorithm. Hence, rather 

than just a sequence {am}1�m�M , rare event algorithms yield a sequence {am, pm}1�m�M . 
The generalisation of the block maximum formula (7) to non-equiprobable blocks is 
straightforward and leads to the estimator

r̂A(a) = − Ta

ln
(
1−

∑M
m=1 pmsm(a)

) .
� (8)

Of course, we could construct similarly an estimator generalising (6), but as we have 
seen in the previous section, the estimator (7) yields better performance.

In practice, to plot the return time curve, we sort the sequence {am, pm}1�m�M  in 
decreasing order with respect to the am, and denote the sorted sequence {ãm, p̃m}1�m�M  

such that ã1 � ã2 � ... � ãM . We then associate to the threshold ãm the return time

r̂A(ãm) = − Ta

ln (1−
∑m

�=1 p̃�)
.� (9)

Indeed, the sum of the weights of the events with amplitude larger than ãm is 
∑m

�=1 p̃�. 
Again, the return time plot represents a as a function of r (a).

We stress that the method described here does not depend on the observable of 
interest, or on the details of the algorithm itself. In the remainder of the paper, we 
provide a proof-of-concept for this method, by considering two kinds of observables, 
sampled by two dierent algorithms: first, we study the return times for instanta-
neous observables using the AMS algorithm (section 3), then we turn to time-averaged 
observables using both the AMS and the GKTL algorithm (section 4). We show that 
the method allows to accurately compute return times at a much smaller computa-
tional cost than direct simulation. In both cases, we apply the technique to the simple 
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case of an Ornstein–Uhlenbeck process, for which the results are easily compared with 
direct simulation and theoretical predictions, before illustrating the potential of the 
method for applications in complex systems (section 5).

3. Return times sampled with the AMS algorithm

In this section, we present the computation of return times by applying the method 
presented in section 2.2 to a rare event algorithm known as AMS. This algorithm fol-
lows the strategy of splitting methods for the estimation of rare event probabilities, 
which dates back to the 1950s [59]. Many variants have been proposed since then. The 
AMS algorithm can be interpreted as simulating a system {xi(t)} of interacting replicas 
(instead of independent replicas in a crude Monte Carlo simulation), with some selec-
tion and mutation mechanism. We describe this mechanism in section 3.1 as a method 
to sample trajectory space. This contains all the necessary details for practical use of 
the algorithm. Then, in section 3.2 we connect the procedure to the general framework 
of the AMS algorithm, which enables us to directly benefit from the available math-
ematical results. In section 3.3, we explain what is the optimal choice of score func-
tion for our problem and we analyse its behaviour. In section 3.4, we show how the 
algorithm enables us to estimate return times, under the Poisson statistics assumption 
made above. Finally, we illustrate in section 3.5 the method by computing the return 
times for an Ornstein–Uhlenbeck process.

3.1. The TAMS algorithm

The classical AMS algorithm is based on the evolution of an ensemble of trajectories, 
based on selection-mutation rules, in order to compute rare event probabilities, and 
more generally committor functions. Return times can not be estimated directly from a 
committor function and require the estimation of trajectory statistics. The method we 
propose to compute return times involves the estimation of probabilities of trajectories 
with a fixed duration Ta. In order to deal with this, we propose a specific modification 
of the classical AMS algorithm, called trajectory adaptive multilevel splitting.

While the classical AMS algorithm requires to specify only a real-valued score func-
tion ξ—also called a reaction coordinate in many works, due to connections with molec-
ular dynamics simulations, see [56], and also [60, section 4.3]—the TAMS requires in 
general a time dependent score function, see section 3.3 for the optimal choice.

We consider a continuous time Markov model able to generate trajectories. It can be 
either a stochastic process, for instance a diusion, or a chaotic deterministic dynamical 
system. Let us now describe the algorithmic procedure.

We start by simulating N  independent trajectories, denoted {x(0)
n (t)}1�n�N, for a 

fixed duration Ta. To each of these trajectories, we associate a weight w0  =  1. Then, at 

iteration j � 1, we evaluate the performance of all replicas {x( j−1)
n (t)}1�n�N at iteration 

j  −  1, measured by the maximum of the score function ξ over the whole trajectory:

https://doi.org/10.1088/1742-5468/aab856
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Q( j)
n = sup

0�t�Ta

ξ(t, x( j−1)
n (t)).� (10)

We select the trajectories corresponding to the lowest Q( j)
n : let us denote 

Q�
j = min1�n�N Q( j)

n  and n�
j,1, . . . ,n

�
j,�j

 the indices such that:

Q( j)
n�
j,1

= · · · = Q( j)
n�
j,�j

= Q�
j .� (11)

One might expect intuitively that �j = 1. This is not necessarily the case, as explained 
in [60]: because of the discretization of the dynamical equations  in the numerical 

model, two or more trajectories may yield the same level Q( j)
n .

We then proceed to the mutation step. For each trajectory x
( j−1)
n�
j,�

 (1 � � � �j), 
we choose a trajectory x

( j−1)
n�  (n� �= nj,1, . . . nj,�j) randomly among the N − �j remain-

ing trajectories, and define the time tj,� defined as the smallest time t such that 

ξ(t, x
( j−1)
n� (t)) > Q�

j . Finally, we define the new replica x
( j)
n�
j,�

 by copying the trajectory 

x
( j−1)
n�  from t0 to tj,�, and simulating the rest of the trajectory, from tj,� to Ta. For a 

Markov process, for instance a diusion, a new realisation of the noise is used in order 
to simulate the new trajectory from tj to Ta. For a chaotic deterministic system, a small 
amplitude noise is added to the initial condition at time tj. The other trajectories are 

not modified: x
( j)
n = x

( j−1)
n  for n �= n�

j,1, . . . ,n
�
j,�. The selection-mutation process is illus-

trated on figure 4. We associate to the trajectories x
( j)
n  forming the ensemble at step j 

the weight wj given by [28, 56, 60]:

wj =

j∏
i=1

(
1− �i

N

)
=

(
1− �j

N

)
wj−1.� (12)

Note that we could mutate more replicas at each step by selecting an arbitrary number 

of levels Q( j)
n , instead of just the minimum Q�

j  as described above. The particular case 
described above is sometimes referred to as the last particle method [61].

The selection-mutation process is iterated J  times (two possible definitions of J  are 

given below). The number of resampled trajectories is given by J̃ =
∑J

j=1 �j. Note that 

Figure 4.  Illustration of one selection-mutation step in the AMS algorithm for 
the computation of the probability that an observable A : Rd → R reaches values 
larger than Q over a trajectory of duration Ta.
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J̃ � J , but the two need not necessarily coincide. In the end, the algorithm generates 

M = N + J̃  trajectories, given explicitly by the set {x(0)
n }1�n�N ∪ {x( j)

n�
j,�
}1����j ,1�j�J , or 

equivalently, the set {x(J)
n }1�n�N ∪ {x( j−1)

n�
j,�

}1����j ,1�j�J. Each trajectory has an associ-

ated weight, given by the iteration until which it was a member of the ensemble: wJ 

for the final trajectories {x(J)
n }1�n�N , and wj−1 for the trajectories {x( j−1)

n�
j,�

}1����j ,1�j�J 

mutated at iteration 1 � j � J. Let us relabel these trajectories and their associated 

weights as {(xm,wm)}1�m�M . Normalising the weights with W =
∑M

m=1 wm, we obtain 
the probabilities pm = wm/W  associated with the trajectories.

Note that instead of just one realisation of the algorithm, one may carry out K 

independent realisations, thus yielding M =
∑K

k=1(Nk + J̃k) trajectories with the asso-
ciated weights, where Nk and J̃k denote the number of initial trajectories and resampled 
trajectories for realisation k, respectively. The probabilities for the trajectories are com-
puted as above.

For any observable O[x(t)], we can define an estimator based on our sampling of 
trajectory space:

ÔM =
M∑

m=1

pmO[xm(t)].� (13)

For practical applications, we shall be interested in two particular cases:

	•	 Instantaneous observable: O[X, t] = A(X(t)), for some time-independent observ-
able A : Rd → R.

	•	 Time-averaged observable: O[X, t] = 1
T

∫ t

t−T
A(X(s))ds for some time-independent 

observable A : Rd → R and prescribed width T for the averaging window. Note 
that this is a case where the time-dependent observable O is defined on a dierent 
interval than the original process X, here [T,Ta].

The number of iterations J  can either be a prescribed integer (in that case the 
stopping criterion for the algorithm is simply j = J), or a random number such that 
all the trajectories in the ensemble reach a threshold level Q (the stopping criterion 

is then Q( j)
n > Q for all 1 � n � N ). The latter case is more common in existing AMS 

implementations, however both cases are covered by the general framework developed 
in [60], and give consistent results. We further discuss these two possible choices in 
section 3.4.

Let us now estimate the computational cost of an AMS run. The number of tra-
jectories generated by an AMS run is M = N + J̃ , as pointed out above. Each resa-
mpled trajectory is not simulated over the whole duration Ta, but over τ < Ta, with 
τ a random number depending on the branching point. We thus define γ ∈ [0, 1] so 
that E[τ ] = γTa is the average duration of the resampled part of a mutated trajectory. 
Performing K identical and independent realisations of the AMS algorithm, the aver-
age computational cost associated with a given experiment is then approximately

C = K × (N + γJ)Ta.� (14)
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3.2. Connection with the AMS algorithm for time-dependent observables

In this section, we describe the connection between the TAMS algorithm and the clas-
sical AMS algorithm. The aim is to deduce the mathematical properties of the TAMS 
algorithm from the known ones for the AMS algorithm. For instance we will conclude 
that the optimal score function is the committor function (17). This section can be 
skipped by the reader interested in the algorithm only, without trying to understand 
the mathematical aspects.

The AMS algorithm has originally been designed [28] to eciently and accurately 

estimate probabilities of rare events of the type Px0,t0(τB < τA) ∈ (0, 1): the probabil-

ity that a Markov process 
(
Xt

)
t�t0

, initialised with Xt0 = x0, hits a set B before hit-

ting a set A (with A ∩ B = ∅), where τC = inf {t > t0;Xt ∈ C} is the hitting time of a 
set C. In this section, we show how the problem of estimating the maximum value of 
a time-dependent observable over a trajectory (which later will be used to estimate 
return times) falls within the scope of the AMS algorithm. This enables us to benefit 
directly from the theoretical properties of the AMS algorithm. Some recent mathemati-
cal results about the algorithm are reviewed in appendix B. This review is not exhaus-
tive, see for instance [60] and references therein.

We consider a Rd-valued Markov process 
(
Xt

)
t∈[0,Ta]

, with continuous trajectories, 

for some fixed final time Ta, and a time-dependent observable O[X, t]: this is a (time-
dependent) functional of the process X, taking value in R. It may be defined for times 
belonging to a subset of [0,Ta], but for simplicity we shall still denote Ta the final time. 
The aim is to estimate the probability that the observable reaches a threshold a at 
some point of the trajectory, i.e.

q(a) = Px0,0

[
max
0�t�Ta

O[X, t] > a

]
;� (15)

(the notation Px0,t0 means the probability over realisations of the Markov process with 
initial condition Xt0 = x0). The AMS algorithm provides an estimator q̂(a) for this 
quantity. Indeed, the event {max0�t�Ta O[X, t] > a} can be identified with the event 
{τB < τA} for an auxiliary Markov process Yt, with an appropriate definition of the sets 
A and B, as follows:

Yt = (t,O[X, t]) ∈ [0,Ta]× R, A = {(Ta, z); z � a} , B = {(t, z); t ∈ [0,Ta], z > a} .
� (16)

Note that Y is not necessarily a time-homogeneous process. In section 3.1, we have 
described the TAMS algorithm that gives a procedure to sample the process Y to pro-
vide a good estimate of q(a), based on a score function ξ, which measures the distance 
between A and B (in many implementations of the AMS, ξ(∂A) = 0 and ξ(∂B) = 1). 
We describe the corresponding estimator q̂(a), and the related estimator for return 
times, in section 3.4.

It follows from the above paragraph that the convergence properties of the TAMS 
algorithm are a direct consequence of the known results for the AMS algorithm (see 
appendix B). Let us, however, explain in a heuristic way the validity of the algorithm. 
We refer to [28, 60] for rigorous mathematical arguments.
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The algorithm iterates a selection-mutation mechanism on a system of clones. At 
the selection step, (typically) one clone is removed from the system. To keep a con-
stant number of clones, one new replica needs to be sampled. Statistical consistency 
is ensured by the introduction of the weights, and appropriate rules for their update. 
Observe in particular that the sum of the weights of the N − 1 selected clones, before 
update, is equal to the sum, after update, of the N  clones. At the mutation step, the 
new clone is sampled by branching one of the selected clones, at the current level. 
The Markov property of the dynamics is used to sample the end of the trajectory, 
after crossing the current level. This ensures that, after the mutation step, the N  
clones observed after the first crossing of the current level, are (conditionally) inde-
pendent and identically distributed. Observe that they also have the same weight. 
Eventually, at the last iteration, all the N  clones reach the (rare) event of interest, by 
construction. The weights (or equivalently the random number of iterations) are used 
to estimate the probability of this event. First, consider non-adaptive versions of the 
multilevel splitting algorithm, where the levels and the number of iterations are fixed, 
as originally developed in [59]. This consists in a decomposition of the probability of 
the rare event, as a product of conditional probabilities. The weights are then prod-
ucts of standard estimators of these conditional probabilities. In the adaptive versions, 
initially developed in [28], the levels are computed on-the-fly as empirical quantiles: 
the minima of scores among N  clones. The factor 1− 1/N  can be interpreted as the 
associated conditional probability, hence the validity of the approach—but the analy-
sis in the adaptive case is more complex.

3.3. The optimal score function

This section is a theoretical discussion of the properties of the optimal score function; 
it may be skipped by readers who are only interested in the application of the TAMS 
algorithm for computing return times.

As explained in appendix B, the statistical properties, and in particular the variance 
of the AMS estimator q̂(a), depend on the choice of the score function ξ. The variance is 
minimal for a particular choice of the score function, sometimes referred to as the com-
mittor. In a very generic manner, for the AMS algorithm, it is given by ξ̄ = P[τB < τA]. 
In the specific case of the TAMS algorithm, the optimal score function takes the form:

ξ̄(t, x;Ta, a) = Px,t

[
max
t�s�Ta

O[X, s] > a

]
,� (17)

for all (t, x) ∈ [0,Ta]× Rd, where we denote Px,t the probability over the process ini-
tialised at position x at time t, and the threshold a and trajectory duration Ta are fixed 
parameters. Note that the optimal score function depends both on time and space. Of 
course, we cannot use this score function in practice, because it is exactly what we are 
trying to compute. Indeed, as mentioned above, the algorithm ultimately provides an 
estimate of the probability q(a) = ξ̄(0, x0;Ta, a). Nevertheless, a crucial point to imple-
ment the AMS algorithm is to choose a score function that provides a good approx
imation of the committor. In practical applications, constructing the score function will 
often be based on heuristic considerations, but it may also be useful to have theoretical 
results about the optimal score function.
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Here, we want to explain the qualitative properties of the time-dependent commit-
tor (17) specific to the TAMS algorithm. For simplicity, we shall only discuss the case 
of an instantaneous observable: O[X, t] = A(Xt). Moreover, for the precision of the 
discussion, we assume that the stochastic process X solves the stochastic dierential 
equation dXt = b(Xt)dt+

√
2εdWt, where b is a vector field with a single fixed-point 

x�. We further assume that the basin of attraction of x� is the full phase space. With 
this hypothesis, the invariant measure of the diusion is concentrated close to the 
attractor x� when ε � 1. Let us assume that the set C = {x | A(x) � 0} is a neighbour-
hood of x� on which most of the invariant measure mass is concentrated. We call C 
the attractor. The target set D = {x | A(x) � a} is similarly defined. The hitting times 
for the sets C and D are the random variables given by τ� = inf{t > 0 | A(Xt) � 0} 
and τa = inf{t > 0 | A(Xt) � a}, respectively, where the process is started from a 
point x at time t  =  0, such that 0 � A(x) � a. We finally define the static committor 
ξ0(x, a) ≡ Px,0[τa < τ�]. The aim of the following discussion is to explain the relation 
between the time-dependent committor (17) and the static committor ξ0(x, a).

On the one hand, the time-dependent committor ξ̄  satisfies a backward Fokker–
Planck equation

∂ξ̄

∂t
= −L[ξ̄], with L = bi

∂

∂xi

+ ε
∂2

∂x2
i

,� (18)

in the domain A−1([0, a]) ⊂ Rd with boundary condition ξ̄(t, x;Ta, a) = 1 for x ∈ ∂D, 
and final condition ξ̄(Ta, x;Ta, a) = 0. This follows directly from the backward Fokker–
Planck equation for the transition probability P (y, s|x, t), and the fact that, with an 

absorbing boundary condition on ∂D, ξ̄(t, x;Ta, a) = 1−
∫
dyP (y,Ta|x, t). Note that 

when Ta − t � r(a), ξ̄(t, x;Ta, a) ≈ 1 everywhere (ξ̄  converges to 1). On the other hand, 
ξ0(x, a) satisfies L[ξ0] = 0, but with dierent boundary conditions: ξ0(x, a) = 1 if x ∈ ∂D 
and ξ0(x, a) = 0 if x ∈ ∂C. In the next paragraph, we argue that when Ta  −  t is much 
smaller than r(a), the time-dependent committor ξ̄(t, x;Ta, a) given by (17) is well 
approximated by the static committor ξ0(x, a), except in two boundary layers: a spatial 
one of size ε for x close to the attractor, and a temporal one of size τc for t close to Ta.

Using the notations of section 3.2, the events {τB < τA} can be decomposed into the 
disjoint union of events for which the observable reaches the threshold a before or after 
hitting 0. The typical time for X to reach C is the correlation time τc. If we assume that 
Ta − t � τc, we have the approximation ξ̄(t, x;Ta, a) � ξ0(x, a) + [1− ξ0(x, a)]ξ̄(t, x�;
Ta, a) (we have used here the approximations ξ̄(τ�, y;Ta, a) � ξ̄(τ�, x�;Ta, a) for any  
y ∈ ∂C, and ξ̄(τ�, x�;Ta, a) � ξ̄(t, x�;Ta, a)). Moreover, when Ta − t � r(a), the Poisson  
approximation ξ̄(t, x�;Ta, a) � (Ta − t)/r(a) holds. To sum up, in the limit 
τc � Ta − t � r(a),

ξ̄(t, x;Ta, a) � ξ0(x, a) +
Ta − t

r(a)
[1− ξ0(x, a)].� (19)

Let us now introduce the quasipotential V . We note that ξ0(x, a) �
ε→0

  

exp(−(infy∈A−1({a}) V (y)− V (x))/ε), while r(a) �
ε→0

exp((infy∈A−1({a}) V (y))/ε). We can 
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thus conclude that ξ0(x, a) dominates this expression for all x except in a region of size 
ε around the attractor x�.

As a conclusion, when Ta  −  t is much smaller than r(a), the time-dependent com-
mittor ξ̄(t, x;Ta, a) (17) is well approximated by the static committor ξ0(x, a), except in 
two boundary layers: a spatial one of size ε for x close to the attractor, and a temporal 
one of size τc for t close to Ta. This is illustrated in figure 5, representing the commit-
tor ξ̄(t, x;Ta, a) for the Ornstein–Uhlenbeck process (with α = 1, ε = 1/2), obtained by 
solving numerically the backward Fokker–Planck equation (18), with a  =  4,Ta  =  5.

3.4. Computing return times

As explained in section 3.1, the algorithm generates an ensemble of M trajectories xm(t) 
with associated probability pm. It follows directly from (13) that an estimator of q(a) is:

q̂M(a) =
M∑

m=1

pmsm(a),� (20)

where am = max0�t�Ta A(xm(t)) is the maximum value for the observable over the tra-
jectory m, pm the associated probability (see section 3.1), and sm(a)  =  1 if am  >  a, 0 
otherwise (2.1.3).

As explained in section 2.1.3, the return time is related to q(a) by the hypothesis 
that these events are Poissonian, and we obtain the estimator for the return time 

r̂M(a) = −Ta

ln(1−q̂M (a))
 given by (8) (alternatively, we could use r̂M(a) = Ta

q̂M (a)
). In essence, 

to draw return time plots, it suces to sort the set {(am, pm)}1�m�M according to the 
am and use (9), as described in section 2.2. Note that in practice, with the particular 

choice of score function ξ(t, x) = A(x), storing the levels Q( j)
n  for the killed trajectories 

directly provides the corresponding values am.

Figure 5.  Contour lines of the time-dependent committor ξ̄(t, x;Ta, a) for the 
Ornstein–Uhlenbeck process (with α = 1, ε = 1/2; in particular τc = 1), obtained by 
solving numerically the backward Fokker–Planck equation (18), with a  =  4,Ta  =  5.

https://doi.org/10.1088/1742-5468/aab856


Computing return times or return periods with rare event algorithms

18https://doi.org/10.1088/1742-5468/aab856

J. S
tat. M

ech. (2018) 043213

By definition, the estimators q̂M(a) and r̂M(a) are random variables. In appendix 
B, we describe their statistical properties, and how to interpret them in terms of con-
sistency and eciency of the AMS algorithm. In particular, we show that q̂M(a) is an 
unbiased estimator of q(a), study the variance, and show the existence of a central limit 
theorem.

In section 3.1, we proposed two choices for the number of iterations in the algorithm. 
First, we described the algorithm with a fixed number of iterations J . Alternatively, 
as is often seen in the AMS literature, one may decide to iterate the algorithm until 
all trajectories reach set B. Then J  is a random number. In that case, the threshold 
a which defines the set B becomes the control parameter for the stopping criterion. 
Under those circumstances, the estimator q̂M  can be expressed as

q̂M(a) =
J∏

j=1

(
1− �j

N

)
.� (21)

This formula remains valid in the case where the number of iterations J  is prescribed: 

it suces to define the set B a posteriori, by choosing a = min1�n�N a
(J)
n  the minimum 

value of the am among the final trajectories. The formula could also be used to com-
pute q̂M(b) with b  <  a, simply by changing the number of iterations required to meet 
the stopping criterion. In practice, the easiest approach is to use the expression given 
in (20).

In the above, we have defined the AMS estimators q̂M  and r̂M  based only on the 
number of trajectories generated by the algorithm. In fact, the N  initial trajectories 
and the J̃  resampled trajectories (generated during the J  iterations) are qualitatively 
dierent. In practice, the user does not choose the parameter M directly, but rather 
the number of ensemble members N  on the one hand, and either the threshold a or 
the number of iterations J  on the other hand. As explained in appendix B, the number 
of initial trajectories N  governs the convergence of the estimators. Another practical 
constraint on the choice of N  is the problem of extinction: for some systems, if N  is too 
small, all the members of the ensemble become identical after a number of iterations. 
The other parameter (the threshold a or the number of iterations J ) selects the type 
of events we are interested in. Indeed, from (21), we obtain an approximate relation 
between the number of resampled trajectories J̃  and the target return times: we write 

ln q̂M(a) =
∑J

j=1 ln
(
1− �j

N

)
. For large N , this leads to ln q̂M(a) ≈ −

∑J
j=1 �j/N ≈ −J̃/N . 

Targeting rare events with probability 10−β, i.e. return times of order 10βTa, J̃  is then 
O(Nβ). This indicates how to choose the number of iterations J  in practice. In par
ticular, for rare events, we should often be in the regime J = Nβ.

To sum up, to compute return time plots r(a), one may either fix the target ampl
itude a, and run the algorithm for a random number of iterations, until the observable 
reaches a for all the trajectories (i.e. until all the trajectories reach set B), or fix the 
target return time r(a), and iterate the algorithm a fixed number of times by choosing 
J = N ln(r(a)/Ta). In the former case, the prescribed amplitude a needs not correspond 
to the largest event for which we should estimate the return time, but it will approxi-
mately be the case as soon as N � J, i.e. if a is large enough for fixed N . Similarly, in 
the latter case, the largest return time computed by the algorithm will approximately 
be equal to the prescribed target return time when N � J.
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Please note that this method computes the probability to exceed a threshold a, by 
averaging over trajectories or over K algorithm realisations the sampled value of q(a). 
This gives an unbiased estimator of q(a), as explained in appendix B. The standard 
deviation of this estimator is of order 1/

√
KN . When computing r(a) through the 

nonlinear relation r̂(a) = −Ta/ ln (1− q̂(a)), we thus obtain an estimator of r(a) with a 
bias of order of 1/(KN) and a standard deviation of order 1/

√
KN . If however we had 

made averages over return times among algorithm realisations, then the estimator for 
each realisation would have been biased with a bias of order 1/N  (see appendix B), and 
the final estimator after K realisations would still be biased with a bias of order 1/N .

3.5. Return times for the Ornstein–Uhlenbeck process from the TAMS algorithm

We consider the Ornstein–Ulhenbeck process Xt defined as

dXt = −αXtdt+
√
2εdWt� (22)

with α = 1 and ε = 1/2. The correlation time is τc = 1 and the variance is σ2 = 1/2. We 
now illustrate the use of the TAMS algorithm for computing the return times r(a) for 
the variable Xt being larger than a threshold a. This amounts to choose the observable 
as A(x) = x. We use the TAMS algorithm described in section 3.1 with a score function 
ξ(x, t) = x. This choice of score function is motivated by the fact that the optimal score 
function is nearly independent of time, except on a small boundary layer, as explained 
in section 3.3, and that in dimension 1, the level set of x will be the same as the level 
set of the static committor function.

The algorithm relies on three numerical parameters : the length of the generated 
trajectories Ta, the maximum threshold value amax and the number of replicas N . As 
explained in appendix B, the relative error depends on N . Additionally, one has to 
choose Ta � τc, as explained in section 2.1.3. We see empirically that a good trade-o 
between this requirement and computational burden is to choose trajectories of length 
Ta equal to a few correlation times.

Figure 6 shows the return time plot computed using N = 100 replicas, Ta = 5τc and 
a = 7σ, using the TAMS in conjunction with the methodology described in section 3.4. 
For comparison, figure 6 also features the theoretical value, estimated by computing 
the mean first-passage time (see appendix A), and the estimate obtained from a direct 
sampling with the same computational cost as the TAMS run. We see that return 
times are very well recovered by the TAMS algorithm. Furthermore, figure 6 clearly 
illustrates the computational gain from the TAMS algorithm. Indeed, for the same 
computational cost as direct sampling, the use of the TAMS algorithm gives access to 
return times for much rarer events: we can now accurately compute return times on the 
order of 1013, about seven orders of magnitude larger than direct sampling.

4. Return times sampled with the Giardina–Kurchan–Tailleur–Lecomte algorithm

In this section, we illustrate the computation of return times using the method described 
in section 2.2 for a time-averaged observable. Even though it could be done using the 
TAMS algorithm presented in section 3.2, we instead illustrate the use of a dierent 
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rare-event algorithm, specifically designed to compute large deviations of time-aver-
aged dynamical observables: the GKTL algorithm [29, 57, 62].

4.1. The algorithm

The underlying idea of the GKTL algorithm is to perform a biased sampling of tra-
jectory space. It relies on the simulation of a population of trajectories, which, unlike 
direct Monte-Carlo methods, interact dynamically: at regular time intervals, some 
members of the ensemble are killed and some are cloned according to a weight which 
depends on the history of the replica. The weights are chosen such that, after several 
iterations of the algorithm, generated trajectories are distributed according to a prob-
ability distribution that is tilted in order to favour trajectories with large values of a 
chosen time averaged observable. This sort of algorithm has first been proposed by [57] 
and has been used to study rare events in both stochastic [57, 63–65] and deterministic 
systems [57, 62]. The idea of sampling quantities of interest from a distribution biased 
in a controlled way is very general; it is referred to as importance sampling, and was 
used in many dierent contexts (see e.g. [66, 67] and the general references [24, 25]).

More precisely, we perform simulations of an ensemble of N  trajectories {Xn(t)} 
(with n = 1, 2, ...,N ) starting from random initial conditions. Like in section 3, the total 
integration time of the trajectories is denoted Ta. We consider an observable of interest 
A(X(t)) and a resampling time τ. At times ti = iτ  (with i = 1, 2, ...,Ta/τ) we assign to 
each trajectory n a weight W i

n defined as

Figure 6.  Return time plot for a random variable following an Ornstein–Uhlenbeck 
process (22) with α = 1 and ε = 1/2 (σ = 1/

√
2 is the standard deviation). The solid 

red line represents the estimate obtained using the TAMS with N = 100 replica, 
Ta = 5τc and a = 7σ. The total number of trajectories (both initial and resampled) 
is M ≈ 2× 103 so that the total computational cost is O(106τc). It is compared 
to the modified block maximum estimator r̂′B applied to a sample timeseries of 
length Td = 106τc (blue stars) and to the analytical result (A.6). The shaded area 
represents the confidence interval on the estimation of the fluctuation amplitude a, 
for a fixed value for the return time r(a). It is computed as the empirical mean over 
the interpolated return time curves originating from the independent realisations 
of the algorithm.
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W i
n =

e
k
∫ ti
ti−1

A(Xn(t))dt

Ri

with Ri =
1

N

N∑
n=1

e
k
∫ ti
ti−1

A(Xn(t))dt.� (23)

For each trajectory Xn, a random number of copies of the trajectory are generated, on 
average proportional to the weight W i

n and such that the total number of trajectories 
produced at each event is equal to N . The parameter k is chosen by the user in order 
to control the strength of the selection and thus to target a class of extreme events of 
interest. The larger the value of k, the more trajectories with large values of the time 
average observable will survive the selection.

As mentioned above, the GKTL algorithm performs importance sampling in the space 
of trajectories, which is relevant for out-of-equilibrium systems. Let us denote formally 

P0

(
{X(t)}0�t�Ta

= {x(t)}0�t�Ta

)
 the probability to observe a trajectory {x(t)}0�t�Ta

 in 
the model, and Pk

(
{X(t)}0�t�Ta

= {x(t)}0�t�Ta

)
 the probability to observe the same 

trajectory with the algorithm. By construction of the algorithm through the weights 
(23), we have

Pk

(
{X(t)}0�t�Ta

= {x(t)}0�t�Ta

)
∼

N→∞

ek
∫ Ta
0 A(x(t))dt

Z(k,Ta)
P0

(
{X(t)}0�t�Ta

= {x(t)}0�t�Ta

)

� (24)
where the normalisation factor is given by Z(k,Ta) = E0

[
ek

∫ Ta
0 A(X(t))dt

]
, denoting by E0 

the expectation value with respect to P0, and ∼
N→∞

 means that this is true only asymp-

totically for large N . The typical error is of order 1/
√
N  when evaluating averages over 

observables. Equation (24) is obtained by assuming the mean field approximation

R1 =
1

N

N∑
n=1

ek
∫ t1
0 A(Xn(t))dt ∼

N→∞
Z(k, t1) = E0

[
ek

∫ t1
0 A(X(t))dt

]
,� (25)

which, by induction, and using a formula similar to (25) at each step of the induction, 
leads to [29, 57]:

Ta/τ∏
i=1

Ri ∼
N→∞

Z(k,Ta) = E0

[
ek

∫ Ta
0 A(X(t))dt

]
.� (26)

The validity of the mean field approximation and the fact that the typical relative error 
due to this approximation is of order 1/

√
N  has been proven [68, 69] to be true for a 

family of rare event algorithms including the one adopted in this paper.
Formula (24) is valid only for times Ta that are integer multiples of the resampling 

time τ. The killed trajectories have to be discarded from the statistics. Starting from 
the final N  trajectories at time Ta, one goes backwards in time through the selection 
events attaching to each piece of trajectory its ancestor. In this way one obtains an 
eective ensemble of N  trajectories from time 0 to time Ta, distributed according to Pk. 
All trajectories reconstructed in this way are real solutions of the model: we have not 
modified the dynamics, but only sampled trajectories according to the distribution Pk 
rather than according to the distribution P0.

The GKTL algorithm was initially designed to compute large deviation rate func-

tions [57]. Indeed, using λ(k,Ta) =
1
Ta

lnZ(k,Ta), the scaled cumulant generating function 
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[19] λ(k) = limTa→+∞ λ(k,Ta) can easily be estimated from the algorithm. From there, 

the large deviation rate function I(a), such that P0

[∫ Ta

0
A(X(t))dt = Taa

]
� e−TaI(a), is 

recovered by the Legendre–Fenchel transform I(a) = supk(ka− λ(k)) [19]. In fact, the 
algorithm can be used to compute the statistical properties with respect to the distri-
bution P0 of any observable, from the distribution Pk. This is done using the backward 
reconstructed trajectories and inverting formula (24). If, for example, one wants to esti-

mate the expectation value of an observable O
(
{X(t)}0�t�Ta

)
, an estimator is given by

E0

[
O
(
{X(t)}0�t�Ta

)]
∼

N→∞

1

N

N∑
n=1

O
(
{Xn(t)}0�t�Ta

)
e−k

∫ Ta
0 A(Xn(t))dteTaλ(k,Ta),

�

(27)

where the Xn are the N  backward reconstructed trajectories. Empirical estimators of 
quantities related to rare (for P0) events of the kind of (27) (thus using data distributed 
according to Pk) have a dramatically lower statistical error, due to the larger number 
of relevant rare events present in the eective ensemble. In particular, one can use the 
reconstructed trajectories to compute return times using the method described in sec-
tion 2.2. Of course, the above formula will not perform well for quantities which are 
rare for the biased statistics, and we should carefully construct the eective ensemble 
depending on the class of observables O we are trying to estimate.

4.2. Return times for the time-averaged Ornstein–Uhlenbeck process from the GKTL 
algorithm

We consider the time averaged position

XT (t) =
1

T

∫ t

t−T

x(s)ds, t ∈ [T ,Ta]� (28)

where the position x follows an Ornstein–Uhlenbeck process (22) between times 0 and 
Ta. We call σ2

T the variance of XT and τc,T  the correlation time. In this section we illus-
trate the application of the GKTL algorithm to the computation of the return times 
r(a) for X̄T being larger then a. We make use of the GKTL algorithm with Ta  >  T, 
computing the time-averaged position X̄T (t) for T � t � Ta as a moving average.

Similarly to the case of the TAMS (see section 3.5), the application of the GKTL 
algorithm depends on three numerical parameters: the number of trajectories N , the 
length of the trajectories Ta and the bias parameter k. The number of trajectories N  
governs the relative error, as explained in section 4.1, and one should use Ta so that 
Ta − T � τc,T , as explained in section 2.1.3. Finally, as for the strength of the selection 
k, its relation with the amplitude of the generated fluctuations is not known before-
hand, and one has to set its value empirically5.

In figure 7, we show the return times r(a) for XT , with T = 10τc, computed from 
the GKTL algorithm described in section  4.1, following the methodology described 
in section 2.2. In order to validate the computation, the estimate obtained from the 
algorithm is compared to the direct sampling method (7). For rare events (r(a) � τc,T ), 
5 When the duration of the average is long enough so that a large deviation regime is attained, the relation be-
tween the value of k and the typical amplitude of the fluctuations generated by the algorithm is known from the 
Gartner–Ellis theorem. See [19] for further details.
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the results from the GKTL algorithm agree well with direct sampling. Furthermore, 
the comparison of the computational costs for the two dierent methods shows the 
eciency of the algorithm. Indeed, for direct sampling, the length of the sample trajec-
tory, 109τc in the case of figure 7, naturally sets an upper bound on the return times 
one is able to compute. By contrast, the total cost of the GKTL estimate is 106τc and 
one can see in figure 7 that it allows to reach return times larger by many orders of 
magnitude. Figure 8 shows an estimate of the PDF for X̄T along the trajectories gener-
ated using the GKTL algorithm. Even though importance sampling is performed for 
the observable X̄Ta, the observable averaged over the whole trajectory of length Ta, it 
better samples the tail of the PDF for X̄T , resulting in better estimation of the corre
sponding return times.

Figure 7 also shows the return time for X̄T (t) being larger than a computed using 
the TAMS algorithm (see section 3.1). We use as a score function the time-averaged 
observable itself ξ(t) = X̄T (t), for T � t � Ta. The selection is then done according to 
the maximum value of X̄T (t) for each trajectory for T � t � Ta. More precisely, follow-
ing the notations of section 3.1, for iteration j we denote Q�

j  the lowest maximum of 

X̄T over the trajectories in the set {x( j)
n (t)}0�t�Ta,1�n�N . Following the TAMS algorithm 

described in section 3.1, the lj new replica are defined by copying the trajectories x
( j−1)
n�  

from 0 to the smallest time t such that X̄
( j−1)
T ,n�

(t) > Q�
j  and simulating the rest of the 

trajectory from this time to Ta.

Figure 7.  Return time plot for the time-averaged Ornstein–Uhlenbeck process XT 
(28) with α = 1 and ε = 1/2 (σ = 1/

√
2 is the standard deviation), estimated from 

the GKTL algorithm (solid red line) and AMS algorithm (solid blue line). The GKTL 
algorithm was used with N = 500 replica, Ta = 20τc and k  =  0.9. It was repeated 
K  =  100 times. The TAMS algorithm was used with N = 100 replicas, Ta  =  50 and 
a = 6.5σT . It was repeated K  =  10 times. Finally, the dashed black line represents 
the result of a direct sampling over a timeseries of length Td = 109. Parameters 
of both the GKTL and AMS algorithms were chosen so that 100 realisations 
of the algorithms amount to a computational cost of O(106τc). The cost of the 
direct sampling is 109τc. The shaded area represents the confidence interval on the 
estimation of the fluctuation amplitude a, for a fixed value for the return time r(a). 
It is computed as the empirical mean over the 100 interpolated return time curves 
originating from the 100 independent realisations of the algorithm.
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The agreement between the two estimates illustrates that the method to compute 
return times from rare event algorithms proposed in section 2.2 can be applied to any 
rare event algorithm suitable for the type of observable under study. Here, while the 
AMS algorithm allows for computing return times for both the instantaneous and time-
averaged observables, the GKTL algorithm is not suited for instantaneous observables.

5. Application: extreme drag force on an object immersed in a turbulent flow

A key issue with rare event algorithms is to understand if they are actually useful to 
compute rare events and their probabilities for actual complex dynamical systems. The 
AMS algorithm has shown to be very ecient for partial dierential equations with 
noise [30]. In this section, we give a brief illustration that more complex dynamics can 
be studied. We illustrate the computation of return times using rare event algorithms 
for a turbulent flow. The possible limitations of rare event algorithms are further dis-
cussed in the conclusion.

Unlike simple low-dimensional models, such as the Ornstein–Uhlenbeck process, 
numerical simulations of turbulent flows of interest for physicists and/or engineers 
require tremendous computational eorts. As a consequence, direct sampling of rare 
events based on a long time series is simply unthinkable for such systems. A common 
practice in the engineering community is to generate synthetic turbulent flows, without 
resolving explicitly the small scales, to study numerically the physical phenomena of 
interest [70, 71]. However, the main diculty is to capture synthetically the correct 
long-range (spatio-temporal) correlations of turbulence and such approaches can not 
capture the essential eects of coherent structures. We show here that rare event meth-
ods such as the GKTL and the AMS algorithms can be used in order to study extremes 
in turbulent flows without having to rely on such modelling.

Figure 8.  PDF of the time-averaged observable X̄T , with T = 10τc, for the 
Ornstein–Uhlenbeck process with α = 1 and ε = 1/2 (σ = 1/

√
2 is the standard 

deviation): computed from a direct simulation of length Td = 106 (black curve), 
and based on the trajectories generated by the GKTL algorithm with 500 replicas, 
Ta = 20τc and k  =  0.9 (blue curve).
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The example we consider is the sampling of extreme fluctuations of the mechanical 
stresses caused by a turbulent flow on an immersed object. Being able to compute flow 
trajectories associated to such extremes is of great interest both for fundamental issues 
and applied problems, such as reliability assessment for industrial structures. More 

specifically, we focus here on the averaged drag FT (t) =
1
T

∫ t+T

t
fd(t

′)dt′, which corre-

sponds to the averaged sum of the eorts from the flow, projected along the flow direc-

tion. The length of the averaging window depends on the nature of the application. 
For instance, it could be related to the typical response time of a material, in order to 
average out high frequency excitation that has a minor impact on the deformation of 
the structure. Note that the choice of the observable is arbitrary and one could choose 
to study other related physical quantities, such as the lift or torque.

In order to provide a proof-of-concept for such rare events approaches for turbulent 
flows, we compute the return time for extreme values of the drag in a simple academic 
flow. The setup we consider, illustrated in figure 9, is that of a two-dimensional chan-
nel flow, with a square obstacle immersed in the middle of the domain. Turbulence is 
generated upstream by means of a grid. This flow is simple enough so that long time 
series can be obtained in a reasonable amount of computational time, allowing for the 
computation of reference return times. In practice, we carry out a direct numerical 
simulation using the lattice Boltzmann method [72], which oers low implementation 
eort for performances comparable to other methods for such simple geometries and 
boundary conditions. The application of the GKTL and AMS algorithms to determin-
istic dynamics requires that some randomness is artificially introduced in the dynam-
ics so that copies originated from the same parent follow dierent paths. This can be 
achieved by randomly perturbing the restart state at branching points.

Figure 10 illustrates the computation of the return times for the drag averaged over 
5 correlation times using the GKTL algorithm. It shows that the use of the algorithm 
makes accessible the computation of rare events at a much lower computational cost 
than direct sampling. More precisely, the algorithm was applied using N = 128 repli-
cas simulated over 10 correlation times. The return time curve presented in figure 10 
is based on the data from K = 10 repetitions of the algorithm, leading to an overall 
computational cost of, roughly, 104 correlation times. From a direct sampling of similar 
computational cost, the rarest accessible event has a return time close to the compu-
tational cost itself, in this case is 104. Figure 10 shows that the use of the GKTL algo-
rithm allows for the computation of return times of much rarer events. The reference 

Figure 9.  Snapshot of a typical vorticity field of the flow under study. A steady 
parabolic velocity profile is imposed at the inlet. Turbulence is then generated by 
a grid. We used the GKTL algorithm the compute the return times of the average 
drag over the square here marked by the grey area.
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curve was computed from a time series spanning 106 correlation times. For events hav-
ing a return time close to 5 · 105 correlation times, the computational cost of estimating 
the return times using the GKTL algorithm is 50 times lower than direct sampling.

The occurrence of plateaus in figure  10 is due to the increasing multiplicity of 
trajectories as the amplitude a increases. Indeed, because of the selection procedure 
involved in the GKTL algorithm, a subset of trajectories can share the same ancestor. 
Henceforth, they are likely to dier only by a small time-interval at the end of their 
whole duration. In such cases, it is common that the maximum over the trajectory is 
attained in earlier times. As a consequence, this subset of trajectories will contribute 

Figure 10.  Illustration of the computation of return times for the averaged drag 
over the square obstacle pictured in figure 9. The averaging window is 5 correlation 
times. The dashed black line represents the reference return times computed from 
a timeseries spanning 106 correlation times, using (7). The solid blue line represents 
the return times obtained using the GKTL algorithm.

Figure 11.  Illustration of the computation of return times for the averaged drag 
over the square obstacle pictured in figure 9, using 50 repetitions of the GKTL 
algorithm. The parameters are the same as in figure  10. This figure  illustrates 
the reduction in the occurrence of plateaus for the return time curve obtained 
using the GKTL algorithm. The dashed black line represents the reference return 
times. The solid blue line represents the return times obtained using the GKTL 
algorithm.
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the same value to the set of maxima from which return times are computed. This eect 
is accentuated in the present case of a deterministic system, as it takes some time for 
copies to separate after being perturbed at a branching point. A straightforward way of 
mitigating the occurrence of such plateaus is to increase the number of trajectories or/
and the number of repetitions of the algorithm. As an illustration, figure 11 shows the 
return time plot obtained using 50 repetitions instead of 10 in figure 10.

6. Conclusion

In this paper, we have considered the question of estimating the return time of rare 
events in dynamical systems. We have compared several estimators, using both usual 
timeseries (generated with direct numerical simulations) and rare event algorithms, 
by generalising the approach relating the return times to the extrema over trajectory 
blocks. This approach relies on the fact that rare events behave, to a good approx
imation, like a Poisson process: this allows for the derivation of a simple formula (see 
(6)) for estimating the return times based on block maxima. We slightly improved 
this formula (see (7)), and further showed that it was possible, provided only minor 
modifications, to evaluate it with data produced by rare event algorithms. Indeed, 
while the traditional block maximum method consists in dividing a given trajectory in 
blocks with arbitrary length (larger than the correlation time of the system, and smaller 
than the return time one seeks to estimate), there is a class of rare event algorithms 
which yields precisely an ensemble of trajectories exhibiting the rare event more often 
than direct simulation, together with the probability of observing each member of the 
ensemble. Hence, we have generalised the block maximum formula to non-equiprobable 
trajectory blocks; this allowed us to use directly rare event algorithms, such as the 
AMS and the GKTL algorithm, to estimate return times for rare events. Using the 
Ornstein–Uhlenbeck process as an illustration, we showed that the method is easy to use 
and accurately computes return times in a computationally ecient manner. Indeed, 
compared to direct sampling, combining the generalised block maximum approach to 
rare event algorithms allowed for computing return times many orders of magnitude 
larger, at fixed computational cost. This method does not depend on the dynamics of 
the system or on the type of observable, as long as a suitable rare event algorithm is 
selected. As an illustration, we computed return time plots for both instantaneous and 
time-average observables for the Ornstein–Uhlenbeck process, using the AMS and the 
GKTL algorithms. This approach paves the way to numerical computation of return 
times in complex dynamical systems. To showcase the potential of the method, we 
discussed briefly an application of practical interest: extreme values of the drag force 
on an object immersed in turbulent flows. Another example of application given very 
recently is the study of heat waves [73].

A key issue with rare event algorithms is to understand if they are actually useful 
to compute rare events and their probabilities for actual complex dynamical systems. 
Many of the proposed approaches fail to pass such a test, either because the algorithm 
is too complex to be used for complex dynamical systems, or the algorithm is restricted 
to specific systems (equilibrium or reversible dynamics, diusions with small noises), 
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or the algorithm simply fails. A key issue with many potentially successful rare event 
algorithms, for instance the AMS algorithm and the GKTL algorithm among others, 
is that their success depends much on the quality of the rule used for selecting trajec-
tories. For instance the AMS or the TAMS algorithm rely on a score function, and the 
GKTL use as a selection rule the increment of a the time average which one aims at 
computing. Whenever one uses a good score function, those algorithms are extremely 
useful and show tremendous sampling improvements [30]. For the AMS algorithm, the 
choice of a good score function often relies on a good rough qualitative understanding 
by the user of the eective dynamics that leads to the rare events. Then the AMS algo-
rithm leads to excellent quantitative results, even with complex dynamical systems (see 
for instance [30]). Several examples have illustrated than those algorithm may fail to 
lead to improvement in other cases, see for instance [74]. Faced with such diculties, 
one may either use an empirical approach, or try to improve the algorithms in order to 
cure potential problems, as we explain now.

The empirical approach consists in identifying a priori the conditions for success of 
the algorithms and identify relevant dynamical phenomena that fulfil these conditions. 
For the AMS algorithm this amounts to understanding suciently well the dynamics, 
in order to be able to define a macroscopic variable that will describe well the dynamics 
leading to the extremes, and to propose a related score function. The algorithm may 
also be used to test some hypothesis on such macroscopic variables, and learn about the 
dynamics. The GKTL algorithm is usually successful in conditions when the sampling 
of time averages is dominated by a persistent macroscopic state.

Several authors have proposed new algorithms to cure some of the problems. A class 
of algorithms seek at changing the dynamics such that the computation will be more 
ecient (see for instance [75] for diusions with small noise, or [74] in relation with the 
GKTL algorithm and references therein). Those methods are limited to diusions, as 
they require to relate the statistics of paths for dierent dynamics, for instance through 
the Girsanov formula. They can involve recursive learning of an optimal dynamics 
and be very successful for dynamics with a few degrees of freedom [74]. Another class 
of algorithms, milestoning (see [76]), is aimed at computing a reduced description of 
the original dynamics, that can afterwards permits to eciently compute dynamical 
quantities, for instance first passage times (see [77] and references therein).
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Appendix A. Mean first-passage time for the Ornstein–Uhlenbeck process

Throughout the paper, we consider as an example the Ornstein–Uhlenbeck process:

dXt = b(Xt)dt+
√
2εdWt,� (A.1)

where Wt is the standard Wiener process and the drift term is linear: b(x) = −αx. We 
write the corresponding Fokker–Planck equation for the probability density P (x, t) of 
the random variable Xt:

∂P

∂t
= LP , with LP = −∂[b(x)P (x, t)]

∂x
+ ε

∂P (x, t)

∂x2
.� (A.2)

The stationary probability density is Ps(x) =
√

α
2πε

e−
αx2

2ε : LPs  =  0. We shall denote the 

standard deviation by σ =
√

ε/α.

For a threshold value a much larger than the standard deviation (a �
√
ε/α), the 

return time r(a) should be well approximated by the mean first-passage time E[τa], 
where τa = min{t � 0|Xt � a}. Computing the mean first-passage time for such a simple 
stochastic process is a classical textbook problem (see for instance [53, section 5.5]): we 
consider the transition probability P (x′, t|x, 0), which also satisfies the Fokker–Planck 
equation, with initial condition P (x′, 0|x, 0) = δ(x′ − x).

We now introduce the quantity G(x, t) =
∫ a

−∞ dx′P (x′, t|x, 0), with the initial con-
dition G(x, 0) = χ]−∞,a[(x), where χ is the indicator function, and with absorbing 
boundary conditions at a, G(a, t) = 0. Using the backwards Kolmogorov equation for 
the transition probability: ∂tP (x′, 0|x, t) = L†P (x′, 0|x, t), and using time-homogene-
ity P (x′, t|x, 0) = P (x′, 0|x,−t), we see that the evolution of G is also governed by 
∂tG = L†G. G(x, t) is the probability that a particle initially at position x has not 
reached a after time t. In other words, it is the probability, conditioned on the initial 
condition x, that τa > t. The moments of the first-passage time follow directly:

Ex[τ
n
a ] = −

∫ +∞

0

tn∂tG(x, t)dt = n

∫ +∞

0

tn−1G(x, t)dt.� (A.3)

From there, a recursion relation can be obtained for the moments of τa:

Ex[τ
n
a ] = − 1

n+ 1

[
b(x)

∂

∂x
+ ε

∂2

∂x2

]
Ex[τ

n+1
a ].� (A.4)

In particular, with Ex[τ
0
a ] = 1, we obtain an exact formula for Ex[τa]:

Ex[τa] =
1

ε

∫ a

x

dye
αy2

2ε

∫ y

−∞
dze−

αz2

2ε =
π

α

{
erfi

(√
α

2ε
a

)
− erfi

(√
α

2ε
x

)}
−

√
π

α

∫ √
α
2ε

a

√
α
2ε

x

dueu
2

erfc(u),

� (A.5)
when x  <  a, and 0 otherwise, where erfc and erfi are the complementary and imaginary 
error functions, respectively [78]. It is straightforward to obtain the mean first passage 
time conditioned on the stationary measure:

Es[τa] =

∫ +∞

−∞
dxPs(x)Ex[τa] =

√
α

2πε3

∫ a

−∞
dye

αy2

2ε

(∫ y

−∞
dze−

αz2

2ε

)2

.� (A.6)
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The above formula provides the theoretical prediction against which numerical esti-
mates of return times for the Ornstein–Uhlenbeck process are compared in the paper.

Appendix B. Statistical properties of AMS estimators

The standard way of analysing the eciency of an estimator θ̂N  (or rather, a family of 
estimators indexed by a parameter N , e.g. a sample size) of a quantity θ is to consider 
the mean-square error:

MSE(N) = E|θ̂N − θ|2 =
(
E[θ̂N ]− θ

)2
+Var

(
θ̂N

)
,� (B.1)

which is decomposed into the contributions of the bias b(N) = E[θ̂N ]− θ (which rep-

resents the systematic, or model, error) and of the variance Var
(
θ̂N

)
 (which represents 

the statistical error). For some error tolerance ε > 0, the cost of the simulation is 
the expected cost of one realisation of the algorithm using a parameter N  such that 
MSE(N) � ε2: finding optimal N  requires a bias-variance trade-o. The precision of the 
estimation is improved by controlling the bias, and the fluctuations by controlling the 
variance.

We now consider the AMS estimator q̂N(a), defined in section 3.4. Note that we 
index this estimator with the number of initial trajectories N : as we shall see, this is 
the parameter which controls the statistical properties, and not the total number of 
sampled trajectories M = N + J̃ . One of the main properties of the AMS algorithm is 
the following unbiasedness result, see [60] for more general statements, and discussion 
on the influence of the time discretization of the Markov dynamics.

Theorem 1.  For every N , for every score function ξ, q̂N is an unbiased estimator of q:

E[q̂N ] = q.� (B.2)

Thus only the statistical error Var(q̂N) depends on the choice of N , and, more 
importantly, on the score function ξ; see [60, 79] for extensive numerical simulations 
concerning the role of the score function. In practice, it is recommended in [60] that one 

computes empirical averages qN ,K = 1
K

∑K
k=1 q̂Ne

(k) over K independent realisations of 

the algorithm, with large K: the associated mean-square error is MSE(N ,K) = Var(q̂N )
K

. 

Moreover, repeating the experience with dierent choices of score functions is a way to 
validate the results, checking the overlap of confidence intervals.

In addition, it has been proved, in dierent contexts, see [80, 81], that q̂N is a 

consistent estimator of q: the convergence q̂N →
N→∞

q holds true, in probability. More 

precisely, it is proved in [81], that the estimator q̂N satisfies a central limit theorem,
√
N
(
q̂N − q

)
→

N→∞
N (0, σ2(ξ, q)),� (B.3)

with an asymptotic variance σ2(ξ, q) ∈ [−q2 ln q, 2q(1− q)]. The minimal variance 
−q2 ln q is obtained when choosing

ξ(y) = ξ(y) ≡ Py(τB < τA).� (B.4)
In practice, the optimal score function ξ , also referred to as the committor, is of course 
not known; note that the estimated probability satisfies q = ξ(y0). Below we will discuss 
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more precisely the statistical properties of the estimators q̂N and r̂N when choosing ξ  
as the score function.

Note that σ2(ξ, q) � 2q(1− q) = 2Var(P), where P  is a Bernoulli random variable 
with mean q. This ensures that in terms of variance the AMS algorithm performs 
better than or similarly to the crude Monte Carlo method, in the rare event regime 
q → 0; moreover, the AMS algorithm with optimal score function outperforms the 
crude Monte-Carlo method (please note that this is the variance normalised by N , 
where N  is the number of initial trajectories, and not by M, where M = N + J̃  is the 
total number of computed trajectories).

Note that E[r̂N ] �= r, and thus r̂N is not an unbiased estimator of r. However, a cen-
tral limit theorem still holds true: since r̂N = φ(q̂N) and r = φ(q) for some function φ, 
such that φ′(q) �= 0, the δ-method [82] implies

√
N
(
r̂N − r

)
→

N→∞
N
(
0, σ2(ξ, q)(φ′(q))2

)
,� (B.5)

where q2φ′(q) →
q→0

Ta, with Ta the size of the window. The estimators for the return time 

r correspond to the choices φ(q) = −Ta/ ln(1− q) or φ(q) = Ta/q.
For an arbitrary choice of the score function ξ, it is not possible in general to obtain 

precise results concerning the bias for the return time r̂N, and the asymptotic variance. 

However, when the optimal score function ξ(y) = Py(τB < τA) is used, elementary argu-

ments are sucient to analyse the statistical properties of estimators q̂N and r̂N = 1
q̂N

 

(with Ta  =  1). The key property [61, 80, 83], is that, when using the optimal score func-

tion, the number of iterations J  follows a Poisson distribution, with parameter −N ln q. 
This situation is referred to as the idealised case in the mathematical literature. Since 
q̂N =

(
1− 1

N

)
J, proving the following results is straightforward: first, concerning the 

bias,

E[q̂N ] = q, E
[
1

q̂N

]
− 1

q
∼

N→∞

− ln q

qN
.� (B.6)

Second, concerning the asymptotic variance,

Var(q̂N) = q2
(
q−

1
N − 1

)
∼

N→∞

−q2 ln q

N
, Var

(
1

q̂N

)
∼

N→∞

− ln q

Nq2
.� (B.7)

Note that relative bias and variance are both of size − ln q
N

. The derivation of the cen-
tral limit theorem [84], and large deviations results [85] is also straightforward in the 
idealised case.

References

	 [1]	 Kramers H A 1940 Physica 7 284
	 [2]	 Kurkijärvi J 1972 Phys. Rev. B 6 832
	 [3]	 Dykman M 2012 Fluctuating Nonlinear Oscillators: from Nanomechanics to Quantum Superconducting 

Circuits ed M Dykman (Oxford: Oxford University Press)
	 [4]	 Bouchet F and Simonnet E 2009 Phys. Rev. Lett. 102 094504
	 [5]	 Berhanu M et al 2007 Europhys. Lett. 77 59001
	 [6]	 Calef D F and Deutch J M 1983 Ann. Rev. Phys. Chem. 34 493

https://doi.org/10.1088/1742-5468/aab856
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1103/PhysRevB.6.832
https://doi.org/10.1103/PhysRevB.6.832
https://doi.org/10.1103/PhysRevLett.102.094504
https://doi.org/10.1103/PhysRevLett.102.094504
https://doi.org/10.1209/0295-5075/77/59001
https://doi.org/10.1209/0295-5075/77/59001
https://doi.org/10.1146/annurev.pc.34.100183.002425
https://doi.org/10.1146/annurev.pc.34.100183.002425


Computing return times or return periods with rare event algorithms

32https://doi.org/10.1088/1742-5468/aab856

J. S
tat. M

ech. (2018) 043213

	 [7]	 Noé F, Schütte C and Vanden-Eijnden E 2009 Proc. Natl Acad. Sci. USA 106 19011
	 [8]	 Paillard D 1998 Nature 391 378
	 [9]	 Robine J M, Cheung S L K, Le Roy S, Van Oyen H, Griths C, Michel J P and Herrmann F R 2008 C. R. 

Biol. 331 171
	[10]	 Dysthe K, Krogstad H E and Muller P 2008 Ann. Rev. Fluid Mech. 40 287
	[11]	 Yeung P K, Zhai X M and Sreenivasan K R 2015 Proc. Natl Acad. Sci. USA 112 12633
	[12]	 Embrechts P, Klüppelberg C and Mikosch T 2013 Modelling Extremal Events: For Insurance and Finance 

(Stochastic Modelling and Applied Probability vol 33) (Berlin: Springer)
	[13]	 Ghil M et al 2011 Nonlinear Process. Geophys. 18 295
	[14]	 Fortin J Y and Clusel M 2015 J. Phys. A: Math. Theor. 48 1
	[15]	 Lucarini V, Freitas A C M, Faranda D, Freitas J M, Holland M, Kuna T, Nicol M, Todd M and Vaienti S 

2016 Extremes and Recurrence in Dynamical Systems (New York: Wiley)
	[16]	 Freidlin M I and Wentzell A D 1998 Random Perturbations of Dynamical Systems 2nd edn (New York: 

Springer)
	[17]	 Ellis R S 1985 Entropy, Large Deviations, and Statistical Mechanics (New York: Springer)
	[18]	 Den Hollander F 2008 Large Deviations vol 14 (Providence, RI: American Mathematical Society)
	[19]	 Touchette H 2009 Phys. Rep. 478 1
	[20]	 Vulpiani A, Cecconi F, Cencini M, Puglisi A and Vergni D 2014 Large Deviations in Physics, The Legacy of 

the Law of Large Numbers (Berlin: Springer)
	[21]	 Asmussen S and Glynn P 2007 Stochastic Simulation: Algorithms and Analysis (Stochastic Modelling and 

Applied Probability vol 57) (New York: Springer) p 14, 476
	[22]	 Landau D P and Binder K 2015 A Guide to Monte Carlo Simulations in Statistical Physics 4th edn (Cam-

bridge: Cambridge University Press) p 17, 519
	[23]	 Liu J S 2008 Monte Carlo Strategies in Scientific Computing (Springer Series in Statistics) (New York: 

Springer) p 16, 343
	[24]	 Bucklew J 2004 Introduction to Rare Event Simulation (Springer Series in Statistics) (New York: Springer) 

p 12, 260
	[25]	 Rubino G and Tun B 2009 Rare Event Simulation Using Monte Carlo Methods (Chichester: Wiley) pp 

1–13
	[26]	 Grassberger P 2002 Comput. Phys. Commun. 147 64
	[27]	 Del Moral P and Garnier J 2005 Ann. Appl. Probab. 15 2496
	[28]	 Cérou F and Guyader A 2007 Stoch. Anal. Appl. 25 417
	[29]	 Giardina C, Kurchan J, Lecomte V and Tailleur J 2011 J. Stat. Phys. 145 787
	[30]	 Rolland J, Bouchet F and Simonnet E 2016 J. Stat. Phys. 162 277
	[31]	 Dellago C, Bolhuis P and Geissler P L 2002 Adv. Chem. Phys. 53 291–318
	[32]	 Weinan E, Ren W and Vanden-Eijnden E 2002 Phys. Rev. B 66 052301
	[33]	 Weinan E, Ren W and Vanden-Eijnden E 2004 Commun. Pure Appl. Math. 52 637
	[34]	 Laurie J and Bouchet F 2015 New J. Phys. 17 015009
	[35]	 Grafke T, Grauer R and Schäfer T 2015 J. Phys. A: Math. Theor. 48 1
	[36]	 Grigorio L S, Bouchet F, Pereira R M and Chevillard L 2017 J. Phys. A: Math. Theor. 50 055501
	[37]	 Wouters J and Bouchet F 2016 J. Phys. A: Math. Theor. 49 374002
	[38]	 Leadbetter M R 1983 Extremes and Related Properties of Random Sequences and Processes (Springer 

Series in Statistics) (New York: Springer)
	[39]	 Doucet A, De Freitas N and Gordon N 2001 Sequential Monte Carlo Methods in Practice (New York: 

Springer)
	[40]	 Sveinsson O, Salas J D and Boes C D 2002 J. Hydrol. Eng. 7 49
	[41]	 Gumbel E J 1941 Ann. Math. Stat. 12 163
	[42]	 Corral A 2005 Phys. Rev. E 71 017101
	[43]	 Peres D J and Cancelliere A 2016 J. Hydrol. 541 256
	[44]	 Meehl G A and Tebaldi C 2004 Science 305 994
	[45]	 Rahmstorf S and Coumou D 2011 Proc. Natl Acad. Sci. USA 108 17905
	[46]	 Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V and Codron F 2010 Geophys. Res. Lett. 

37 L20704
	[47]	 Shepherd T G 2016 Curr. Clim. Change Rep. 2 28
	[48]	 Godrèche C, Majumdar S N and Schehr G 2017 J. Phys. A: Math. Theor. 50 333001
	[49]	 Redner S 2001 A Guide to First-Passage Processes (Cambridge: Cambridge University Press)
	[50]	 Bray A J, Majumdar S N and Schehr G 2013 Adv. Phys. 62 225
	[51]	 Nicolis C and Nicolis S 2007 Europhys. Lett. 80 40003
	[52]	 Langer J S 1969 Ann. Phys. 54 258

https://doi.org/10.1088/1742-5468/aab856
https://doi.org/10.1073/pnas.0905466106
https://doi.org/10.1073/pnas.0905466106
https://doi.org/10.1038/34891
https://doi.org/10.1038/34891
https://doi.org/10.1016/j.crvi.2007.12.001
https://doi.org/10.1016/j.crvi.2007.12.001
https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.5194/npg-18-295-2011
https://doi.org/10.5194/npg-18-295-2011
https://doi.org/10.1088/1751-8113/48/18/183001
https://doi.org/10.1088/1751-8113/48/18/183001
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/S0010-4655(02)00205-9
https://doi.org/10.1016/S0010-4655(02)00205-9
https://doi.org/10.1214/105051605000000566
https://doi.org/10.1214/105051605000000566
https://doi.org/10.1080/07362990601139628
https://doi.org/10.1080/07362990601139628
https://doi.org/10.1007/s10955-011-0350-4
https://doi.org/10.1007/s10955-011-0350-4
https://doi.org/10.1007/s10955-015-1417-4
https://doi.org/10.1007/s10955-015-1417-4
https://doi.org/10.1073/pnas.1712645115
https://doi.org/10.1073/pnas.1712645115
https://doi.org/10.1073/pnas.1712645115
https://doi.org/10.1088/1367-2630/17/1/015009
https://doi.org/10.1088/1367-2630/17/1/015009
https://doi.org/10.1088/1751-8113/48/33/333001
https://doi.org/10.1088/1751-8113/48/33/333001
https://doi.org/10.1088/1751-8121/aa51a3
https://doi.org/10.1088/1751-8121/aa51a3
https://doi.org/10.1088/1751-8113/49/37/374002
https://doi.org/10.1088/1751-8113/49/37/374002
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:1(49)
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:1(49)
https://doi.org/10.1214/aoms/1177731747
https://doi.org/10.1214/aoms/1177731747
https://doi.org/10.1016/j.jhydrol.2016.03.036
https://doi.org/10.1016/j.jhydrol.2016.03.036
https://doi.org/10.1126/science.1098704
https://doi.org/10.1126/science.1098704
https://doi.org/10.1073/pnas.1101766108
https://doi.org/10.1073/pnas.1101766108
https://doi.org/10.1029/2010GL044613
https://doi.org/10.1029/2010GL044613
https://doi.org/10.1007/s40641-016-0033-y
https://doi.org/10.1007/s40641-016-0033-y
https://doi.org/10.1088/1751-8121/aa71c1
https://doi.org/10.1088/1751-8121/aa71c1
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1209/0295-5075/80/40003
https://doi.org/10.1209/0295-5075/80/40003
https://doi.org/10.1016/0003-4916(69)90153-5
https://doi.org/10.1016/0003-4916(69)90153-5


Computing return times or return periods with rare event algorithms

33https://doi.org/10.1088/1742-5468/aab856

J. S
tat. M

ech. (2018) 043213

	[53]	 Gardiner C W 2009 Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences 4th 
edn (Berlin: Springer)

	[54]	 Risken H 1989 The Fokker–Planck Equation 2nd edn (Berlin: Springer)
	[55]	 Bouchet F and Reygner J 2016 Ann. Henri Poincaré 17 3499
	[56]	 Cérou F, Guyader A, Lelièvre T and Pommier D 2011 J. Chem. Phys. 134 054108
	[57]	 Giardina C, Kurchan J and Peliti L 2006 Phys. Rev. Lett. 96 120603
	[58]	 Otto F, Massey N, van Oldenborgh G, Jones R and Allen M 2012 Geophys. Res. Lett. 39 L04702
	[59]	 Kahn H and Harris T E 1951 Natl Bur. Stand. 12 27
	[60]	 Bréhier C E, Gazeau M, Goudenège L, Lelièvre T and Rousset M 2016 Ann. Appl. Probab. 26 3559
	[61]	 Simonnet E 2016 Stat. Comput. 26 211
	[62]	 Tailleur J and Kurchan J 2007 Nat. Phys. 3 203
	[63]	 Lecomte V and Tailleur J 2007 J. Stat. Mech. P03004
	[64]	 Garrahan J P, Jack R L, Lecomte V, Pitard E, van Duijvendijk K and van Wijland F 2007 Phys. Rev. Lett. 

98 195702
	[65]	 Hurtado P I and Garrido P L 2009 J. Stat. Mech. P02032
	[66]	 Berg B A and Neuhaus T 1992 Phys. Rev. Lett. 68 9
	[67]	 Hartmann A K 2002 Phys. Rev. E 65 056102
	[68]	 Moral P D 2004 Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications 

(New York: Springer)
	[69]	 Del Moral P 2013 Mean Field Simulation for Monte Carlo Integration (Monographs on Statistics and 

Applied Probability vol 126) (Boca Raton, FL: CRC Press) p xlvii+578
	[70]	 Spalart P R 2000 Int. J. Heat Fluid Flow 21 252
	[71]	 Moin P 2002 Int. J. Heat Fluid Flow 23 710
	[72]	 Chen S and Doolen G D 1998 Ann. Rev. Fluid Mech. 30 329
	[73]	 Ragone F, Wouters J and Bouchet F 2017 Proc. Natl Acad. Sci. USA 201712645
	[74]	 Nemoto T, Bouchet F, Jack R L and Lecomte V 2016 Phys. Rev. E 93 062123
	[75]	 Vanden-Eijnden E and Weare J 2012 Commun. Pure Appl. Math. 65 1770
	[76]	 Faradjian A K and Elber R 2004 J. Chem. Phys. 120 10880
	[77]	 Schütte C, Noé F, Lu J, Sarich M and Vanden-Eijnden E 2011 J. Chem. Phys. 134 05B609
	[78]	 Abramowitz M and Stegun I 1965 Handbook of Mathematical Functions (New York: Dover)
	[79]	 Rolland J and Simonnet E 2015 J. Comput. Phys. 283 541
	[80]	 Bréhier C E, Lelièvre T and Rousset M 2015 ESAIM Probab. Stat. 19 361
	[81]	 Cerou F, Delyon B, Guyader A and Rousset M 2016 A central limit theorem for Fleming–Viot particle sys-

tems with soft killing (arXiv:1611.00515)
	[82]	 van der Vaart A W 1998 Asymptotic Statistics (Cambridge Series in Statistical and Probabilistic Mathematics 

vol 3) (Cambridge: Cambridge University Press) p 16, 443
	[83]	 Guyader A, Hengartner N and Matzner-Løber E 2011 Appl. Math. Optim. 64 171
	[84]	 Bréhier C E, Goudenège L and Tudela L 2016 Monte Carlo and Quasi-Monte Carlo Methods (Springer 

Proceedings in Mathematics and Statistics vol 163) (Berlin: Springer) pp 245–60
	[85]	 Bréhier C E 2015 ALEA Latin Am. J. Probab. Math. Stat. 12 717

https://doi.org/10.1088/1742-5468/aab856
https://doi.org/10.1063/1.3518708
https://doi.org/10.1063/1.3518708
https://doi.org/10.1103/PhysRevLett.96.120603
https://doi.org/10.1103/PhysRevLett.96.120603
https://doi.org/10.1029/2011GL050422
https://doi.org/10.1029/2011GL050422
https://doi.org/10.1214/16-AAP1185
https://doi.org/10.1214/16-AAP1185
https://doi.org/10.1007/s11222-014-9489-6
https://doi.org/10.1007/s11222-014-9489-6
https://doi.org/10.1038/nphys515
https://doi.org/10.1038/nphys515
https://doi.org/10.1088/1742-5468/2007/03/p03004
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1088/1742-5468/2009/02/p02032
https://doi.org/10.1103/PhysRevLett.68.9
https://doi.org/10.1103/PhysRevLett.68.9
https://doi.org/10.1016/S0142-727X(00)00007-2
https://doi.org/10.1016/S0142-727X(00)00007-2
https://doi.org/10.1016/S0142-727X(02)00167-4
https://doi.org/10.1016/S0142-727X(02)00167-4
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1103/PhysRevA.93.062123
https://doi.org/10.1103/PhysRevA.93.062123
https://doi.org/10.1002/cpa.21428
https://doi.org/10.1002/cpa.21428
https://doi.org/10.1063/1.1738640
https://doi.org/10.1063/1.1738640
https://doi.org/10.1016/j.jcp.2014.12.009
https://doi.org/10.1016/j.jcp.2014.12.009
https://doi.org/10.1051/ps/2014029
https://doi.org/10.1051/ps/2014029
http://arxiv.org/abs/1611.00515
https://doi.org/10.1007/s00245-011-9135-z
https://doi.org/10.1007/s00245-011-9135-z

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Computing return times or return periods with rare event algorithms
	﻿﻿Abstract
	﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Return times: deﬁnition and sampling methods
	﻿﻿2.1. ﻿﻿﻿Computing return times from a timeseries
	﻿﻿2.1.1. ﻿﻿﻿Definition of return times. 
	﻿﻿2.1.2. ﻿﻿﻿Return times and the distribution of successive events. 
	﻿﻿2.1.3. ﻿﻿﻿Sampling return times for rare events. 

	﻿﻿2.2. ﻿﻿﻿Computing return times from a rare event algorithm

	﻿﻿3. ﻿﻿﻿Return times sampled with the AMS algorithm
	﻿﻿3.1. ﻿﻿﻿The TAMS algorithm
	﻿﻿3.2. ﻿﻿﻿Connection with the AMS algorithm for time-dependent observables
	﻿﻿3.3. ﻿﻿﻿The optimal score function
	﻿﻿3.4. ﻿﻿﻿Computing return times
	﻿﻿3.5. ﻿﻿﻿Return times for the Ornstein﻿–﻿Uhlenbeck process from the TAMS algorithm

	﻿﻿4. ﻿﻿﻿Return times sampled with the Giardina﻿–﻿Kurchan﻿–﻿Tailleur﻿–﻿Lecomte algorithm
	﻿﻿4.1. ﻿﻿﻿The algorithm
	﻿﻿4.2. ﻿﻿﻿Return times for the time-averaged Ornstein﻿–﻿Uhlenbeck process from the GKTL algorithm

	﻿﻿5. ﻿﻿﻿Application: extreme drag force on an object immersed in a turbulent ﬂow
	﻿﻿6. ﻿﻿﻿Conclusion
	﻿﻿﻿Acknowledgments
	﻿Appendix A. ﻿﻿﻿Mean ﬁrst-passage time for the Ornstein﻿–﻿Uhlenbeck process
	﻿Appendix B. ﻿﻿﻿Statistical properties of AMS estimators
	﻿﻿﻿References﻿﻿﻿﻿


