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We provide new regularity results for the solutions of the Kolmogorov equation 
associated to a SPDE with nonlinear diffusion coefficient and a Burgers type 
nonlinearity. This generalizes previous results in the simpler cases of additive or 
affine noise. The basic tool is a discrete version of a two sided stochastic integral 
which allows a new formulation for the derivatives of these solutions. We show that 
this can be used to generalize the weak order analysis performed in [20]. The tools 
we develop are very general and can be used to study many other examples of 
applications.
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r é s u m é

Nous démontrons des nouveaux résultats de régularité pour les solutions de 
l’équation de Kolmogorov associées à une EDPS avec un coefficient de diffusion non 
linéaire et une non-linéarité de type Burgers. Ceci généralise des résultats précédents 
obtenus dans les cas plus simples de bruit additif ou affine. L’outil principal est une 
version discrète d’une intégrale stochastique anticipative qui permet une nouvelle 
formulation pour les dérivées de ces solutions. Nous montrons que ceci peut être 
utilisé pour généraliser l’analyse numérique de l’ordre faible effectuée dans [20]. Les 
outils que nous développons sont très généraux et peuvent être utilisés pour étudier 
de nombreux autres exemples d’applications.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

The Kolmogorov equation associated to a stochastic equation is a fundamental object. It is important to 
have a good understanding of this equation since many properties of the stochastic equation can be derived. 
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For instance, it may be used to obtain uniqueness results – in the weak or strong sense – using ideas initially 
developed by Stroock and Varadhan [45] or the so-called “Itô Tanaka” trick widely used by F. Flandoli and 
co-authors, see for instance [23]. Also, it is the basic tool in the weak order analysis of stochastic equations, 
see [46].

For Stochastic Partial Differential Equations (SPDEs), the associated Kolmogorov equation is not a 
standard object since it is a partial differential equation for an unknown depending on time and on an 
infinite dimensional variable. In the case of an additive noise, it has been the object of several studies, see 
[11], [16], [17], [34], [44] and the references therein. But for general diffusion coefficients, very little is known. 
In [18], strict solutions are constructed but the assumptions are extremely strong and the result is of little 
interest in the applications.

In this work, we consider a parabolic semilinear Stochastic Partial Differential Equation (SPDE) of the 
following form:

dXt = AXtdt + G(Xt)dt + σ(Xt)dWt, (1)

where W is a cylindrical Wiener process on a separable infinite dimensional Hilbert space H. Typically, H
is the space of square integrable functions on an open, bounded, interval in R so that the SPDE is driven 
by a space time white noise.

We wish to study regularity properties of the solutions of the associated Kolmogorov equation. The main 
application we have in mind is the weak order analysis of a Euler scheme applied to (1). This has been the 
subject of many articles in the last decade, see [5], [8], [7], [20], [21], [24], [27], [32], [33], [47], [51], [52]. In 
all these articles, the method is a generalization of the finite dimensional proof initially used in [46] (see 
also the monographs [31] and [36] for further references) and based on the Kolmogorov equation associated 
to (1). These results are restricted to the case of a σ satisfying very strong assumptions.

Thus our first aim is to obtain new regularity estimates on the transition semigroup (Pt)t≥. When (1)
has a unique solution (which is the case in the present article), denoted by (X(t, x))t≥0, it is defined by

u(t, x) = Ptϕ(x) = E(ϕ(X(t, x))), (2)

where ϕ is a bounded borelian function on H. The function u formally satisfies the Kolmogorov equation:

du

dt
(t, x) = 1

2Tr
(
σ(x)σ∗(x)D2u(t, x)

)
+ 〈Ax + G(x), Du(t, x)〉, u(0, x) = ϕ(x). (3)

As usual, we have identified the first order derivative of u with respect to x and its gradient in H and the 
second order derivative with the Hessian. The inner product in H is denoted by 〈·, ·〉.

Our arguments are general and can be applied in various situations. However, in order to concentrate on 
the new arguments, we consider a prototype example. Namely, we take three functions F̃1, F̃2, σ : R → R, and 
consider the following stochastic partial differential equation on the interval (0, 1) with Dirichlet boundary 
conditions and driven by a space time white noise:⎧⎪⎨

⎪⎩
dX = (∂ξξX + +F̃1(X) + ∂ξF̃2(X))dt + σ̃(X)dW, t > 0, x ∈ (0, 1),
X(0, t) = X(1, t) = 0,
X(ξ, 0) = x(ξ).

The initial data x is given in L2(0, 1) and W is a cylindrical Wiener process (see [15]). This equation can 
be rewritten in the abstract form (1) classically. Indeed, we define H = L2(0, 1) with norm | · |, A = ∂ξξ on 
the domain D(A) = H2(0, 1) ∩H1

0 (0, 1), and the Nemytskii operators:

Fi(x) = F̃i

(
x(·)

)
, σ(x)h = σ̃

(
x(·)

)
h(·), x ∈ H, h ∈ H.
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Assuming that F̃1, F̃2, and σ̃ are bounded, this defines F1, F2 : H → H and σ : H → L(H), where 
L(H) is the space of bounded linear operators on H. Below, we assume that F̃1, F̃2 and σ̃ are functions of 
class C3, which are bounded and have bounded derivatives. However, it is well-known that F1, F2 and σ do 
not inherit these regularity properties on H. The control of their derivatives requires the use of Lp norms.

Finally, setting B = ∂ξ on H1(0, 1) and G = F1 + BF2, we obtain an equation in the abstract form (1)
above.

Global existence and uniqueness of a solution X ∈ L2(Ω; C([0, T ]; H)) follow from standard arguments 
(see [15] for instance). Indeed, we have boundedness and Lispchitz continuity properties on the coefficients 
G and σ. Thus the transition semigroup can be defined by the formula (2).

The regularity results which are required for the numerical analysis and which we obtain in this article 
have roughly the following form, under appropriate assumptions on ϕ: for t ∈ (0, T )

|Du(t, x) · h| ≤ C(T, ϕ)t−α|(−A)−αh|,
|D2u(t, x) · (h, k)| ≤ C(T, ϕ)t−(β+γ)|(−A)−βh||(−A)−γk|,

(4)

where (−A)−α denotes a negative power (for α > 0) of the linear operator −A. We do not make precise which 
Lp norms appear on the right-hand side in (4). Precise and rigorous statements are given in Section 4.1.

Note that these regularity results are natural. They hold for instance in the case G = 0, σ = 0 for any 
α, β, γ ≥ 0 thanks to the regularization properties of the heat semi-group. Using elementary arguments 
(differentiation inside the expectation, control of the derivative processes using Itô formula and Gronwall 
inequalities), see for instance [3], [20], one can consider the case when the diffusion coefficient σ is constant 
– additive noise case. Then the estimate above holds for α ∈ [0, 1), and β, γ ∈ [0, 1) such that β + γ < 1. 
The case of an affine σ is also treated in the above references but then we impose α, β, γ ∈ [0, 12 ). When 
the diffusion coefficient σ is nonlinear (the so-called multiplicative noise case), the results obtained so far in 
the literature are not satisfactory: the extra restriction β + γ < 1

2 is imposed. This is not sufficient for the 
applications. For the weak order analysis, we need to take β + γ arbitrarily close to 1.

Also, the right hand side of (3) is well defined only if one is able to get (4) for α ∈ [0, 1), β, γ ∈ [0, 12 )
with β + γ > 1

2 . This is important to prove existence of strict solutions to this Kolmogorov equation and 
thus to generalize results available in the case of additive noise.

In this article, we introduce a new approach to obtain such results. Our first main contribution in this 
article is to prove that in (4) one may take α ∈ [0, 1) and β, γ ∈ [0, 12 ), in the multiplicative noise case, for 
SPDEs of the type of (1).

At a formal level, our strategy is based on new expressions for the first and the second order derivatives 
of u which are obtained thanks to the Malliavin duality formula. These formulas are written in terms of 
some two-sided stochastic integrals, with anticipating integrands. Several notions of anticipating integral 
exist: see for instance [2], [35], [39] where the definition of such integrals is motivated by similar reasons to 
ours. The two-sided integrals which we would need are similar to those developed in [37], [40], [41], but we 
need to consider more general types of integrands.

We have not found the construction of the two-sided integrals we need in the literature. Although inter-
esting in itself, their rigorous and general construction would considerably lengthen the article; this is left 
for future works.

We have chosen a different approach: we consider time discretized versions of the problem, and at the 
end pass to the limit in estimates. The advantage is that we do not need to provide the construction of the 
two-sided integral since at the discrete level it is straightforward. The drawback is that all our estimates 
are made on the discretized processes and computations are sometimes technical.

Nonetheless, we give a formal derivation of the formulas for the first and second derivatives of u in 
section 5.1. We hope that this helps the reader to understand our ideas. Also, this allows to describe the 
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type of integrals which would be required to have a direct proof in continuous time. Again such a proof, which 
would simplify some technical estimates such as those in section 5.10, requires the rigorous construction of 
a two sided integral and we chose to avoid this. Thus, results presented in section 5.1 remain at a formal 
level.

Once new regularity estimates on the solutions of Kolmogorov equations are obtained, our second con-
tribution is to address the weak order analysis of the following Euler scheme applied to (1):

Xn+1 −Xn = Δt
(
AXn+1 + G(Xn)

)
dt + σ(Xn)

(
W

(
(n + 1)Δt

)
−W (nΔt)

)
, X0 = x,

where Δt is the time step. We prove that the weak rate of convergence is equal to 1
2 : for arbitrarily small 

κ ∈ (0, 12 ),
∣∣Eϕ(X(NΔt)

)
− ϕ

(
XN

)∣∣ ≤ Cκ(T, ϕ, x)Δt
1
2−κ,

where the integer N is such that NΔt = T , for arbitrary but fixed T ∈ (0, ∞).
The value 1

2 for the weak order convergence is natural: indeed, it is possible to show that (for an appro-
priate norm ‖ · ‖) one has the strong convergence rate 1

4 : E‖X(NΔt) −XN‖ ≤ Cκ(T, x)Δt
1
4−κ

2 .
Like in [8], [7], in the case of ergodic SPDEs, the analysis can be extended on arbitrarily large time 

intervals, with a uniform control of the error. This yields error estimates concerning the approximation of 
invariant distributions. In fact, under appropriate conditions on the Lipschitz constants of the nonlinear 
coefficients, one can include factors of the type exp(−ct), with c > 0, on the right-hand sides of the equations 
in (4); alternatively, these regularity estimates are transfered to the solutions of associated Poisson equations. 
We do not consider this question further in this article.

We generalize the proof of [20], and of subsequent articles, which was done under the artificial assumptions 
that F : H → H and σ : H → L(H) are of class C2, with bounded derivatives, and that the second 
order derivative of σ satisfies a very restrictive assumption. As already explained above, the new regularity 
estimates on the solutions of Kolmogorov equation obtained in the first part of the article are fundamental. 
Here we treat diffusion coefficients of Nemytskii type, and drift coefficients which are sums of Nemytskii 
and Burgers type nonlinearities. Treating Burgers type nonlinearities is one of the novelties, and one of the 
main sources of technical difficulties, of this work. Even if the decomposition of the error and ideas in the 
control of the terms are similar to [20], we need to consider all the terms again since the functional setting 
is different.

Another approach, using the concept of mild Itô processes, see [14], [19], has been recently studied to 
provide weak convergence rates for SPDEs (1) with multiplicative noise, for several examples of numerical 
schemes: see [13], [28], [29], [30]. In particular, in [28], a similar result as ours is obtained when the Burgers 
type nonlinearity is absent (F2 = 0). This requires also to work in a Banach spaces setting, with an 
appropriate type of mild Itô formula [14]. It is not clear that this can be extended to the case F2 �= 0. 
Moreover, we believe that our way of treating the discretization error is more natural and somewhat simpler. 
We also mention that the regularity requirements are weaker in our work.

Also, in [4], a completely different approach is used; but up to now, this covers only additive noise, i.e.
the case when σ is constant.

Using Malliavin calculus techniques to get weak convergence rates for numerical approximations is stan-
dard in the literature of finite dimensional Stochastic Differential Equations: see for instance [6] and [12]. 
As already emphasized in [20], Malliavin calculus techniques are used in a completely different manner in 
this article. Note that the approach of [12] has been extended in the infinite dimensional setting in [4]. 
However, the approach of [6] can not be applied for SPDEs, as proved by [9]: weak convergence rates for 
SPDEs heavily depend on the regularity of the test function.
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In future works, we plan to analyze the weak error associated to spatial discretization, using Finite 
Elements, like in [5]. Note that the analysis of the weak error may also be generalized to other examples of 
time discretization schemes, such as exponential Euler schemes, like in [47], [51] for instance.

We have chosen to consider SPDEs (1) of one type, namely with Nemytskii diffusion coefficients, and 
Nemytskii and Burgers type nonlinear drift coefficients, driven by space-time white noise, in dimension 1. 
We believe that natural generalizations hold true, for instance for equations in dimension 2 or 3, with 
appropriate noise. Moreover, considering coefficients with unbounded derivatives, with polynomial growth 
assumptions, is also an important subject, which we have not chosen to treat; indeed it would have required 
to deal with additional technical difficulties, resulting in hiding the fundamental ideas of our approach.

On a more theoretical point of view, we leave for future work the important question of the construction 
in continuous time of the two-side stochastic integrals used in the proof of the new regularity results for the 
solutions of Kolmogorov equations. It may also be interesting to generalize these estimates to higher order 
derivatives. Finally, we believe that these results and the strategy of proof will have other applications, 
beyond analysis of weak convergence rates.

This article is organized as follows. The functional setting is made precise in Sections 2 and 3. Section 4
contains the statements of our main results, on the regularity of the solution of the Kolmogorov equation 
(Section 4.1), then on the weak rate of convergence of the Euler approximation (Section 4.2). Detailed proofs 
are given in Section 5 and in Section 6 respectively.

2. Setting

We use the notation N� = {1, 2, . . .} for the set of (positive) integers.
Throughout the article, c or C denote generic positive constants, which may change from line to line. We 

do not always precise the various parameters they depend on. When necessary, we write C = C...(. . .) to 
emphasize the dependence on some parameters, by convention it is locally bounded on the domains where 
the parameters live.

2.1. Functional spaces and stochastic integration

In all the article, given two Banach spaces E1 and E2, Ck
b (E1; E2), or Ck

b (E1) when E1 = E2, is the space 
of bounded Ck functions from E1 to E2 with bounded derivatives up to order k. Also L(E1; E2) denotes 
the space of bounded linear operators from E1 to E2. If E1 = E2, we set L(E1) = L(E1; E1).

The SPDE (1) is considered as taking values in the separable Hilbert space H = L2(0, 1), with norm 
(resp. inner product) denoted by | · | (resp. 〈·, ·〉). We will also extensively use the Banach spaces Lp(0, 1), 
for p ∈ [1, ∞]; the Lp norm is denoted by | · |Lp .

When K is a separable Hilbert space, the trace operator is denoted by Tr(·); recall that TrΨ is well 
defined when Ψ ∈ L(K) is nuclear ([25]).

We recall that if Ψ ∈ L(K) is a nuclear operator and L ∈ L(K) is a bounded linear mapping, then LΨ
and ΨL are nuclear operators, and TrLΨ = TrΨL.

Let H1, H2 be two separable Hilbert spaces. For L ∈ L(H1, H2), we denote by L� its adjoint. We now in-
troduce the space L2(H1; H2) of Hilbert–Schmidt operators from H1 to H2: a linear mapping Φ ∈ L(H1; H2)
is an Hilbert–Schmidt operator if Φ�Φ ∈ L(H1, H1) is nuclear, and the associated norm ‖ · ‖L2(H1,H2) sat-
isfies ‖Φ‖L2(H1;H2) = ‖Φ∗‖L2(H2;H1) = (TrΦΦ∗) 1

2 . We use the notation L2(H1) = L2(H1; H1).
For a function ψ ∈ C1(H; R), we often identify the first order derivative and the gradient: 〈Dψ(x), h〉 =

Dψ(x) · h, for x, h ∈ H. Similarly, if ψ ∈ C2(H; R), we often identify the second order derivative and the 
Hessian: 〈D2ψ(x)h, k〉 = D2ψ(x) · (h, k), for x, h, k ∈ H.
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We are now in position to present basic elements about stochastic Itô integrals on Hilbert spaces, see [15]
for further properties. The cylindrical Wiener process on H is defined by

W (t) =
∑
i∈N∗

βi(t)fi, (5)

where 
(
βi

)
i∈N∗ is a sequence of independent standard scalar Wiener processes on a filtered probability space 

satisfying the usual conditions 
(
Ω, F , (Ft)t≥0, P

)
and 

(
fi
)
i∈N∗ is a complete orthonormal system of H.

It is standard that this representation does not depend on the choice of the complete orthonormal system 
of H. Moreover, it is well-known that W (t) as defined by (5) does not take values in H; however, the series 
is convergent in any larger Hilbert space K, such that the embedding from H into K is an Hilbert–Schmidt 
operator.

Given a predictable process Φ ∈ L2(Ω × (0, T ); L2(H; K)), the integral 
∫ T

0 Φ(s)dW (s) is a well defined 
Itô integral with values in the Hilbert space K. Moreover, Itô isometry reads:

E

⎛
⎝‖

T∫
0

Φ(s)dW (s)‖2
K

⎞
⎠ = E

⎛
⎝ T∫

0

‖Φ(s)‖2
L2(H;K)ds

⎞
⎠ .

In the sequel, we will need to control Lp norms of stochastic integrals, for p ∈ [2, ∞), for processes Φ with 
values in L(H; E), where E = Lp(0, 1) is a separable Banach space. The space L2(H, K) of Hilbert–Schmidt 
operators is then replaced by the space R(H, E) of γ-radonifying operators: a linear operator Ψ ∈ L(H, E)
is a γ-radonifying operator, if the image by Φ of the canonical Gaussian distribution on H extends to a 
Borel probability measure on E. The space R(H; E) is equipped with the norm ‖ · ‖R(H,E) defined by

‖Φ‖2
R(H;E) = Ẽ

∣∣ ∑
i∈N∗

γiΦfi
∣∣2,

where (γi)i∈N∗ is a sequence of independent standard (mean 0 and variance 1) Gaussian random variables, 
defined on a probability space (Ω̃, F̃ , ̃P), with expectation operator denoted by Ẽ, and (fi)i∈N∗ is a complete 
orthonormal system. The expression of ‖Φ‖R(H;E) does not depend on the choice of these elements. We 
refer for instance to [10,49,50] for further properties.

An important tool which is used frequently in the sequel is the left and right ideal property for 
γ-radonifying operators: for every separable Hilbert spaces K, K and for every Banach spaces E = Lp(0, 1), 
E = Lq(0, 1), with p, q ∈ [2, ∞), for every L1 ∈ L(E, E), Ψ ∈ R(K, E) and L2 ∈ L(K, K), one has 
L1ΨL2 ∈ R(K, E),

‖L1ΨL2‖R(K,E) ≤ ‖L1‖L(E,E)‖Ψ‖R(K,E)‖L2‖L(K,K). (6)

For E = Lp(0, 1) with p ∈ [2, ∞), the following generalization of Itô isometry holds true, in terms of an 
inequality only: for predictable processes Φ ∈ L2(Ω × (0, T ); R(H; E)), the Itô integral 

∫ T

0 Φ(s)dW (s) can 
be defined, with values in E, and there exists cE ∈ (0, ∞), depending only on the space E, such that

E

⎛
⎝‖

T∫
0

Φ(s)dW (s)‖2
E

⎞
⎠ ≤ cEE

⎛
⎝ T∫

0

‖Φ(s)‖2
R(H,E)ds

⎞
⎠ . (7)

Finally, generalizations of Burkholder–Davies–Gundy inequalities are also available and will be used 
throughout the article.

To simplify the notation, we often write Lp instead of Lp(0, 1).
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2.2. Elements of Malliavin calculus

We recall basic definitions regarding Malliavin calculus, which is a key tool for the analysis provided 
below; especially, we define the Malliavin derivative, and state the duality formula which will be used. We 
simply aim at giving the main notation; for a comprehensive treatment of Malliavin calculus, we refer to 
the classical monograph [38].

Malliavin calculus techniques will be required for both contributions of this article: first the proof of 
new regularity estimates for the solution of Kolmogorov equations associated to SPDEs with nonlinear 
diffusion coefficient, and second the analysis of weak convergence rates for the numerical discretization 
of the SPDE. For the first part, we will only use discrete time versions of all objects, which are based on 
standard integration by parts in the weighted L2

ρ spaces, where ρ is the Gaussian density. The full generality 
of Malliavin calculus, in continuous time, is mainly needed in the second part.

Given a smooth real-valued function G on Hn and ψ1, . . . , ψn ∈ L2(0, T ; H), the Malliavin derivative of 
the smooth random variable G

(∫ T

0 〈ψ1(r), dW (r)〉, . . . , 
∫ T

0 〈ψn(r), dW (r)〉
)
, at time s, in the direction h ∈ H, 

is defined as

Dh
sG

( T∫
0

〈ψ1(r), dW (r)〉, . . . ,
T∫

0

〈ψn(r), dW (r)〉
)

=
n∑

i=1
∂iG

( T∫
0

〈ψ1(r), dW (r)〉, . . . ,
T∫

0

〈ψn(r), dW (r)〉
)
〈ψi(s), h〉.

We also define the process DG by 〈DG(s), h〉 = Dh
sG. It can be shown that D defines a closable operator 

with values in L2(Ω × (0, T ); H), and we denote by D1,2 the closure of the set of smooth random variables 
for the norm

‖G‖D1,2 =
(
E(|G|2 +

T∫
0

|DsG|2ds)
) 1

2
.

We define similarly the Malliavin derivative of random variables taking values in H. If G =
∑

i Giei ∈
L2(Ω, H) with Gi ∈ D

1,2 for all i ∈ N
� and 

∑
i

∫ T

0 |DsGi|2ds < ∞, we set

Dh
sG =

∑
i

Dh
sGiei, DsG =

∑
i

DsGiei.

The chain rule is valid: if u ∈ C1
b (R) and G ∈ D

1,2, then u(G) ∈ D
1,2 and D(u(G)) = u′(G)DG.

For G ∈ D
1,2 and ψ ∈ L2(Ω × (0, T ); H), such that ψ(t) ∈ D

1,2 for all t ∈ [0, T ], and such that ∫ T

0
∫ T

0 |Dsψ(t)|2dsdt < ∞, we have the Malliavin calculus duality formula

E

⎛
⎝G

T∫
0

(ψ(s), dW (s))

⎞
⎠ = E

⎛
⎝ T∫

0

(DsG,ψ(s))ds

⎞
⎠ =

∑
i

E

⎛
⎝ T∫

0

Dei
s G (ψ(s), ei)ds

⎞
⎠ ,

where the stochastic integral is in general a Skohorod integral. However, in this article, it corresponds with 
the Itô integral since we only need to consider the Skohorod integral of adapted processes. Moreover, the 
duality formula above holds for G ∈ D

1,2 and ψ ∈ L2(Ω × (0, T ); H) when ψ is an adapted process.
Recall that if G is Ft measurable, then DsG = 0 for s ≥ t.
Finally, we use the following formula, as a consequence of the duality formula above, see Lemma 2.1 

in [20]: let G ∈ D
1,2, u ∈ C2

b (H) and ψ ∈ L2(Ω × (0, T ), L2(H)) be an adapted process, then
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E

⎛
⎝Du(G) ·

T∫
0

ψ(s)dW (s)

⎞
⎠ =

∑
i

E

⎛
⎝ T∫

0

D2u(G) · (Dei
s G,ψ(s)ei) ds

⎞
⎠

= E

⎛
⎝ T∫

0

Tr
(
ψ∗(s)D2u(G)DsG

)
ds

⎞
⎠ .

3. Assumptions and properties of coefficients

In this section, we give definitions and properties of the coefficients A, G = F1 + BF2, and σ, which 
appear in (1). In addition, Section 3.2 presents results concerning Sobolev norms.

3.1. The linear operator A

The operator A is an unbounded linear operator on H = L2(0, 1): it is defined as the Laplace operator 
on (0, 1), with homogeneous Dirichlet boundary conditions, on the domain D(A) = H2(0, 1) ∩H1

0 (0, 1). It 
satisfies Property 3.1 below.

Property 3.1. For i ∈ N
�, define ei =

√
2 sin

(
iπ·

)
and λi = (iπ)2. Then

•
(
ei
)
i∈N∗ is a complete orthonormal system of H, and, for all i ∈ N

∗,

Aei = −λiei.

• For any α ∈ R, 
∑∞

i=1 λ
−α
i < ∞ if and only if α > 1

2 .
• the family of eigenvectors is equibounded in L∞: supi∈N� |ei|L∞ < ∞.

In particular, for every p ∈ [2, ∞], supi∈N� |ei|Lp < ∞. This equiboundedness property is crucial for many 
estimates which will be proved in this article.

For every p ∈ (2, ∞), A can also be seen as an unbounded linear operator on Lp(0, 1), with domain 
Dp(A) = {x ∈ Lp(0, 1);Ax ∈ Lp(0, 1)}. Note the inclusion Dp(A) ⊂ Dq(A) ⊂ D(A) for p ≥ q ≥ 2.

The operator A generates an analytic semigroup 
(
etA

)
t≥0 on Lp(0, 1), for every p ∈ [2, ∞), see for 

instance [42]. In the case p = 2, we have the following formula: etA =
∑∞

i=1 e
−tλi〈·, ei〉ei for every x ∈ H

and t ≥ 0.

We use the standard construction of fractional powers (−A)−α and (−A)α of A, for α ∈ (0, 1), see for 
instance [42]:

(−A)−α = sin(πα)
π

∞∫
0

t−α(tI −A)−1dt,

(−A)α = sin(πα)
π

∞∫
0

tα−1(−A)(tI −A)−1dt,

where (−A)α is defined as an unbounded linear operator on Lp(0, 1), with domain Dp

(
(−A)α

)
. Definitions 

are consistent when p varies. In the case p = 2, the construction is simple: indeed,
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(−A)−αx =
∑
i∈N�

λ−α
i 〈x, ei〉ei, x ∈ H,

(−A)αx =
∑
i∈N�

λα
i 〈x, ei〉ei, x ∈ D2

(
(−A)α

)
=

{
x ∈ H;

∞∑
i=1

λ2α
i 〈x, ei〉2 < ∞

}
.

We use the natural norms on Dp((−A)α), denoted by |(−A)α · |Lp .

3.2. Useful inequalities

For p �= 2, the norm of Dp((−A)α) does not in general coincide with the norm of the standard Sobolev 
spaces W 2α,p = W 2α,p(0, 1); see [48, Section 4.2.1] for their definitions. When 2α is not an integer, we may 
use the norm defined in [48, Section 4.4.1, Remark 2]. In this article, α ∈ (0, 1/2) and in this case, this norm 
writes:

|x|W 2α,p = |x|Lp +
1∫

0

1∫
0

|x(ξ) − x(η)|p
|ξ − η|1+2αp dξdη. (8)

It is useful to compare the two scales of spaces Dp((−A)α) and W 2α,p. Below we use a series of results 
from [48]. Let us choose ε > 0, by the definition in section 4.2.1, Theorem 1, section 4.3.1 which asserts that 
2.4.2 (16) holds, we have:

W 2α−ε,p = B2α−ε
p,p = (Lp,W 2,p)α− ε

2 ,p
,

where B2α−ε
p,p is the Besov space and (·, ·)θ,p denotes the interpolation spaces. Then, we use 1.3.3 (e), the 

equality W 2,p = D((−A)) and 1.15.2 (d) to obtain:

(Lp,W 2,p)α− ε
2 ,p

⊂ (Lp,W 2,p)α,1 ⊂ D((−A)α).

It follows

W 2α−ε,p ⊂ D((−A)α).

The same arguments imply

D((−A)α) ⊂ W 2α+ε,p.

(Note that for p = 2, we can take ε = 0 and we have in fact D((−A)α) ⊂ W 2α,2.)
We deduce the following inequalities:

|x|W 2α−ε,p ≤ cα,ε,p|(−A)αx|Lp , x ∈ Dp((−A)α) ; |(−A)αx|Lp ≤ cα,ε,p|x|W 2α+ε,p , x ∈ W 2α+ε,p, (9)

for cα,ε,p ∈ (0, ∞).

We also need inequalities for composition and products in these spaces. Let us consider a Lipschitz 
continuous function g : R → R. It satisfies:

|g(t)| ≤ L(1 + |t|), |g(t) − g(s)| ≤ L|t− s|, t, s ∈ R,

for some constant L. It follows for x ∈ W 2α,p, α < 1 :
2
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|g(x)|Lp ≤ L(1 + |x|Lp),
1∫

0

1∫
0

|g(x(ξ)) − g(x(η))|p
|ξ − η|1+2αp dξdη ≤ L

1∫
0

1∫
0

|x(ξ) − x(η)|p
|ξ − η|1+2αp dξdη

Recalling the definition (8) of the norm on W 2α,p we get the following inequality: for α < 1
2 and ε > 0, any 

x ∈ Dp

(
(−A)α+ε

)
, and any Lipschitz continuous function g : R → R,

∣∣(−A)αg(x)
∣∣
Lp ≤ cα,ε,p|g(x)|W 2α+ε,p ≤ cα,ε,p,g

(
1 + |x|W 2α+ε,p

)
≤ cα,ε,p,g

(
1 + |(−A)α+εx|Lp

)
. (10)

Also, by Hölder inequality and (8), for α < 1
2 , and x ∈ W 2α,q, y ∈ W 2α,r such that 1

p = 1
q + 1

r , one has

|xy|W 2α,p ≤ cα,q,r
(
|x|Lq |y|W 2α,r + |x|W 2α,q |y|Lr

)
≤ cα,q,r|x|W 2α,q |y|W 2α,r . (11)

Using then (9), (11) yields that for α ∈ (0, 12 ), ε > 0, 1
p = 1

q + 1
r , and x ∈ Dq

(
(−A)α+ε

)
, y ∈ Dr

(
(−A)α+ε

)
, 

one has

|(−A)αxy|Lp ≤ cα,ε,q,r|(−A)α+εx|Lq |(−A)α+εy|Lr . (12)

Below, we also need to estimate products of two functions, one of which belongs to a space of negative 
regularity, in a space D((−A)−α) with α ∈ (0, 12 ). More precisely, given x ∈ D((−A)−α), we want to give 
a meaning to the product xy. For functions defined on the whole space R, this is classically treated thanks 
to paraproduct. In the case of the interval treated here, we provide an alternate argument to do this. As 
in the case of R, the sum of the regularity of x and y has to be positive and the product is defined only in 
spaces of negative regularity.

We use a duality argument. Let us first consider smooth x and y, then for z smooth. Let α ∈ (0, 12 ), 
ε > 0, 1

p = 1
q + 1

r , 1
q + 1

q′ = 1; note that 1
q′ = 1

r + 1
p′ :

〈xy, z〉 = 〈(−A)−αx, (−A)α(yz)〉 =
1∫

0

((−A)−αx)(ξ)((−A)α(yz))(ξ)dξ ≤ |(−A)−αx|Lq |(−A)α(yz)|Lq′ .

From (9) and (11), we obtain

|(−A)α(yz)|Lq′ ≤ c|yz|W 2α+ε,q′

≤ c|y|W 2α+ε,r |z|W 2α+ε,p′

≤ c|(−A)α+εy|Lr |(−A)α+εz|Lp′ .

We deduce:

〈xy, z〉 ≤ c|(−A)−αx|Lq |(−A)α+εy|Lr |(−A)α+εz|Lp′ .

Since |(−A)−α−ε(xy)|Lp = sup 〈xy,z〉
|(−A)α+εz|

Lp′
, we obtain:

|(−A)−α−ε(xy)|Lp ≤ cα,ε,q,r|(−A)−αx|Lq |(−A)α+εy|Lr . (13)

By density, this inequality remains true for all x, y, z such that the right hand side is finite.
Finally, for every p ∈ [2, ∞), we have the Sobolev embedding: Lp ⊂ W

1
2− 1

p ,2, see for instance [1, Theo-
rem 7.58]. Since D2

(
(−A)

1
4− 1

2p
)

is a closed subspace of W
1
2− 1

p ,2 and the norms | · |W 2α,2 and |(−A)α · |L2

are equivalent on D2
(
(−A)α

)
(see [48], Theorem 1.18.10), we deduce:

|x|Lp ≤ C(p)
∣∣(−A)

1
4− 1

2px|L2 . (14)
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3.3. Nonlinear terms G and σ

The drift G is the sum of a Nemytskii and of a Burgers type nonlinearities: G = F1 + BF2, where 
Bx = ∂ξx ∈ Lp(0, 1) for x ∈ W 1,p(0, 1), and where F1 and F2 are Nemytskii coefficients. Precisely, let 
F̃1, F̃2 ∈ C3

b (R) be two real-valued functions. We assume that they are bounded to simplify the presentation, 
but this could easily be relaxed. Then we set, for every x ∈ Lp, with p ∈ [1, ∞], Fi(x)(·) = F̃i

(
x(·)

)
, for 

i ∈ {1, 2}.
Straightforward applications of Hölder inequality yield Property 3.2 below.

Property 3.2. Let F ∈ {F1, F2}.
For every p ∈ [1, ∞], there exists Cp ∈ (0, ∞) such that for every x ∈ L2, h ∈ Lp

|F (x)|Lp ≤ Cp , |F ′(x).h|Lp ≤ Cp|h|Lp ;

moreover, if q1, q2, r1, r2, r3 ∈ [1, ∞] are such that 1
q1

+ 1
q2

= 1
p and 1

r1
+ 1

r2
+ 1

r3
= 1

p , there exists Cp(q1, q2)
and Cp(r1, r2, r3) such that for every x ∈ L2

|F (2)(x).(h1, h2)|Lp ≤ Cp(q1, q2)|h1|Lq1 |h2|Lq2 , ∀ h1 ∈ Lq1 , h2 ∈ Lq2

|F (3)(x).(h1, h2, h3)|Lp ≤ Cp(r1, r2, r3)|h1|Lr1 |h2|Lr2 |h3|Lr3 , ∀ h1 ∈ Lr1 , h2 ∈ Lr2 , h3 ∈ Lr3 .

In order to control terms of the form BF2(x), we will use the following property

∣∣(−A)−αB(−A)−β
∣∣
L(Lp) < ∞, for α + β >

1
2 . (15)

Indeed, this inequality is a direct consequence of (9) when α = 0, and uses a duality argument when β = 0. 
The general case follows by an interpolation argument.

The diffusion coefficient σ is a linear operator of Nemytskii type. Precisely, let σ̃ ∈ C3
b (R) be a real-valued, 

bounded, function, with bounded derivatives up to order 3. Then, for every p ∈ [1, ∞], define 
(
σ(x)h

)
(·) =

σ̃
(
x(·)

)
h(·) for all x, h ∈ Lp.

Property 3.3. For every p, q ∈ [1, ∞], σ : L2 → L(Lp, Lq) is of class C3. Moreover, the following conditions 
on the derivatives of σ hold true.

For every p ∈ [2, ∞], there exists Cp ∈ (0, ∞) such that for every x ∈ L2

|σ(x)|L(Lp) ≤ Cp.

For every p ∈ (2, ∞), there exists Cp ∈ (0, ∞) such that for every x ∈ L2

∣∣(−A)−
1
2p
(
σ′(x).h

)∣∣
L(L2) ≤ Cp|h|Lp , ∀ h ∈ Lp, (16)∣∣(−A)−

1
2p
(
σ′′(x).(h, k)

)∣∣
L(L2) ≤ Cp|h|L2p |k|L2p , ∀ h, k ∈ L2p, (17)∣∣(−A)−

1
2p
(
σ(3)(x).(h, k1, k2)

)∣∣
L(L2) ≤ Cp|h|L2p |k1|L4p |k2|L4p , ∀ h ∈ L2p, k1, k2 ∈ L4p. (18)

Finally, for every x ∈ L2 and h ∈ Lp, k1, k2 ∈ L2p

σ(x)� = σ(x) ,
(
σ′(x).h

)� = σ′(x).h ,
(
σ′′(x).(k1, k2)

)� = σ′′(x).(k1, k2). (19)
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We sketch the proof of (16), the two other estimates (17) and (18) are obtained in the same way. For 
every y, z ∈ L2,

〈(σ′(x).h)y, (−A)−
1
2p z〉 ≤ C|h|Lp |y|L2 |(−A)−

1
2p z|Lr

≤ C|h|Lp |y|L2 |(−A)
1
4− 1

2r− 1
2p z|L2 ,

thanks to Hölder inequality, with 1
r + 1

p = 1
2 , and inequality (14).

When no confusion is possible, we will often use the notations Fi for F̃i, and σ for σ̃.

3.4. Test functions ϕ

We now give the regularity assumptions on the test functions ϕ. Typically, ϕ is only defined on Lp(0, 1), 
for some p ∈ [2, ∞) and is not a Cn function on Lp for n ≥ 2. It possesses derivatives only in restricted 
directions, that is in a smaller space which is in general Lq for q > p. To state the assumption on the test 
functions allowed, we consider regularized version ϕδ, defined in Assumption 3.4 below.

Assumption 3.4. Let p ∈ [2, ∞) and ϕ : Lp(0, 1) → R. For every δ ∈ (0, 1), define ϕδ(·) = ϕ
(
eδA·). We 

assume that ϕδ is of class C3 on H, for every δ ∈ (0, 1). Moreover, we assume that the derivatives satisfy 
the following conditions, uniformly with respect to δ ∈ (0, 1): there exist q ∈ [2, ∞), K ∈ N

� ∪ {0}, and 
C(p, q, K) ∈ (0, ∞) such that for every x ∈ Lp, and h1, h2, h3 ∈ Lq

∣∣Dϕδ(x).h1
∣∣ ≤ C(p, q,K)

(
1 + |x|Lp

)K |h1|Lq , (20)∣∣D2ϕδ(x).(h1, h2)
∣∣ ≤ C(p, q,K)

(
1 + |x|Lp

)K |h1|Lq |h2|Lq , (21)∣∣D3ϕδ(x).(h1, h2, h3)
∣∣ ≤ C(p, q,K)

(
1 + |x|Lp

)K |h1|Lq |h2|Lq |h3|Lq . (22)

Interesting examples of test functions ϕ are constructed as follows. Let φ ∈ C3(R) a function of class C3; 
we assume that the derivatives of φ have at most polynomial growth. Define

ϕ(x) =
1∫

0

φ
(
x(ξ)

)
dξ,

for x ∈ Ln(0, 1), where n ∈ N
� is such that sup

x∈R

|ϕ′(x)|
(1+|x|)n < ∞.

Since derivatives of ϕ take the form D(n)ϕ(x).
(
h1, . . . , hn

)
= φ(n)(x(·)

)
h1(·) . . . hn(·), Assumption 3.4 is 

satisfied by applying Hölder inequality, with appropriately chosen parameters p, q.
If we assume that the derivatives of φ are bounded, we may choose K = 0 and p = 2; the estimate on 

the third order derivative requires to choose q = 3.

4. Main results

We consider the stochastic evolution equation (1), which we recall here:

dXt = AXtdt + G(Xt)dt + σ(Xt)dW (t), X(0) = x, (23)

where x ∈ H is an arbitrary initial condition.
For every time T ∈ (0, ∞), equation (23) admits a unique mild solution in C([0, T ]; H), i.e. X =(

Xt

)
is a H-valued continuous stochastic process such that for every 0 ≤ t ≤ T
t∈[0,T ]
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Xt = etAx +
t∫

0

e(t−s)AG(Xs)ds +
t∫

0

e(t−s)Aσ(Xs)dW (s), (24)

where the H-valued stochastic integral is interpreted in Itô sense. We refer for instance to [15] for a proof 
of this standard result.

To emphasize on the influence of the initial condition x, we often use the notation X(t, x). However, in 
many computations we omit this dependence and write Xt for simplicity.

A rigorous treatment of the problem is made easier by considering regularized coefficients Gδ and σδ, for 
δ > 0, defined as follows:

Gδ = eδAG
(
eδA·

)
= eδAF1

(
eδA·

)
+ BeδAF2

(
eδA·

)
, σδ = eδAσ

(
eδA·

)
eδA.

It is straightforward to check that Properties 3.2 and 3.3 are preserved after regularization, with constants 
which are uniform with respect to δ. Indeed, eδA is bounded with norm equal to 1, from Lp to Lp, for every 
p ∈ [1, ∞] and δ ∈ (0, 1). Also for δ > 0, eδA is a bounded operator from L2 to Lp for any p > 2, and thus 
the regularized coefficients Fδ and σδ are C3

b on H (but with norm depending on δ). Note that B and eδA

do not commute.

Remark 4.1. We cannot use standard regularization methods in our setting, such as spectral Galerkin 
projections, like in [20]. Indeed, the associated projection operators are not uniformly bounded (with respect 
to dimension), in Lp spaces for p > 2.

The regularization we use in this article does not provide finite dimensional approximation of the process.
Alternatively, the not so different regularization proposed in [26] (see Lemma 3.1) may be used. It is 

based on an additional truncation of modes larger than N(δ), in the definition of eδA, for a well-chosen 
integer N(δ).

In the computations below, we often omit to mention the dependence on δ. All the estimates we state 
and prove are uniform in δ.

Working with regularized coefficients Fδ and σδ, with δ ∈ (0, 1), we introduce the regularized SPDE

dXδ
t = AXδ

t dt + Gδ(Xδ
t )dt + σδ(Xδ

t )dW (t), Xδ(0) = x. (25)

When δ → 0, Xδ converges (in a suitable sense) to X. Consistently, the notation X0 = X will be used.
For every δ ∈ (0, 1), introduce the function uδ : [0, T ] × L2 → R, defined by

uδ(t, x) = E
[
ϕδ(Xδ(t, x)

)]
, (26)

and the function u : [0, T ] × L2 → R

u(t, x) = E
[
ϕ(X(t, x)

)]
. (27)

The function uδ, resp. u, is formally solution of the Kolmogorov equations associated to (25), resp. (23). As 
already mentioned, the regularity results proved in this article could be used to prove that these functions 
are in fact strict solutions of these Kolmogorov equations.

Consistently, we use the notation u0 = u. Indeed, results on u will be obtained from results proved for 
δ > 0 and passing to the limit δ → 0.

Thanks to [3] or [11], for every δ ∈ (0, 1) and t ≥ 0, uδ(t, ·) is a function of class C3 on L2.
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4.1. Regularity estimates on the derivatives of the Kolmogorov equation solution

The first main results of this article are new estimates on the first and second order spatial derivatives 
of u.

For our results given below, we consider the setting of Section 3 and Section 3.4. Note that all the results 
are valid for the parameter q, defined in Assumption 3.4, satisfying q ∈ [2, ∞). The proofs of the cases q = 2
and q ∈ (2, ∞) need to be treated separately. We only provide detailed proofs in the case q ∈ (2, ∞). The 
case q = 2 is easier.

Theorem 4.2. For every β ∈ [0, 1) and T ∈ (0, ∞), there exists Cβ(T ), such that for every δ ∈ [0, 1), 
t ∈ (0, T ], x ∈ Lp and h ∈ Lq

∣∣Duδ(t, x).h
∣∣ ≤ Cβ(T )

tβ
(1 + |x|Lmax(p,2q))K+1|(−A)−βh|L2q . (28)

This result can be interpreted as a regularization property: for every t > 0 and β ∈ (0, 1), we have 
(−A)βDu(t, x) ∈ Lr, where r is the conjugate exponent of 2q, i.e. 1

r + 1
2q = 1. For t = 0, from Assumption 3.4, 

we formally have Du(0, x) = Dϕ(x) ∈ Lr ⊂ Lq′ where q′ is the conjugate exponent of q′. No information 
on Dϕ in D((−A)β) is available.

Theorem 4.2 is not difficult for β ∈ [0, 12 ) (see [3], [20]). Getting the result for β ∈ [0, 1) with standard 
arguments is possible only in the case of additive noise. We recall below in Section 5.1 where the limitation 
β < 1

2 comes from in direct approaches, when σ is nonlinear. Then we give a formal description of our 
strategy of proof of Theorem 4.2 and introduce new arguments.

The constant Cβ(T ) depends on ϕ through the constants appearing in Assumption 3.4. More precisely, 
it depends on the constant in the right hand side of (20) and (21). It may seem surprising that we need 
information on the second differential of ϕ to get an estimate on the first differential of u. This is due to the 
final step of the proof where we use an interpolation argument to get rid of an extra smoothing parameter 
τ introduced below. We do not know whether this is optimal.

We now turn to the result on D2u, which is also a regularization property.

Theorem 4.3. For every β, γ ∈ [0, 12 ) and T ∈ (0, ∞), there exists Cβ,γ(T ), such that for every δ ∈ [0, 1), 
t ∈ (0, T ], x ∈ Lp and h1, h2 ∈ L4q

∣∣D2uδ(t, x).
(
h1, h2

)∣∣ ≤ Cβ,γ(T )
tβ+γ

(
1 + |x|Lmax(p,2q)

)K+1|(−A)−βh1|L4q |(−A)−γh2|L4q . (29)

Again, the novelty in Theorem 4.3 is the range [0, 12) for the parameters β and γ. More precisely, we 
remove the restriction β + γ < 1

2 , for which a direct proof works, see [3], [20].
As above, the constant Cβ,γ(T ) depends on ϕ through the constants appearing in Assumption 3.4. Now, 

it depends on the constant in the right hand side of (20), (21) and (22).
Another novelty is that we consider SPDEs with a spatial derivative in the nonlinear term. Moreover, 

Nemytskii type diffusion and nonlinear terms are allowed. This requires bounds depending on Lq norms and 
not only on L2 norms.

Remark 4.4. The presence of L2q and L4q norms in the right-hand side of (28) and (29) is not optimal. 
A careful inspection of the proof reveals that norms on the right-hand side may be replaced with weaker 
Lq+ε and L2q+ε norms, where ε is arbitrarily close to 0. Moreover, at the price of increasing the singularity 
in T , one may use the Markov property to get estimates which depend on Lr with much smaller r.
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The main motivation and application of Theorem 4.2 and Theorem 4.3 is the analysis of weak convergence 
rates for numerical discretizations of the SPDE (23). For that purpose, being able to choose both β and 
γ arbitrarily close to 1

2 is fundamental. Theorem 4.2 with β ∈ [0, 12 ) is sufficient to consider the case with 
F2 = 0, but we need β close to 1 to treat the Burger type nonlinearity BF2.

In the additive noise case, it is possible to choose β, γ ∈ [0, 1), such that β + γ < 1 in Theorem 4.3. 
Then we may choose for instance β ∈ [ 12 , 1), and this simplifies several arguments in the weak convergence 
analysis – and also in the argument presented below to give a meaning to the trace term in (3). We believe 
that the same strategy as for the proof of Theorem 4.2 can be adapted to prove that indeed the conclusion 
of Theorem 4.3 is still valid for β, γ ∈ [0, 1) with β + γ < 1. Substantial generalizations of the arguments 
are however required, and they will be studied in future works.

In addition to the analysis of weak convergence errors, Theorems 4.2 and 4.3 can be used to give a 
meaning to the different terms in the right-hand side of (3). First the terms 〈Ax, Du(t, x)〉 has a meaning as 
soon as |(−A)1−βx|Lq < ∞, for β arbitrarily close to 1. Choosing β > 3

4 is fundamental, since the solution 
X(t, x) takes values in Dq

(
(−A)α

)
only for α < 1

4 . The term 〈G(x), Du(t, x)〉 = 〈F1(x) +BF2(x), Du(t, x)〉
is well-defined also, choosing β > 1

2 thanks to (15). The trace term is more delicate. Thanks to Theorem 4.3, 
for β, γ ∈ [0, 12 ) and x ∈ Lp we have

Tr
(
σ(x)σ∗(x)D2u(t, x)

)
=

∑
n

D2u(t, x).(σ2(x)en, en),

and

∑
n

∣∣D2u(t, x).(σ2(x)en, en)
∣∣ ≤ Cβ,γ(T )

tβ+γ

(
1 + |x|KLp

)∑
n

|(−A)−β(σ2(x)en)|L4q |(−A)−γen|L4q

≤ Cβ,γ(T )
tβ+γ

(
1 + |x|KLp

)∑
n

|(−A)−β(σ2(x)en)|L4qλ−γ
n ,

where we have used sup
n∈N�

|en|L4q < ∞ thanks to Property 3.1.

Nevertheless, taking γ < 1
2 arbitrarily close to 1

2 and β = 0 is not sufficient, since 
∑

n∈N� λ−γ
n = ∞. To 

overcome this issue, we use (13), then (10):

|(−A)−β(σ2(x)en)|L4q ≤ c|(−A)βσ2(x)|L8q |(−A)−β+εen|L8q ≤ c(1 + |(−A)β+εx|L8q )|(−A)−β+εen|L8q .

We choose γ, β ∈ [0, 12 ) and ε > 0 such that γ + β − ε > 1
2 :

∑
n

∣∣D2u(t, x).(σ2(x)en, en)
∣∣ ≤ Cβ,γ(T )

tβ+γ

(
1 + |x|KLp

)
(1 + |(−A)β+εx|L8q )

∑
n

λ−γ−β+ε
n .

Note that it is possible to choose β, ε arbitrarily close to 0. Therefore the trace term in (3) is meaningful as 
soon as x ∈ D8q((−A)α) for some α > 0. Again the exponent 8q is not optimal.

For completeness, we also state a regularity result on the third order derivatives of uδ. This result is useful 
to prove the two results above and in the analysis of the weak convergence rate for numerical approximations 
below. Contrary to Theorems 4.2 and 4.3, since we consider a restrictive range for the parameters α, β, γ, i.e.
with the constraint α+β+γ < 1/2, standard arguments are sufficient and the proof is left to the reader. The 
arguments used for Theorems 4.2 and 4.3 could be naturally extended to generalize Proposition 4.5, under 
appropriate assumptions, as well as to higher order derivatives. We leave the study of such generalizations 
to future works.
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Proposition 4.5. For every α, β, γ ∈ [0, 12 ) such that α + β + γ < 1
2 , and T ∈ (0, ∞), there exists Cβ(T ), 

such that for every δ ∈ (0, 1), h1, h2, h3 ∈ L3q

∣∣D3uδ(t, x).(h1, h2, h3)
∣∣ ≤ Cα,β,γ(T )

tα+β+γ
(1 + |x|Lp)K |(−A)−αh1|L3q |(−A)−βh2|L3q |(−A)−γh3|L3q . (30)

The constant Cα,β,γ(T ) depends on ϕ through the constants appearing in Assumption 3.4.
The results in Theorems 4.2, 4.3 are proved for the function uδ, defined by (26), for δ ∈ (0, 1). Thanks 

to the result on the third order derivatives of uδ, we may take the limit δ → 0 in Theorems 4.2 and 4.3; 
this provides Gâteau differentiability of first and second order of the function u, at points x ∈ Lp and in 
directions h1, h2 ∈ Lq.

If ϕ is a C2 function on H satisfying Assumption 3.4 with p = 2 = q = 2, using standard arguments, we 
can prove similar estimates on Dkuδ, k = 1, 2, 3 with β = γ = 0 for x ∈ H and h, h1, h2, h3 ∈ H. Thus in 
this case, we can prove that u is a C2 function on H.

4.2. Weak convergence of numerical approximations

As an application of the results of Section 4.1, we study the discretization of (23) by the following 
semi-implicit Euler scheme (also known as the linear implicit Euler scheme). Let T ∈ (0, ∞) be given, and 
let Δt ∈ (0, T ) denote the time-step size of the scheme, such that N = T

Δt ∈ N
� is an integer.

Then for n ∈ {0, . . . , N − 1}, define

Xn+1 −Xn = Δt
(
AXn+1 + G(Xn)

)
+ σ(Xn)

(
W

(
(n + 1)Δt

)
−W (nΔt)

)
, X0 = x. (31)

The nonlinear terms G and σ are treated explicitly (which is possible thanks to global Lipschitz continuity 
assumptions), whereas the linear operator A is treated implicitly. Note that (68) can be rewritten in an 
explicit form

Xn+1 = SΔtXn + ΔtSΔtG(Xn) + SΔtσ(Xn)
(
W

(
(n + 1)Δt

)
−W (nΔt)

)
,

where

SΔt =
(
I − ΔtA

)−1
. (32)

This proves the well-posedness of the scheme, thanks to nice regularization properties of SΔt, see Lemmas 5.2
and 5.3.

The weak convergence result is given by Theorem 4.6; its proof is given in Section 6. It generalizes the 
statement that the weak rate, equal to 1

2 , is twice the strong order 1
4 , which has been obtained for instance 

in [43]. Recall that the values of p, q and K are determined by Assumption 3.4.

Theorem 4.6. For every κ ∈ (0, 12 ), T ∈ (0, ∞) and every Δt0 ∈ (0, 1), there exists Cκ(T, Δt0, ϕ), such that 
for every Δt ∈ (0, Δt0), with N = T

Δt ∈ N
�, for every x ∈ Lp ∩ L8q

∣∣Eϕ(X(T )
)
− Eϕ

(
XN

)∣∣ ≤ Cκ(T,Δt0, ϕ)
(
1 + |x|Lmax(p,8q)

)K+3Δt
1
2−κ. (33)

The proof is a generalization of [20], with several non trivial modifications, due to the assumptions made 
on the nonlinear drift term and diffusion coefficients. In this article, we work in Lp spaces, and it seems that 
it is the first time that a weak convergence result is provided for SPDEs with Burgers type drift coefficients, 
i.e. with a spatial derivative in the drift nonlinear term. More importantly, our main contribution is the 
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treatment of non constant diffusion coefficients σ (the multiplicative noise case), under realistic assumptions. 
In particular, we drop the artificial assumption on σ from [20].

As mentioned in the introduction, the approach using mild Itô calculus, see [13], [28], [29], [30], has also 
recently been able to deal with such non constant diffusion coefficients. The main difference is in the way the 
discretization error is analyzed: our approach is in our opinion somewhat simpler, and closer to the standard 
approaches from finite dimensional cases. We require also lower regularity on the drift and diffusion terms.

Our proof is based on a decomposition of the error depending on the solution u of the Kolmogorov 
equation. In particular, Theorem 4.2 (to handle Burgers type nonlinear drift coefficients), resp. Theorem 4.3
(to handle nonlinear diffusion coefficients), removing the condition β < 1

2 , resp. the condition β + γ < 1
2 , 

are essential tools.

5. Proofs of Theorems 4.2 and 4.3

The aim of this section is to provide the proofs of the new regularity results, Theorems 4.2 and 4.3.
The key ideas of our original approach are explained in Section 5.1, however only at a formal level: 

indeed the stochastic integrals in (35) below involve anticipative integrands and are not well defined so that 
(35) cannot be used. These integrals are in fact two-sided integrals and should be defined appropriately. 
This would considerably lengthen our article. A discrete time approximation is used to make the analysis 
rigorous: it is introduced in Section 5.2.

In addition to the auxiliary temporal discretization, with parameter Δt, another approximation is used, 
with parameter τ . The most difficult part of the proof is to obtain the auxiliary regularity results which are 
stated in Section 5.3, for positive τ . The proofs of these results are performed in three steps. First, the new 
expressions suggested by the formal arguments of Section 5.1 are rigorously derived at the discrete time 
level in Section 5.4. The key ingredients are discrete time versions of the two-sided stochastic integrals, and 
of an appropriate Malliavin calculus duality formula. Second, Section 5.5 is devoted to proving bounds for 
the terms appearing in these new expressions. Finally, it remains to pass to the limit Δt → 0.

The proof of Theorems 4.2 and 4.3 is then concluded in Section 5.6, getting rid of the auxiliary parame-
ter τ . Finally, technical auxiliary lemmas are proved in Section 5.7.

5.1. Formal arguments in continuous time

In this section, we explain how Theorems 4.2 and 4.3 could be obtained if one first constructs suitable 
stochastic integrals. We first recall the origins of the limitations on parameters β and γ in standard ap-
proaches. We then present the strategy of the proof, in particular what are the two-sided stochastic integrals 
that are required.

As explained in the introduction, we do not intend to give a rigorous meaning in the continuous time 
setting to the objects introduced below, and do not justify the computations. As will be clear below, some 
expressions do not make sense as standard objects. In order to simplify the presentation, since we want 
to focus on the difficulties due to the diffusion coefficient σ being non constant, in this section we assume 
that F1 = F2 = 0. Moreover, we work in an abstract setting: we assume that the diffusion coefficient σ
is a function on H of class C2, with bounded derivatives – this property not being true for the Nemystkii 
coefficients considered in this paper. We also assume that the test function ϕ is of class C2

b .
First, differentiating (27), we obtain for h ∈ H:

Du(t, x).h = E
[
Dϕ(X(t, x)).ηh,x(t)

]
where ηh,x(t) is the solution of

dηh,x(t) = Aηh,x(t)dt + σ′(X(t, x)).ηh,x(t)dW (t), ηh,x(0) = h.
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Using the mild formulation of ηh,x(t) and Itô isometry,

E|ηh,x(t)|2 = E

∣∣∣∣∣∣etAh +
t∫

0

e(t−s)Aσ′(X(s, x)).ηh,x(s)dW (s)

∣∣∣∣∣∣
2

=
∣∣etAh∣∣2 +

t∫
0

∣∣e(t−s)Aσ′(X(s, x)).ηh,x(s)
∣∣2
L2(H)ds

≤ Ct−2β |(−A)−βh|2 + C

t∫
0

(t− s)− 1
2−κ

E|ηh,x(s)|2ds.

Indeed, for y, h ∈ H and κ ∈ (0, 12 )

∣∣∣eA(t−s)σ′(y).k
∣∣∣2
L2(H)

≤
∣∣∣eA(t−s)

∣∣∣2
L2(H)

|σ′(y).k|2L(H) ≤ C
∑
i∈N�

e−2λi(t−s)|k|2 ≤ c(t− s)− 1
2−κ|k|2,

since 
∑

i∈N� λ
− 1

2−κ
i < ∞. Assuming that 2β < 1, and applying Gronwall Lemma, we get

sup
t∈(0,T ]

t2βE
(∣∣ηh,x(t)

∣∣2) ≤ C|(−A)−βh|2,

which then yields the required regularity result, for β ∈ [0, 12 ):

|Du(t, x) · h| ≤ c‖ϕ‖1t
−β |(−A)−βh|.

The limitation β < 1
2 in previous articles thus comes from the fact that Itô formula is used to control the 

stochastic integral, and naturally squares appear in integrals. In the additive noise case, since σ′ = 0, no 
stochastic integral appears in the definition of ηh,x(t), and thus choosing β ∈ [0, 1) is possible.

A similar difficulty appears for the second order derivative: differentiating twice (27), for h, k ∈ H yields

D2u(t, x).(h, k) = E
[
D2ϕ(X(t, x)).

(
ηh,x(t), ηk,x(t)

)
+ Dϕ(X(t, x)).ζh,k,x(t)

]
,

where ζh,k,x(t) is the solution of

dζh,k,x(t) = Aζh,k,x(t)dt + σ′(X(t, x)).ζh,k,x(t)dW (t) + σ′′(X(t, x)).
(
ηh,x(t), ηk,x(t)

)
dW (t),

with the initial condition ζh,k,x(0) = 0. The issue lies again in the control of the stochastic integral: indeed, 
Itô isometry for the mild formulation of the equation gives

E|ζh,k,x(t)|2 ≤ C

t∫
0

(t− s)− 1
2−κ

(
E|ζh,k,x(s)|2 + E

[
|ηh,x(s)|2|ηk,x(s)|2

])
ds,

and, generalizing the previous estimate on η to handle the fourth moment, we have

E
[
|ηh,x(s)|2|ηk,x(s)|2

]
≤ Cs−2β−2γ |(−A)−βh|2|(−A)−γk|2,

and 
∫ t

0 (t − s)− 1
2−κs−2β−2γds < ∞ if and only if β + γ < 1

2 . Under this condition, we obtain
∣∣D2u(t, x).(h, k)

∣∣ ≤ Ct−β−γ |(−A)−βh||(−A)−γk|.
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In order to overcome the limitations on β and γ, we introduce new formulas for Du and for D2u. The 
idea is to use the Malliavin calculus duality formula, in order to replace stochastic Itô integrals, which 
require square integrability in time, with integrals with respect to Lebesgue measure, which require only 
integrability in time.

First, define η̃h,x(t) = ηh,x(t) − etAh, and write

Du(t, x).h = E
(
Dϕ(X(t, x)).etAh + Dϕ(X(t, x)).η̃h,x(t)

)
. (34)

The first term on the right-hand side is easily bounded by t−β|(−A)−βh|, for β ∈ [0, 1). To control the 
second term, note that

dη̃h,x(t) =
(
Aη̃h,x(t)dt + σ′(X(t, x)).η̃h,xdW (t)

)
+ σ′(X(t, x)).etAhdW (t).

Formally, ζh,k,x and η̃h,x are the solutions of the same type of equations, and we would like to write the 
following identities

η̃h,x(t) =
t∫

0

Π(t, s)σ′(X(s, x)).esAhdW (s),

ζh,x(t) =
t∫

0

Π(t, s)σ′′(X(s, x)) · (ηh,x(s), ηh,x(s))dW (s),

(35)

where Π(t, s) is the evolution operator associated with the linear equation

dZt,s = AZt,sdt + σ′(X(t, x)).Zt,sdW (t) , Zs,s = z,

i.e. Π(t, s)z = Zt,s.
Formulas (35) are not well defined since the integrals contain anticipative integrands. Unfortunately, 

Skohorod integrals or two-sided stochastic integrals do not work. If we use such integrals in (35), the 
formula makes sense but does not provide a solution of the equations. In fact, we can guess what would be 
the correct integral for our purpose. From the discrete formulas below, it should be:

lim
δ→0

∑
�

Π(t, t�+1)σ′(X(t�, x)).et�Ah (W (t� + 1) −W (t�))

for the first one and a similar expression for the other. As usual the limit is taken on subdivisions of [0, t]
with δ = max(t�+1 − t�) converging to 0.

As explained in the introduction, it may be possible to adapt the arguments from [2], [37], [39], [40]
and [41] and give a rigorous meaning to (35) using such new integral. This is not the strategy we follow; 
instead, we work on time-discrete approximations of the problem, for which every object is easily defined 
and only standard tools of stochastic analysis are used.

Let us anyway go on with the formal argument and show why (35) is useful. We consider the second term 
in (34) and rewrite using this formula:

E
(
Dϕ(X(t, x)).η̃h,x(t)

)
= E

⎛
⎝Dϕ(X(t, x)).

t∫
0

Π(t, s)σ′(X(s, x)).esAhdW (s)

⎞
⎠ .

The next step is to apply a Malliavin duality formula. This would replace the right hand side above by 
E 
(∫ t Ds (Dϕ(X(t, x))) .Π(t, s)σ′(X(s, x)).esAhds

)
. Thus, we are now dealing with a standard integral and 
0
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do not need square integrability in time and a higher order singularity is allowed. Unfortunately, this is not 
correct: the integral has not been defined and no generalization of the duality formula has been proved. 
In fact, we may guess from the discrete computations below that the correct formula should contain an 
additional term and write:

E
(
Dϕ(X(t, x)).η̃h,x(t)

)
= E

( t∫
0

Ds (Dϕ(X(t, x))) .Π(t, s)σ′(X(s, x)).esAhds

+
t∫

0

Dϕ(X(t, x)).Ds (Π(t, s))σ′(X(s, x)).esAhds
)
.

Again, we have chosen to avoid the rigorous construction of the two-sided integral and the proof of the 
associate duality formula by working on discrete time approximations.

5.2. Discrete time approximation

In order to give a rigorous meaning to the arguments presented above in Section 5.1, we replace the 
continuous time processes 

(
Xδ(t)

)
t∈[0,T ], with δ ∈ [0, 1), with discrete-time approximations. We use a 

numerical scheme, with time-step size Δt = T
N ∈ (0, 1), with N ∈ N

�. We prove regularity results for 
fixed N , with upper bounds not depending on N , and finally pass to the limit N → ∞.

We also require an additional regularization parameter, τ ∈ (0, 1). Some estimates depend on τ ; when it 
is the case, it will always be stated precisely.

The discrete-time processes are defined using the linear-implicit Euler scheme: for 0 ≤ n ≤ N − 1

Xδ,τ,Δt
n+1 = SΔtX

δ,τ,Δt
n + ΔtSΔtGδ

(
Xδ,τ,Δt

n

)
+ eτASΔtσδ

(
Xδ,τ,Δt

n

)
ΔWn, (36)

with the standard notation ΔWn = W
(
(n + 1)Δt

)
−W

(
nΔt

)
, and SΔt = (I −ΔtA)−1. Note that we have 

added the regularization operator in the diffusion coefficient: eτA.
Below we omit to write the dependence on δ, τ, Δt and write Xn instead of Xδ,τ,Δt

n . All constants are 
independent on δ, τ, Δt. Moment estimates for Xn are given by Lemma 5.1 below.

Lemma 5.1. For every p ∈ [2, ∞), α ∈ [0, 14 ), M ∈ N
� and T ∈ (0, ∞), there exists C(p, M, T ), such that 

for every n ∈ {1, . . . , N} (with NΔt = T ), and every x ∈ Dp

(
(−A)α

)
E|(−A)αXn(x)|2MLp ≤ C(p, α,M, T )

(
1 + t−2Mα

n |x|2MLp

)
,

E|(−A)αXn(x)|2MLp ≤ C(p, α,M, T )
(
1 + |(−A)αx|2MLp

)
.

(37)

The proof of Lemma 5.1 uses the two following results.

Lemma 5.2. For every β ∈ [0, 1) and p ∈ [2, ∞), there exists C(p, β) such that for every n ∈ N
�

|(−A)βSn
Δt|L(Lp) ≤

C(p, β)
tβn

.

Lemma 5.3. For every β ∈ [0, 34 ), p ∈ [2, ∞), and κ ∈ (0, 34 − β), there exists Cκ(p, β) such that for every 
n ∈ N

�

∣∣(−A)βSn
Δt

∣∣
R(L2,Lp) ≤

Cκ(p, β)

t
1
4+β+κ
n

.
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Both results in the case p = 2 are obtained by straightforward computations, thanks to expansions using 
the eigenbasis 

(
en

)
n∈N� of A. When p ∈ (2, ∞), the arguments use properties of the analytic semigroup (

etA
)
t≥0 in Lp. The proofs are given below since these results are not standard in the literature for SPDEs. 

Arguments from [42] are used. The results are in fact valid for p ∈ (1, ∞).

Proof of Lemma 5.2. The case β = 0 follows from the two inequalities |SΔt|L(L2) ≤ 1 (which is proved using 
expansions in the Hilbert space L2 with the complete orthonormal system 

(
ek
)
k∈N�) and |SΔt|L(L∞) ≤ 1. 

By a standard interpolation argument, we thus have 
∣∣Sn+1

Δt

∣∣
L(Lp) ≤ 1 for every p ∈ [2, ∞].

Define the resolvent R(λ, A) =
∫∞
0 e−λtetAdt, for λ ∈ (0, ∞). Then SΔt = 1

ΔtR( 1
Δt , A). First, for x ∈ Lp, 

we set y = SΔtx. Then |y|Lq ≤ |x|Lq , and Ay = 1
Δt (y − x). We thus obtain

|Ay|Lq = |ASΔtx|Lq ≤ 2
Δt

|x|Lq .

Second, when n ∈ N
�,

n!
∣∣(−A)R(λ,A)n+1x

∣∣
Lp =

∣∣ ∞∫
0

tne−λt(−A)etAxdt
∣∣
Lp

≤ C(p, β)
∞∫
0

e−λttn−1dt|x|Lp

≤ C(p, β)(n− 1)!λ−n|x|Lp .

This gives 
∣∣(−A)Sn+1

Δt

∣∣
L(Lp) ≤

C(p,β)
(n+1)Δt , for n ∈ N

�. Thus the result is proved for β = 1. The case β ∈ [0, 1)
follows by an interpolation argument (see [48], Theorem 1.15.3):

∣∣(−A)βSn+1
Δt x

∣∣
Lp ≤ cp

∣∣(−A)Sn+1
Δt x

∣∣β
Lp

∣∣Sn+1
Δt x

∣∣1−β

Lp ≤ C(p, β)(
(n + 1)Δt

)β |x|Lp .

This concludes the proof of Lemma 5.2. �
Proof of Lemma 5.3. Let 

(
γ̃k

)
k∈N� denote a sequence of independent standard real-valued Gaussian random 

variables, γ̃k ∼ N (0, 1).
Then, using standard properties concerning moments of Gaussian random variables,

∣∣(−A)βSn
Δt

∣∣2
R(L2,Lp) = E

∣∣∑
k

γk(−A)βSn
Δtek

∣∣2
Lp

≤
(
E
∣∣∑

k

γk(−A)βSn
Δtek

∣∣p
Lp

) 2
p

≤
( 1∫

0

E
∣∣∑

k

λβ
k

1
(1 + λkΔt)n ek(ξ)γk

∣∣pdξ) 2
p

≤
( 1∫

0

(
E
∣∣∑

k

λβ
k

1
(1 + λkΔt)n ek(ξ)γk

∣∣2) p
2 dξ

) 2
p

≤
( 1∫

0

(∑
k

λ2β
k

1
(1 + λkΔt)2n ek(ξ)

2) p
2 dξ

) 2
p

.
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Using Property 3.1, and the estimate

∑
k

λ2β
k

1
(1 + λkΔt)2n=

∑
k

λ
− 1

2−2κ
k

∣∣(−A) 1
4+κ+βSn

Δtek|2L2 ≤ Cκt
− 1

2−2κ−2β
n ,

which follows from Lemma 5.2, we get the result. �
Proof of Lemma 5.1. First, note that, for 0 ≤ n ≤ N ,

Xn = Sn
Δtx + Δt

n−1∑
k=0

Sn−k
Δt BG(Xk) +

n−1∑
k=0

Sn−k
Δt eτAσ(Xk)ΔWk. (38)

Thanks to Property 3.2, inequality (15), and Lemmas 5.2 and 5.3, we have for κ > 0 such that 2α+2κ < 1
2 :

E|(−A)αXn|2Lp ≤ C|(−A)αSn
Δtx|2Lp + C

(
Δt

n−1∑
k=0

|(−A)α+ 1
2+κSn−k

Δt |L(Lp)
)2

+ CE
∣∣ n−1∑
k=0

(−A)αSn−k
Δt eτAσ(Xk)ΔWk

∣∣2
Lp

≤ Ct−2α
n |x|2Lp + C

(
Δt

n−1∑
�=0

t
− 1

2−2α−κ

n−k

)2 + CΔt
n−1∑
k=0

E
∣∣(−A)αSn−k

Δt eτAσ(Xk)
∣∣2
R(L2,Lp)

≤ C(1 + t−2α
n |x|2Lp) + CΔt

n−1∑
k=0

∣∣(−A)αSn−k
Δt

∣∣2
R(L2,Lp)E

∣∣eτAσ(Xk)
∣∣2
L(L2)

≤ C
(
1 + t−2α

n |x|2Lp + Δt
n−1∑
k=0

t
− 1

2−2α−2κ
n−k

)
.

This proves (37) in the case M = 1. The case M ≥ 1 and the second estimate of (37) are obtained with 
similar computations combined with standard arguments. This concludes the proof of Lemma 5.1. �
5.3. Regularity results for an auxiliary process

The objective of this section is to state regularity results for the first and second order spatial derivatives 
of the function uδ,τ defined by

uδ,τ (t, x) = E
[
ϕδ

(
Xδ,τ (t, x)

)]
, (39)

where τ is an auxiliary regularization parameter, and the process Xδ,τ is solution of the SPDE

dXδ,τ
t = AXδ,τ

t dt + Gδ(Xδ,τ
t )dt + eτAσδ(Xδ,τ

t )dW (t), Xδ,τ (0) = x. (40)

Let us also define the function uδ,τ,Δt : {0,Δt, . . . , (N − 1)Δt,NΔt = T} ×H → R, by

uδ,τ,Δt(nΔt, x) = E
[
ϕδ

(
Xδ,τ,Δt

n (x)
)]
, (41)

where Xδ,τ,Δt
n (x) is the solution of (36) with initial condition x.

Note that when τ → 0, Xδ,τ converges to Xδ, for all δ > 0. In addition, the discrete time process defined 
by (36) is obtained by temporal discretization of Xδ,τ . Sections 5.4 and 5.5 are devoted to proving new 
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regularity estimates for Duδ,τ,Δt(NΔt, x) and D2uδ,τ,Δt(NΔt, x), with T = NΔt. We omit writing these 
expressions, which contain many terms vanishing in the limit Δt → 0. Indeed, passing to the limit Δt → 0, 
the following regularity results for the auxiliary function uδ,τ are obtained.

Proposition 5.4. For every β ∈ [0, 1) and κ ∈ (0, 1), there exists Cβ,κ(T ), such that for every δ, τ ∈ (0, 1), 
x ∈ Lp and h ∈ L2q

∣∣Duδ,τ (T, x).h
∣∣ ≤ Cβ,κ(T )

τκT β

(
1 + |x|K+1

Lmax(p,2q)

)
|(−A)−βh|L2q . (42)

Proposition 5.5. For every β, γ ∈ [0, 12 ) and κ ∈ (0, 1), there exists Cβ,γ,κ(T ) such that for every δ, τ ∈ (0, 1), 
x ∈ Lp and h, k ∈ L4q

∣∣D2uδ,τ (T, x).
(
h, k

)∣∣ ≤ Cβ,γ,κ(T )
τκT β+γ

(
1 + |x|K+1

Lmax(p,2q)

)
|(−A)−βh|L4q |(−A)−γh|L4q . (43)

Observe that the right-hand sides of (42) and (43) contain a singular factor τ−κ. It is important to note 
that the exponent κ is positive but arbitrarily small. Proofs of Theorems 4.2 and 4.3 require the use of an 
interpolation argument to get rid of the parameter τ , indeed passing to the limit τ → 0 is not sufficient. 
Details are provided in Section 5.6.

In Section 5.4 and 5.5 below, the analysis is performed with fixed parameters τ > 0 and Δt > 0, i.e. at 
a discrete time level.

5.4. New expressions for derivatives in the discrete-time framework

The goal of this section is to derive new expressions for Duδ,τ,Δt(t, x).h and D2uδ,τ,Δt(t, x).(h, k). This 
is done by repeating the discussion of Section 5.1, and the formal formulas are turned into rigorous ones for 
the discrete objects.

Thanks to the regularity properties of G = F1+BF2, σ and ϕ, see Properties 3.2, 3.3 and Assumption 3.4, 
for every n ∈ {0, 1, . . . , N}, x ∈ L2 �→ uδ,τ,Δt(tn, x) is of class C2, and it is straightforward to prove 
recursively that:

• the first order derivative satisfies

Duδ,τ,Δt(tn, x).h = E
[
Dϕδ(Xn(x)).ηhn

]
(44)

with ηh0 = h and, for n ∈ {0, . . . , N − 1},

ηhn+1 = SΔtη
h
n + ΔtSΔtG

′
δ(Xn).ηhn + SΔte

τA
(
σ′
δ(Xn).ηhn

)
ΔWn. (45)

Recall that SΔt is defined in (32)
• the second order derivative satisfies

D2uδ,τ,Δt(tn, x).(h, k) = E
[
D2ϕδ

(
Xn(x)

)
.
(
ηhn, η

k
n

)]
+ E

[
Dϕδ

(
Xn(x)

)
.ζh,kn

]
, (46)

with ζh,k0 = 0 and, for n ∈ {0, . . . , N − 1},

ζh,kn+1 = SΔtζ
h,k
n + ΔtSΔtG

′
δ(Xn).ζh,kn + SΔte

τA
(
σ′
δ(Xn).ζh,kn

)
ΔWn

+ ΔtSΔtG
′′
δ (Xn).(ηhn, ηkn) + SΔte

τA
(
σ′′
δ (Xn).(ηhn, ηkn)

)
ΔWn.

(47)



216 C.-E. Bréhier, A. Debussche / J. Math. Pures Appl. 119 (2018) 193–254
Define the auxiliary process 
(
η̃hn

)
0≤n≤N

, by

η̃hn = ηhn − Sn
Δth , η̃h0 = 0. (48)

Again, in order to simplify the notation, most of the time we do not mention the parameters δ, τ, Δt.

Our objective is to obtain the following estimates, with arbitrarily small κ ∈ (0, 1):

∣∣Duδ,τ,Δt(T, x).h
∣∣ ≤ Cβ,κ(T )

T βτκ
(1 + |x|Lmax(p,2q))K+1|(−A)−βh|L2q , β ∈ [0, 1),

∣∣D2uδ,τ,Δt(T, x).(h, k)
∣∣ ≤ Cβ,γ,κ(T )

T β+γτκ
(1 + |x|Lmax(p,2q))K+1|(−A)−βh|L4q |(−A)−γk|L4q , β, γ ∈ [0, 1

2).
(49)

Note that the right-hand sides do not depend on Δt and on δ. Passing to the limit when these parameters 
go to 0 is straightforward.

We now do perform similar computations as in section 5.1 but on the discrete processes so that we do 
not have to manipulate anticipative integrals.

Define random linear operators 
(
Πn

)
0≤n≤N−1 as follows: for every n ∈ {0, . . . , N − 1} and every z ∈ H

Πnz = SΔtz + ΔtSΔtBeτAG′(Xn).z + SΔte
τA

(
σ′(Xn).z

)
ΔWn. (50)

Note that Πn = Π(Xn, ΔWn) with the deterministic linear operators Π(x, w) defined by

Π(x,w)z = SΔtz + ΔtSΔtBeτAF ′(x).z + SΔte
τA

(
σ′(x).z

)
w.

We emphasize on the following key observation: Πn depends on the Wiener increments ΔW0, . . . , ΔWn−1
only through the first variable of Π(·, ·), and depends on ΔWn only through its second variable.

Introduce the notation Πn−1:� = Πn−1 . . .Π� for � ∈ {0, . . . , n− 1}, and by convention Πn−1:n = I. These 
operators are the discrete versions of the evolution operators Π(t, s) introduced in Section 5.1.

Recursion formulas for ηh· , η̃h· and ζh,k· , are rewritten in the following forms:

ηhn+1 = Πnη
h
n , ηh0 = h,

η̃hn+1 = Πnη̃
h
n + ΔtSΔtG

′(Xn).Sn
Δth + SΔte

τA
(
σ′(Xn).Sn

Δth)ΔWn,

ζh,kn+1 = Πnζ
h,k
n + ΔtSΔtG

′′(Xn).(ηhn, ηkn) + SΔte
τA

(
σ′′(Xn).(ηhn, ηkn)

)
ΔWn

(51)

A straightforward consequence of the first equality in (51) is the equality

ηhn = Πn−1:0h, (52)

for every n ∈ {0, . . . , N}. Moreover, we get the following discrete-time analogs of (35), now taking into 
account also nonlinear drift terms:

η̃hn = Δt

n−1∑
�=0

Πn−1:�+1SΔtG
′(X�).S�

Δth +
n−1∑
�=0

Πn−1:�+1SΔte
τA

(
σ′(X�).S�

Δth)ΔW�,

ζh,kn = Δt
n−1∑

Πn−1:�+1SΔtG
′′(X�).(ηh� , ηk� ) +

n−1∑
Πn−1:�+1SΔte

τA
(
σ′′(X�).(ηh� , ηk� )

)
ΔW�.

(53)
�=0 �=0
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We treat separately the contributions of the drift and diffusion terms and introduce

η̃h,1n = Δt
n−1∑
�=0

Πn−1:�+1SΔtG
′(X�).S�

Δth , η̃h,2n =
n−1∑
�=0

Πn−1:�+1SΔte
τA

(
σ′(X�).S�

Δth)ΔW�;

ζh,k,1n = Δt

n−1∑
�=0

Πn−1:�+1SΔtG
′′(X�).(ηh� , ηk� ) , ζh,k,2n =

n−1∑
�=0

Πn−1:�+1SΔte
τA

(
σ′′(X�).(ηh� , ηk� )

)
ΔW�.

(54)

Using ηhn = Sn
Δth + η̃h,1n + η̃h,2n , we obtain the decomposition

Duδ,τ,Δt(T, x).h = E
[
Dϕ(XN ).

(
SN

Δth
)]

+ E
[
Dϕ(XN ).η̃h,1N

]
+ E

[
Dϕ(XN ).η̃h,2N

]
= Dh,0

N + Dh,1
N + Dh,2

N ,
(55)

where to simplify the notation we write ϕ instead of ϕδ.
We also obtain the following decomposition for the second-order derivative:

D2uδ,τ,Δt(T, x).(h, k) = E
[
D2ϕ

(
XN

)
.
(
ηhN , ηkN

)]
+ E

[
Dϕ

(
XN

)
.ζh,k,1N

]
+ E

[
Dϕ

(
XN

)
.ζh,k,2N

]
= Eh,k,0

N + Eh,k,1
N + Eh,k,2

N .
(56)

The term Dh,0
N is straightforward to estimate using Lemma 5.2. The terms Eh,k,0

N , Dh,1
N and Eh,k,1

N are not 
very difficult thanks to Lemma 5.7 stated below.

Finally, the terms Dh,2
N and Eh,k,2

N contain the discretized two-sided stochastic integrals and are treated 
using the Malliavin calculus duality formula. Note that in the discrete time setting, this formula can simply 
be considered as a standard integration by parts formula in the weighted L2 space corresponding with 
Gaussian density.

Let us first consider the first order derivative term Dh,2
N . Introducing the adjoint Π�

N−1:�+1 of the operator 
ΠN−1:�+1, we get

Dh,2
N = E

[
〈Dϕ(XN ),

N−1∑
�=0

ΠN−1:�+1SΔte
τA

(
σ′(X�).S�

Δth
)
ΔW�〉

]

=
N−1∑
�=0

E
[
〈Π�

N−1:�+1Dϕ
(
XN

)
,

(�+1)Δt∫
�Δt

SΔte
τA

(
σ′(X�).S�

Δth
)
dW (s)〉

]

=
N−1∑
�=0

Dh,2
N,�.

We now apply the Malliavin calculus duality formula, and we get for every � ∈ {0, . . . , N − 1}

Dh,2
N,� =

∑
i∈N�

E

(�+1)Δt∫
�Δt

〈Dei
s

(
Π�

N−1:�+1Dϕ(XN )
)
, eτASΔt

(
σ′(X�).S�

Δth
)
ei〉ds

=
∑
i∈N�

E

(�+1)Δt∫
�Δt

Dei
s 〈Dϕ(XN ),ΠN−1:�+1e

τASΔt

(
σ′(X�).S�

Δth
)
ei〉ds

= Dh,2,1
N,� + Dh,2,2

N,� ,
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where, thanks to the chain rule,

Dh,2,1
N,� =

∑
i∈N�

E

(�+1)Δt∫
�Δt

D2ϕ(Xn).
(
Dei

s XN ,ΠN−1:�+1e
τASΔt

(
σ′(X�).S�

Δth
)
ei

)
ds,

Dh,2,2
N,� =

∑
i∈N�

E

(�+1)Δt∫
�Δt

〈Dϕ(XN ),Dei
s

(
ΠN−1:�+1e

τASΔt

(
σ′(X�).S�

Δth
)
ei

)
〉ds.

(57)

Similarly, for the second order derivative term Eh,k,2
N , we write

Eh,k,2
N =

N−1∑
�=0

E
[
〈Dϕ

(
XN

)
,ΠN−1:�+1SΔte

τA
(
σ′′(X�).(ηh� , ηk� )

)
ΔW�〉

]

=
N−1∑
�=0

E
[
〈Π�

N−1:�+1Dϕ
(
XN

)
,

(�+1)Δt∫
�Δt

SΔte
τA

(
σ′′(X�).(ηh� , ηk� )

)
dW (s)〉

]

=
N−1∑
�=0

(
Eh,k,2,1
N,� + Eh,k,2,2

N,�

)
,

with

Eh,k,2,1
N,� =

∑
i

E

(�+1)Δt∫
�Δt

D2ϕ(XN ).
(
Dei

s XN ,ΠN−1:�+1e
τASΔt

(
σ′′(X�).(ηh� , ηk� )

)
ei

)
ds,

Eh,k,2,2
N,� =

∑
i

E

(�+1)Δt∫
�Δt

〈Dϕ(XN ),Dei
s

(
ΠN−1:�+1e

τASΔt

(
σ′′(X�).(ηh� , ηk� )

)
ei

)
〉ds.

(58)

For completeness, the new expressions for the first and second order derivatives of uδ,τ,Δt, obtained by 
our original strategy, are rewritten in the following proposition. They are obtained by inserting (57) and (58)
in (55) and (56), and using (47).

Proposition 5.6. The first and second order derivatives of uδ,τ,Δt have the following expressions:

Duδ,τ,Δt(T, x).h = E
[
Dϕ(XN ).

(
SN

Δth
)]

+ E

[
Dϕ(XN ).

(
Δt

n−1∑
�=0

Πn−1:�+1SΔtG
′(X�).S�

Δth
)]

+
N−1∑
�=0

∑
i∈N�

E

(�+1)Δt∫
�Δt

D2ϕ(Xn).
(
Dei

s XN ,ΠN−1:�+1e
τASΔt

(
σ′(X�).S�

Δth
)
ei

)
ds

+
N−1∑
�=0

∑
i∈N�

E

(�+1)Δt∫
�Δt

〈Dϕ(XN ),Dei
s

(
ΠN−1:�+1e

τASΔt

(
σ′(X�).S�

Δth
)
ei

)
〉ds,

D2uδ,τ,Δt(T, x).(h, k) = E
[
D2ϕ

(
XN

)
.
(
ηhN , ηkN

)]
+ E

[
Dϕ

(
XN

)
.
(
Δt

n−1∑
Πn−1:�+1SΔtG

′′(X�).(ηh� , ηk� )
)]
�=0
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+
N−1∑
�=0

∑
i

E

(�+1)Δt∫
�Δt

D2ϕ(XN ).
(
Dei

s XN ,ΠN−1:�+1e
τASΔt

(
σ′′(X�).(ηh� , ηk� )

)
ei

)
ds

+
N−1∑
�=0

∑
i

E

(�+1)Δt∫
�Δt

〈Dϕ(XN ),Dei
s

(
ΠN−1:�+1e

τASΔt

(
σ′′(X�).(ηh� , ηk� )

)
ei

)
〉ds.

5.5. Estimate of the derivatives

5.5.1. Auxiliary results
To control the terms appearing in the expressions of Duδ,τ,Δt(T, x).h and D2uδ,τ,Δt(T, x).(h, k) in Propo-

sition 5.6, we see that estimates on the random operators ΠN−1:�+1, and on the Malliavin derivatives DsXN

and DsΠN−1:�+1, for s ∈
(
�Δt, (� + 1)Δt

)
are needed.

Lemma 5.7. For any q ∈ [2, ∞), M ∈ N
�, T ∈ (0, ∞), and β ∈ [0, 12 ), γ ∈ [0, 14 ) if q = 2 and 

γ ∈ [0, 14 − 1
2q ) for q �= 2, there exists Cβ,γ(M, q, T ), such that for any 0 ≤ � < n ≤ N , and any 

σ
(
ΔW0, . . . , ΔW�−1

)
-measurable random vector z�, then

(
E|(−A)γΠn−1:�z�|2MLq

) 1
2M ≤ Cβ,γ(M,p, T )t−β−γ

n−�

(
E|(−A)−βz�|2MLq

) 1
2M . (59)

Lemma 5.8. Let � ∈ {0, . . . , n− 1}, and s ∈
(
�Δt, (� + 1)Δt

)
. Then

DsXn = Πn−1:�+1SΔte
τAσ(X�). (60)

Lemma 5.9. For any q ∈ (2, ∞), κ ∈ (0, 12 ), and T ∈ (0, ∞), there exists Cκ(q, T ) ∈ (0, ∞), such that for 
any 0 ≤ � < N−1, any s ∈

(
�Δt, (� +1)Δt

)
, any z ∈ L2q and any σ

(
ΔW0, . . . , ΔW�−1

)
-measurable random 

vector θ�, then

E|Dθ�
s Πn−1:�+1z|2Lq

≤ Cκ(q, T )
(
E|θ�|4L2q

) 1
2
(
Δt

(
1 + 1

t
1
2+ 1

q +κ

n−�−1

)
|z|2L2q + 1n>�+2

(
1 + 1

t
1
2+ 1

q +κ

n−�−2

)∣∣(−A)− 1
2+κz

∣∣2
L2q

)
. (61)

Moreover, when � = N − 1, DsΠN−1:�+1z = 0.

In (61), the quantity Dθ�
s ΠN−1:�+1z is interpreted as the image of θ� by the linear operator DsΠN−1:�+1z. 

The assumption that the random vector θ� is σ
(
ΔW0, . . . , ΔW�−1

)
-measurable is crucial.

The proofs of Lemmas 5.7, 5.8, and 5.9 are very technical and are postponed to Section 5.7.

5.5.2. Estimate of Dh,1
N and of Eh,k,1

N

Using the Cauchy–Schwarz inequality, Lemma 5.1, and Assumption 3.4 on ϕ, we have

∣∣Dh,1
N

∣∣ ≤ C
(
1 + |x|Lp

)K(
E|η̃h,1N |2Lq

) 1
2 ,

∣∣Eh,k,1
N

∣∣ ≤ C
(
1 + |x|Lp

)K(
E|ζ̃h,k,1N |2Lq

) 1
2 ,

and below we control the moments of η̃h,1n and ζh,k,1n , for every n ≤ N .
We treat Dh,1

N first. Thanks to (54), applying Lemma 5.7 gives, for κ ∈ (0, 12 ),

(
E|η̃h,1n |2Lq

) 1
2 ≤ CΔt

n−1∑(
E
∣∣Πn−1:�+1SΔtG

′(X�).S�
Δth

∣∣2
Lq

) 1
2

�=0
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≤ CκΔt

n−1∑
�=0

t
− 1

2+κ

n−�

(
E
∣∣(−A)− 1

2+κSΔtG
′(X�).S�

Δth
∣∣2
Lq

) 1
2

≤ CκΔt
n−1∑
�=0

t
− 1

2+κ

n−�

(
E
∣∣F ′

1(X�).S�
Δth

∣∣2
Lq

) 1
2

+ CκΔt

n−1∑
�=0

t
− 1

2+κ

n−�

(
E
∣∣(−A)− 1

2+κBF ′
2(X�).S�

Δth
∣∣2
Lq

) 1
2 .

By Property 3.2, we get

(
E
∣∣F ′

1(X�).S�
Δth

∣∣2
Lq

) 1
2 ≤ C|S�

Δth|Lq ≤ C1��=0t
−β
� |(−A)−βh|Lq + 1�=0|h|Lq .

Using successively (15), (12), (9) and (10), and recalling that F ′
2(x).h = F ′

2(x)h is a product,

(
E
∣∣(−A)− 1

2+κBF ′
2(X�).S�

Δth
∣∣2
Lq

) 1
2 ≤ C

(
E
∣∣(−A)2κF ′

2(X�).S�
Δth

∣∣2
Lq

) 1
2

≤ CE
(∣∣(−A)3κF ′

2(X�)
∣∣2
L2q

∣∣(−A)3κS�
Δth

∣∣2
L2q

) 1
2

≤ C
(
|1 + E|(−A)4κX�|2L2q

) 1
2 |(−A)3κS�

Δth|L2q .

Let κ > 0 be such that β + 7κ < 1. Then, thanks to Lemmas 5.1 and 5.2,

(
E|η̃h,1n |2Lq

) 1
2 ≤ Ct

− 1
2+κ

n Δt|h|Lq + Ct
1
2+κ−β
n |(−A)−βh|Lq

+ Ct
− 1

2+κ
n Δt(1 + |(−A)4κx|L2q )|(−A)3κh|L2q + Ct

1
2−6κ−β
n (1 + |x|L2q )|(−A)−βh|L2q

≤ CΔt
1
2+κ(1 + |(−A)4κx|L2q )|(−A)3κh|L2q + Ct

1
2−6κ−β
n (1 + |x|L2q )|(−A)−βh|L2q

and we conclude that

∣∣Dh,1
N

∣∣ ≤ CΔt
1
2+κ

(
1 + |x|Lp

)K(1 + |(−A)4κx|L2q )|(−A)3κh|L2q

+ Ct
1
2−6κ−β

N

(
1 + |x|Lp

)K(1 + |x|L2q )|(−A)−βh|L2q .

We now treat Eh,k,1
N with similar arguments. Thanks to (54), applying Lemma 5.7 gives, for κ ∈ (0, 12 ),

(
E|ζ̃h,k,1n |2Lq

) 1
2 ≤ CΔt

n−1∑
�=0

(
E
∣∣Πn−1:�+1SΔtG

′′(X�).(ηh� , ηk� )
∣∣2
Lq

) 1
2

≤ CκΔt
n−1∑
�=0

t
− 1

2+κ

n−�

(
E
∣∣F ′′

1 (X�).(ηh� , ηk� )
∣∣2
Lq

) 1
2

+ CκΔt
n−1∑
�=0

t
− 1

2+κ

n−�

(
E
∣∣(−A)− 1

2+κBF ′′
2 (X�).(ηh� , ηk� )

∣∣2
Lq

) 1
2 .

Recall from (52) that ηh� = Π�−1:0h. Property 3.2 then gives

(
E
∣∣F ′′

1 (X�).(ηh� , ηk� )
∣∣2
Lq

) 1
2 ≤ C1��=0t

−β−γ
� |(−A)−βh|L2q |(−A)−γk|L2q + C1�=0|h|L2q |k|L2q .

The remaining term is treated similarly to the one in Dh,1
N . Using successively (15), (12), (9), and (10):
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(
E
∣∣(−A)− 1

2+κBF ′′
2 (X�).(ηh� , ηk� )

∣∣2
Lq

) 1
2 ≤ C

(
E
∣∣(−A)2κF ′′

2 (X�).(ηh� , ηk� )
∣∣2
Lq

) 1
2

≤ CE
(∣∣(−A)3κF ′′

2 (X�)
∣∣2
L2q

∣∣(−A)4κηh�
∣∣2
L4q

∣∣(−A)4κηk�
∣∣2
L4q

) 1
2

≤ C
(
|1 + E|(−A)4κX�|6L2q

) 1
6
(
E
∣∣(−A)4κηh�

∣∣6
L4q

) 1
6
(
E
∣∣(−A)4κηk�

∣∣6
L4q

) 1
6

≤ C1��=0t
−12κ−β−γ
� (1 + |x|L2q )|(−A)−βh|L4q |(−A)−γk|L4q

+ C1�=0
(
|1 + |(−A)4κx|L2q

)∣∣(−A)4κh
∣∣
L4q

∣∣(−A)4κk
∣∣
L4q ,

thanks to Lemma 5.7, for κ > 0 chosen sufficiently small to have 4κ < 1
4 − 1

8q .
We thus obtain, if β + γ + 12κ < 1,

(
E|ζ̃h,k,1N |2Lq

) 1
2 ≤ CΔt

1
2+κ|h|L2q |k|L2q + CΔt

1
2+κ

(
1 + |(−A)4κx|L2q

)
|(−A)4κh|L4q |(−A)4κk|L4q

+ Ct
1
2−11κ−β−γ

N (1 + |x|L2q )|(−A)−βh|L4q |(−A)−γk|L4q

≤ CΔt
1
2+κ

(
1 + |(−A)4κx|L2q

)
|(−A)4κh|L4q |(−A)4κk|L4q

+ Ct
1
2−11κ−β−γ

N (1 + |x|L2q )|(−A)−βh|L4q |(−A)−γk|L4q

and we conclude that

∣∣Eh,k,1
N

∣∣ ≤ C
(
1 + |x|Lp

)KΔt
1
2+κ

(
1 + |(−A)4κx|L2q

)
|(−A)4κh|L4q |(−A)4κk|L4q

+ Ct
1
2−11κ−β−γ

N

(
1 + |x|Lp

)K(1 + |x|L2q )|(−A)−βh|L4q |(−A)−γk|L4q .

5.5.3. Treatment of Dh,2
N and of Eh,k,2

N

We use the following basic identities:

(
σ′(X�).S�

Δth
)
ei =

∑
j∈N�

〈
(
σ′(X�).S�

Δth
)
ei, ej〉ej =

∑
j∈N�

〈
(
σ′(X�).S�

Δth
)
ej , ei〉ej

(
σ′′(X�).(ηh� , ηk� )

)
ei =

∑
j∈N�

〈
(
σ′′(X�).(ηh� , ηk� )

)
ei, ej〉ej =

∑
j∈N�

〈
(
σ′′(X�).(ηh� , ηk� )

)
ej , ei〉ej ,

(62)

thanks to (19), from Property 3.3.
The parameter τ > 0 plays an important role in the estimates below, to ensure summability with respect 

to j ∈ N
�. Indeed, since Lemmas 5.7 and 5.9 are restricted to powers of −A strictly less than 1

2 , the 

computations below for τ = 0 would only provide upper bounds in terms of 
∑

j λ
− 1

2+κ
j = +∞.

Control of Dh,2,1
N,�

From (57), (62), and Assumption 3.4, we have

∣∣Dh,2,1
N,�

∣∣ =
∣∣∣ ∑
j∈N�

E

(�+1)Δt∫
�Δt

D2ϕ(XN ).
(
DsXN

(
σ′(X�).S�

Δth
)
ej ,ΠN−1:�+1e

τASΔtej
)
ds
∣∣∣

≤ C(1 + |x|Lp)K
∑
j∈N�

(�+1)Δt∫
�Δt

(
E
∣∣ΠN−1:�+1e

τASΔtej |2LqE
∣∣DsXN

(
σ′(X�).S�

Δth
)
ej
∣∣2
Lq

) 1
2 ds.



222 C.-E. Bréhier, A. Debussche / J. Math. Pures Appl. 119 (2018) 193–254
On the one hand, by Lemma 5.7, for � ∈ {0, . . . , N − 2},

(
E
∣∣ΠN−1:�+1e

τASΔtej |2Lq

) 1
2 ≤ Ct

− 1
2+κ

N−�−1
∣∣(−A)− 1

2+κeτASΔtej
∣∣
Lq ≤ Ct

− 1
2+κ

N−�−1τ
−2κλ

− 1
2−κ

j .

When � = N − 1, 
(
E
∣∣ΠN−1:�+1e

τASΔtej |2Lq

) 1
2 =

∣∣eτASΔtej |Lq ≤ CΔt−
1
2−κλ

− 1
2−κ

j .
On the other hand, using Lemmas 5.8 and 5.7, and then Properties 3.1 and 3.3,

(
E
∣∣DsXN

(
σ′(X�).S�

Δth
)
ej
∣∣2
Lq

) 1
2 =

(
E
∣∣ΠN−1:�+1SΔte

τAσ(X�)
(
σ′(X�).S�

Δth
)
ej
∣∣2
Lq

) 1
2

≤ C
(
E
∣∣σ(X�)

(
σ′(X�).S�

Δth
)
ej
∣∣2
Lq

) 1
2

≤ C
∣∣S�

Δth
∣∣
Lq

≤ C1��=0t
−β
� |(−A)−βh|Lq + C1�=0|h|Lq .

Recall that 
∑

j∈N� λ
− 1

2−κ
j < ∞ by Property 3.1. This yields

N−1∑
�=0

∣∣Dh,2,1
N,�

∣∣ ≤ C(1 + |x|Lp)K

τ2κ

(
t
− 1

2+κ

N−1 Δt|h|Lq + t
1
2+κ−β

N−1
∣∣(−A)−βh

∣∣
Lq

)
.

Control of Dh,2,2
N,�

Thanks to (57), (62), and Assumption 3.4, we get

∣∣Dh,2,2
N,�

∣∣ =
∣∣∣ ∑
j∈N�

E

(�+1)Δt∫
�Δt

〈Dϕ(XN ),D(σ′(X�).S�
Δth)ej

s ΠN−1:�+1e
τASΔtej〉ds

∣∣∣

≤ C(1 + |x|Lp)K
∑
j∈N�

(�+1)Δt∫
�Δt

(
E
∣∣D(σ′(X�).S�

Δth)ej
s ΠN−1:�+1e

τASΔtej
∣∣2
Lq

) 1
2 ds.

In addition, observe that Dh,2,2
N,N−1 = 0, thanks to the second part of Lemma 5.9. Applying the estimate 

in Lemma 5.9, for � ∈ {0, . . . , N − 2}, one has

(
E
∣∣D(σ′(X�).S�

Δth)ej
s ΠN−1:�+1e

τASΔtej |2Lq

) 1
2

≤ C
(
E
∣∣(σ′(X�).S�

Δth)ej
∣∣
L2q

∣∣4) 1
4 Δt

1
2 |SΔte

τAej |L2q
(
1 + 1

t
1
4+ 1

2q +κ

N−�−1

)

+ C
(
E
∣∣(σ′(X�).S�

Δth)ej
∣∣
L2q

∣∣4) 1
41�<N−2|(−A)− 1

2+κSΔte
τAej |L2q

(
1 + 1

t
1
4+ 1

2q +κ

N−�−2

)

≤ C
(
1��=0t

−β
� |(−A)−βh|L2q + 1�=0|h|L2q

)
τ−2κλ

− 1
2−κ

j

(
1 + Δtκ

t
1
4+ 1

2q +κ

N−�−1

+ 1�<N−2

t
1
4+ 1

2q +κ

N−�−2

)
.

This yields

N−1∑
�=0

∣∣Dh,2,2
N,�

∣∣ ≤ C(1 + |x|Lp)K

τ2κ

(
1 + t

1
2− 1

2q−κ−β

N−1
)(

|(−A)−βh|L2q + Δt

tN−1
|h|L2q

)
.
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Control of Eh,k,2,1
N,�

Thanks to (58) and Assumption 3.4 we get

∣∣Eh,k,2,1
N,�

∣∣ =
∣∣∣ ∑
j∈N�

E

(�+1)Δt∫
�Δt

D2ϕ(XN ).
(
DsXN

(
σ′′(X�).(ηh� , ηk� )

)
ej ,ΠN−1:�+1e

τASΔtej
)
ds
∣∣∣

≤ C(1 + |x|Lp)K
∑
j∈N�

(�+1)Δt∫
�Δt

(
E
∣∣ΠN−1:�+1e

τASΔtej |2LqE
∣∣DsXN

(
σ′′(X�).(ηh� , ηk� )

)
ej
∣∣2
Lq

) 1
2 ds.

On the one hand, by Lemma 5.7, for � ∈ {0, . . . , N − 2},

(
E
∣∣ΠN−1:�+1e

τASΔtej |2Lq

) 1
2 ≤ Ct

− 1
2+κ

N−�−1τ
−2κλ

− 1
2−κ

j .

When � = N − 1, 
(
E
∣∣ΠN−1:�+1e

τASΔtej |2Lq

) 1
2 =

∣∣eτASΔtej |Lq ≤ CΔt−
1
2−κλ

− 1
2−κ

j .
On the other hand, using Lemmas 5.8 and 5.7, and Property 3.3,

(
E
∣∣DsXN

(
σ′′(X�).(ηh� , ηk� )

)
ej
∣∣2
Lq

) 1
2 =

(
E
∣∣ΠN−1:�+1SΔte

τAσ(X�)
(
σ′′(X�).(ηh� , ηk� )

)
ej
∣∣2
Lq

) 1
2

≤ C
(
E
∣∣σ(X�)

(
σ′′(X�).(ηh� , ηk� )

)
ej
∣∣2
Lq

) 1
2

≤ C
(
E|ηh� |4L2q

) 1
4
(
E|ηk� |4L2q

) 1
4

≤ C1��=0t
−β−γ
� |(−A)−βh|L2q |(−A)−γk|L2q + C1�=0|h|L2q |k|L2q .

This yields

N−1∑
�=0

∣∣Eh,k,2,1
N,�

∣∣ ≤ C(1 + |x|Lp)K

τ2κ

(
t
− 1

2+κ

N−1 Δt|h|L2q |k|L2q + t
1
2+κ−β−γ

N−1 |(−A)−βh|L2q |(−A)−γk|L2q
)
.

Control of Eh,k,2,2
N,�

Thanks to (58), (62) and Assumption 3.4 we get

∣∣Eh,k,2,2
N,�

∣∣ =
∣∣∣ ∑
j∈N�

E

(�+1)Δt∫
�Δt

〈Dϕ(XN ),D(σ′′(X�).(ηh
� ,η

k
� ))ej

s ΠN−1:�+1e
τASΔtej〉ds

∣∣∣

≤ C(1 + |x|Lp)K
∑
j∈N�

(�+1)Δt∫
�Δt

(
E
∣∣D(σ′′(X�).(ηh

� ,η
k
� ))ej

s ΠN−1:�+1e
τASΔtej

∣∣2
Lq

) 1
2 ds.

In addition, observe that Eh,2,2
N,N−1 = 0, thanks to the second part of Lemma 5.9. Applying the estimate 

in Lemma 5.9, for � ∈ {1, . . . , N − 2}, one has

(
E
∣∣D(σ′′(X�).(ηh

� ,η
k
� ))ej

s ΠN−1:�+1e
τASΔtej |2Lq

) 1
2

≤ C
(
E
∣∣(σ′′(X�).(ηh� , ηk� )

)
ej
∣∣
L2q

∣∣4) 1
4 Δt

1
2 |SΔte

τAej |L2q
(
1 + 1

t
1
4+ 1

2q +κ

N−�−1

)

+ C
(
E
∣∣(σ′′(X�).(ηh� , ηk� )

)
ej
∣∣
L2q

∣∣4) 1
41�<N−2|(−A)− 1

2+κSΔte
τAej |L2q

(
1 + 1

t
1
4+ 1

2q +κ

)

N−�−2
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≤ C
(
E|ηh� |8L2q

) 1
8
(
E|ηk� |8L2q

) 1
8 τ−2κλ

− 1
2−κ

j

(
1 + Δtκ

t
1
4+ 1

2q +κ

N−�−1

+ 1�<N−2

t
1
4+ 1

2q +κ

N−�−2

)

≤ C
(
1��=0t

−β−γ
� |(−A)−βh|L2q |(−A)−γk|L2q + 1�=0|h|L2q |k|L2q

)
τ−2κλ

− 1
2−κ

j

(
1 + Δtκ

t
1
4+ 1

2q +κ

N−�−1

+ 1�<N−2

t
1
4+ 1

2q +κ

N−�−2

)

This yields

N−1∑
�=0

∣∣Eh,k,2,2
N,�

∣∣ ≤ C(1 + |x|Lp)K

τ2κ

(
1 + t

1
2− 1

2q−κ−β−γ

N−1
)(

|(−A)−βh|L2q |(−A)−γk|L2q + Δt

tN
|h|L2q |k|L2q

)
.

5.5.4. Estimate with τ > 0
Gathering all above estimates, we have – recall that tN = T - for β ∈ [0, 1):

∣∣∣Duδ,τ,Δt(T, x).h
∣∣∣ =

∣∣∣Dh,0
N + Dh,1

N + Dh,2
N

∣∣∣
≤ CT−β

(
1 + |x|Lp

)K |(−A)−βh|Lq

+ CΔt
1
2+κ

(
1 + |x|Lp

)K(1 + |(−A)4κx|L2q )|(−A)3κh|L2q

+ CT
1
2−6κ−β

(
1 + |x|Lp

)K(1 + |x|L2q )|(−A)−βh|L2q

+ C(1 + |x|Lp)K

τ2κ

(
T− 1

2+κΔt|h|Lq + t
1
2+κ−β

N−1
∣∣(−A)−βh

∣∣
Lq

)
+ C(1 + |x|Lp)K

τ2κ

(
1 + T

1
2− 1

2q−κ−β
)(
|(−A)−βh|L2q + Δt

T
|h|L2q

)
.

Letting Δt → 0 yields Proposition 5.4. Similarly, gathering all above estimates and using the identity 
D2uδ,τ,Δt(T, x).(h, k) = Eh,k,0

N + Eh,k,1
N + Eh,k,2

N , gives a similar estimate for D2uδ,τ,Δt(T, x).(h, k). Letting 
Δt → 0 then yields Proposition 5.5.

5.6. Conclusion of the proof

To deduce Theorems 4.2 and 4.3 from Propositions 5.4 and 5.5, it remains to explain how to get rid of 
the singular factor τ−κ in (42) and (43). This is done thanks to an interpolation argument. We need the 
following result, which is not optimal – we expect an order 1

4 in (65) as in (63) – but sufficient for our 
purpose.

Proposition 5.10. For every κ ∈ (0, 1), T > 0, there exists Cκ,ε(T ) ∈ (0, ∞), such that for every δ, τ ∈ (0, 1), 
x ∈ Lp and h, k ∈ L2q

|uδ,τ (T, x) − uδ(T, x)| ≤ Cκ(T )τ 1
4−κ

(
1 + |x|KLp

)
(63)∣∣(Duδ,τ (T, x) −Duδ(T, x)

)
.h
∣∣ ≤ Cκ(T )τ 1

4−κ
(
1 + |x|KLp

)
|h1|Lq (64)∣∣(D2uδ,τ (T, x) −D2uδ(T, x)

)
.
(
h, k

)∣∣ ≤ Cκ(T )τ 1
8−κ

(
1 + |x|KLp

)
|h|L3q |k|L3q . (65)

The proof of Proposition 5.10 is postponed to the end of the section.
We are now in position to conclude the proof of Theorem 4.2, as a consequence of Propositions 5.4

and 5.10. Identifying the first order derivative with the gradient, and letting 1r + 1
2q = 1, we may rewrite (42)

and (64) as
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∣∣(−A)βDuδ,τ (T, x)
∣∣
Lr ≤ Cβ,κ(T )

τκT β

(
1 + |x|Lp

)K(1 + |x|L2q ),
∣∣Duδ,τ (T, x) −Duδ(T, x)

∣∣
Lr ≤ Cκ(T )τ 1

4−κ
(
1 + |x|Lp

)K
for β ∈ [0, 1). Take τk = 2−k, 0 < β < β̃ < 1, λ = β

β̃
and κ < 1

4 (1 − λ). Then we may write:

∣∣(−A)βDuδ(T, x)
∣∣
Lr ≤

∑
k∈N

∣∣(−A)β
(
Duδ,τk+1(T, x) −Duδ,τk(T, x)

) ∣∣
Lr

≤
∑
k∈N

∣∣(−A)β̃
(
Duδ,τk+1(T, x) −Duδ,τk(T, x)

) ∣∣λ
Lr

∣∣Duδ,τk+1(T, x) −Duδ,τk(T, x)
∣∣1−λ

Lr

≤ Cβ,κ(T )
T β

(
1 + |x|Lp

)K(1 + |x|L2q )
∑
k∈N

2k(−κλ+( 1
4−κ)(1−λ))

≤ Cβ,κ(T )
T β

(
1 + |x|Lp

)K(1 + |x|L2q ).

This yields (28), and concludes the proof of Theorem 4.2.
We proceed similarly for the proof of Theorem 4.3, and thus we will not provide all the details. Identifying 

the second order derivative with the Hessian, and letting 1
r + 1

4q = 1, we may rewrite (43) and (65) as

∣∣(−A)γD2uδ,τ (T, x)(−A)βh
∣∣
Lr ≤ Cβ,γ,κ(T )

τκT β+γ

(
1 + |x|KLp

)
(1 + |x|L2q )|h|L4q

∣∣ (D2uδ,τ (T, x) −D2uδ(T, x)
)
h
∣∣
Lr ≤ Cκ,ε(T )τ 1

8−κ
(
1 + |x|KLp

)
|h|L4q .

Let us first take β = 0 and take γ < γ̃ < 1
2 , λ = γ

γ̃ and κ < 1
8 (1 − λ); then, for τ1 ≤ τ2,

∣∣(−A)γ
(
D2uδ1,τ (T, x) −D2uδ2,τ (T, x)

)
h
∣∣
Lr

≤
∣∣(−A)γ̃

(
D2uδ1,τ (T, x) −D2uδ2,τ (T, x)

)
h
∣∣λ
Lr

∣∣ (D2uδ1,τ (T, x) −D2uδ2,τ (T, x)
)
h
∣∣1−λ

Lr

≤ Cγ,κ(T )
T γ

τ
1
8 (1−λ)−κ
2

(
1 + |x|Lp

)K(1 + |x|L2q )|h|L4q .

Since D2u is symmetric, it follows replacing γ by β ∈ [0, 12 ):

∣∣ (D2uδ1,τ (T, x) −D2uδ2,τ (T, x)
)
(−A)βh

∣∣
Lr ≤ Cβ,α0(T )

T β
τα0
2

(
1 + |x|Lp

)K(1 + |x|L2q )|h|L4q ,

for α0 < 1
8 (1 − β). We then repeat the argument to conclude the proof of Theorem 4.3.

To conclude this section, we give a proof of Proposition 5.10.

Proof of Proposition 5.10. Again, we omit to write the dependence on δ, for instance we write uτ and u
instead of uδ,τ and uδ. Also, we only treat the case q > 2. For every τ ∈ [0, 1), let 

(
Xτ

t

)
0≤t≤T

denote the 
solution of

dXτ
t = AXτ

t dt + G(Xτ
t )dt + eτAσ(Xτ

t )dW (t), Xτ
0 = x,

so that uτ (T, x) = E
[
ϕ(Xτ

t )
]
, X0 = X and u0 = u.

We first prove (63). Due to the regularity conditions on the test functions ϕ, see Assumption 3.4, it is 
sufficient to prove the following bounds: for every M ∈ N

� and every p, q ∈ [2, ∞), for every γ ∈ [0, 1 ) and 
2
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κ > 0 sufficiently small, there exists CM,p,q(T ) ∈ (0, ∞), such that for every 0 < t ≤ T and every x ∈ Lp, 
we have

(
E|Xτ (t)|2MLp

) 1
2M ≤ Cγ,κ,p,q,M (T )(1 + |x|Lp),(

E|Xτ (t) −X0(t)|2MLq

) 1
2M ≤ Cγ,κ,p,q,M (T )τ 1

4−κ
(66)

For simplicity, we treat only the case M = 1. The first inequality is easy because F1, F2, and σ are 
bounded.

Since 
(
etA

)
t≥0 is an analytic semi-group on Lp for every p ∈ [2, ∞), it is standard that for α ∈ [0, 1), 

there exists C(p, α) ∈ (0, ∞) such that

∣∣(−A)−α(eτA − I)
∣∣
L(Lp,Lp) ≤ C(p, α)τα. (67)

Let us write eτ = Xτ −X0, eτ = e1
τ + e2

τ with

e1
τ =

t∫
0

e(t−s)A(F1(Xτ
s ) − F1(X0

s )
)
ds + (

t∫
0

e(t−s+τ)A(σ(Xτ
s ) − σ(X0

s )
)
dW (s)

+
t∫

0

(
eτA − I

)
e(t−s)Aσ(X0

s )dW (s),

which yields, thanks to Properties 3.2 and 3.3,

E|e1
τ (t)|2Lq ≤ C

t∫
0

E|Xτ
s −X0

s |2Lqds

+ C

t∫
0

∣∣(−A)
1
2q e(t−s+τ)A∣∣2

R(L2,Lq)E|X
τ
s −X0

s |2Lqds

+ C

t∫
0

∣∣(−A)− 1
4+κ(eτA − I)

∣∣2
L(Lq,Lq)

∣∣(−A) 1
4−κe(t−s+τ)A∣∣2

R(L2,Lq)ds

≤ C

t∫
0

( 1
(t− s)

1
2+ 1

q +κ
+ 1

)
E|Xτ

s −X0
s |2Lqds + Cτ

1
2−2κ,

using a continuous time version of Lemma 5.3.
The equation for e2 is

d

dt
e2
τ = Ae2

τ +
(
BF2(Xτ ) −BF2(X0)

)
, e2

τ (0) = 0.

We estimate e2
τ by an energy method. Recall that we work in fact with regularized coefficients, Gδ =

BeδAF2(eδ·) + eδAF1(eδ·), so that both Xτ and X are sufficiently regular to justify all the computations. 
Multiply the equation by (e2

τ )q−1, integrate in space to get thanks to standard manipulations as in the proof 
of Lemma 5.11:

d |e2
τ |qLq ≤ c|Xτ −X0|2Lq |e2

τ |q−2
Lq
dt
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and

d

dt
|e2

τ |2Lq ≤ c|Xτ −X0|2Lq .

Integrating in time and adding with the inequality above yields:

E|Xτ
t −X0

t |2Lq ≤ C

t∫
0

(
1

(t− s)
1
2+ 1

q +κ
+ 1

)
E|Xτ

s −X0
s |2Lqds + Cτ

1
2−2κ

and (63) follows from Gronwall Lemma.
The proof of (64) is similar but longer; details are left to the reader. Finally, instead of proving (65) with 

similar long but straightforward arguments (and a better estimate with τ
1
4−κ is obtained), it is simpler to 

use Proposition 4.5 for k1, k2, k3 ∈ L3q:

∣∣D3uδ(T, x).(k1, k2, k3)
∣∣ ≤ Cβ(T )(1 + |x|Lp)K |k1|L3q |k2|L3q |k3|L3q

and get the result by an interpolation argument. This concludes the proof of Proposition 5.10. �
5.7. Proof of the auxiliary lemmas

Proof of Lemma 5.8. Thanks to (36), we obtain

Xn = Sn−�
Δt X� + ΔtSn−�

Δt G(X�) + Sn−�
Δt eτAσ(X�)ΔW�

+ Δt
n−1∑

m=�+1

Sn−m
Δt G(Xm) +

n−1∑
m=�+1

Sn−m
Δt eτAσ(Xm)ΔWm,

where X� is σ
(
ΔW0, . . . , ΔW�−1

)
-measurable. Thus DsX� = 0 for s > �Δt.

Moreover, Dθ
sΔW� = θ and, for m > �, Dθ

sΔWm = 0 for s ∈
(
�Δt, (� + 1)Δt

)
. Using the chain rule, we 

thus obtain, for n > � and any θ ∈ H,

Dθ
sXn = Sn−�

Δt eτAσ(X�)θ + Δt
n−1∑

m=�+1

Sn−m
Δt G′(Xm).Dθ

sXm +
n−1∑

m=�+1

Sn−m
Δt eτA

(
σ′(Xm)Dθ

sXm

)
ΔWm,

which in turn gives Dθ
sXn = Πn−1Dθ

sXn−1 by definition (50). Since Dθ
sX�+1 = SΔte

τAσ(X�), equality (60)
is satisfied, and this concludes the proof of Lemma 5.8. �

Lemmas 5.7 and 5.9 are both consequences of the following technical result.

Lemma 5.11. Let q ∈ [2, ∞), M ∈ N
�, T ∈ (0, ∞), and β ∈ [0, 12 ). There exists Cβ(M, q, T ) such that the 

following holds true.
Let � ∈ {0, . . . , N − 1} and consider a σ

(
ΔW0, . . . , ΔW�−1

)
-measurable random vector z�, and two se-

quences 
(
Zj
n

)
n≥�,j∈{1,2}, such that Zj

n is σ
(
ΔW0, . . . , ΔWn−1

)
-measurable.

Define the sequence 
(
Y �
n

)
�≤n≤N

by Y �
� = z�, and for n > �

Y �
n = Πn−1Y

�
n−1 + ΔtSΔtGn−1 + SΔte

τA
(
σ′′(Xn−1).(Z1

n−1, Z
2
n−1)

)
ΔWn−1,

with Gn−1 = G′′(Xn−1).(Z1
n−1, Z

2
n−1).
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Then, when q > 2, and every n ≥ � + 1,

(
E|Y �

n |2MLq

) 1
M ≤ Cβ(M, q, T )

(
t−2β
n−�(E|(−A)−βz�|2MLq ) 1

M + Δt
n−1∑
m=�

(
1 + 1

t
1
2+ 1

q +κ

n−m

)
E
(
|Y �

m|2MLq

) 1
M

+ Δt

n−1∑
m=�

(
1 + 1

t
1
2+ 1

q +κ

n−m

)
(E|Z1

n|4ML2q )
1

2M (E|Z2
n|4ML2q )

1
2M

)
.

When q = 2, for every n ≥ � + 1

(
E|Y �

n |2M
) 1

M ≤ Cβ(M,κ, T )
(
t−2β
n−�(E|(−A)−βz�|2M ) 1

M + Δt
n−1∑
m=�

(
1 + 1

t
1
2+κ
n−m

)
E
(
|Y �

m|2ML2

) 1
M

+ Δt

n−1∑
m=�

(
1 + 1

t
1
2+κ
n−m

)
(E|Z1

n|4ML4 ) 1
2M (E|Z2

n|4ML4 ) 1
2M

)
.

Before we give the proof of this result, let us mention that it will be useful when combined with the 
following discrete Gronwall Lemma, see for instance Lemma 7.1 in [22] for details. Lemma 5.12 will also be 
used repeatedly in Section 6.

Lemma 5.12. Let μ, ν ∈ (0, 1), and T ∈ (0, ∞). Assume that Δt = T
N , for some N ∈ N

�; for 1 ≤ n ≤ N , let 
tn = nΔt.

Assume that the sequence 
(
φn

)
0≤n≤N

, with values in (0, ∞), satisfies the following condition: there exists 
C1, C2 such that for every 1 ≤ n ≤ N

φn ≤ C1
(
1 + t−1+μ

n

)
+ C2Δt

n−1∑
j=0

t−1+ν
n−j φj .

Then there exists C such that φn ≤ C(1 + t−1+μ
n ) for every 1 ≤ n ≤ N .

We now give a detailed proof of Lemma 5.11. We only consider the case q ∈ (2, ∞); the case q = 2 is 
treated with similar arguments, but with a slightly different treatment of the stochastic integral.

Proof of Lemma 5.11. Note that Y �
n = Y 1,�

n + Y 2,�
n , where

Y 1,�
n = Sn−�

Δt z� + Δt
n−1∑
m=�

Sn−m
Δt F ′

1(Xm).Y �
m +

n−1∑
m=�

Sn−m
Δt eτA

(
σ′(Xm).Y �

m

)
ΔWm

+ Δt

n−1∑
m=�

Fn,1 +
n−1∑
m=�

Sn−m
Δt eτAσ′′(Xm).(Z1

m, Z2
m)ΔWm

and

Y 2,�
n = Δt

n−1∑
m=�

Sn−m
Δt BF ′

2(Xm).Y �
m + Δt

n−1∑
m=�

Sn−m
Δt BFn,2,

where Fn,j = F ′′
j (Xm).(Z1

m, Z2
m), j ∈ {1, 2}, are such that Gn−1 = Fn−1,1 + BFn−1,2. By Property 3.2,

|Fn,j |2MLq ≤ C|Z1
n|2ML2qE|Z2

n|2ML2q .
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The quantity Y 1,�
n is treated using properties of Sn

Δt whereas energy inequalities are used for Y 2,�
n , which 

contains all the terms where the linear operator B appears.
Using a discrete time version of formula (7) and the corresponding Burkhölder–Davies–Gundy inequality, 

as well as the ideal property (6), we get

E|Y 1,�
n |2MLq ≤ CE|Sn−�

Δt z�|2MLq + CE

(
Δt

n−1∑
m=�

(∣∣Sn−m
Δt F ′

1(Xm).Y �
m|2Lq +

∣∣Sn−m
Δt eτA

(
σ′(Xm).Y �

m

)∣∣2
R(L2,Lq)

))M

+ CE

(
Δt

n−1∑
m=�

(∣∣Sn−m
Δt Fm,1

∣∣2
Lq +

∣∣Sn−m
Δt eτAσ′′(Xm).(Z1

m, Z2
m)

∣∣2
R(L2,Lq)

))M

≤ Ct−2βM
n−� E|(−A)−βz�|2MLq + CE

(
Δt

n−1∑
m=�

(1 + |(−A)
1
2q Sn−m

Δt |2R(L2,Lq)
)
E|Y �

m|2Lq

)M

+ CE

(
Δt

n−1∑
m=�

(1 + |(−A)
1
2q Sn−m

Δt |2R(L2,Lq)
)
E
[
|Z1

m|2L2q |Z2
m|2L2q

])M

,

thanks to Lemma 5.2 and Properties 3.2 and 3.3. Thanks to Lemma 5.3 and Minkowskii inequality, we 
obtain

(
E|Y 1,�

n |2MLq

) 1
M ≤ Ct−2β

n−�E
(
|(−A)−βz�|2M

) 1
M + CΔt

n−1∑
m=�

(
1 + 1

t
1
2+ 1

q +κ

n−m

)
E
(
|Y �

m|2MLq

) 1
M

+ CΔt
n−1∑
m=�

(
1 + 1

t
1
2+ 1

q +κ

n−m

)(
E
[
|Z1

m|4ML2q

]
E
[
|Z2

m|4ML2q

]) 1
2M .

We then estimate Y 2,�
n with an energy inequality. First, note that

Y 2,�
n − Y 2,�

n−1 = Δt
(
AY 2,�

n + BF ′
2(Xn−1)Y �

n−1 + BeτAFn−1,2
)
.

Then, multiply the above equation by (Y 2,�
n )q−1 and integrate in space. Recall that A = ∂ξξ, B = ∂ξ, and 

that homogeneous Dirichlet boundary conditions are imposed. Standard manipulations, including using 
Hölder inequality and integration by parts, yield the following inequalities:

1
q

(
|Y 2,�

n |qLq − |Y 2,�
n−1|

q
Lq

)
≤ Δt

1∫
0

(
(Y 2,�

n )q−1AY 2,�
n + B(F ′

2(Xn−1)Y �
n−1 + Fn−1,2)(Y 2,�

n )q−1)dξ

≤ −(q − 1)Δt

1∫
0

(Y 2,�
n )q−2|∂ξY 2,�

n |2dξ

+ (q − 1)Δt

1∫
0

(F ′(Xn−1)Y �
n−1 + Fn−1,2)(Y 2,�

n )q−2∂ξY
2,�
n dξ

≤ −(q − 1)Δt

1∫
0

(Y 2,�
n )q−2|∂ξY 2,�

n |2dξ

+ CΔt

1∫
((Y �

n−1)2 + (Fn−1,2)2)(Y 2,�
n )q−2dξ + Δt

1∫
(Y 2,�

n )q−2|∂ξY 2,�
n |2dξ
0 0
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≤ CΔt

1∫
0

((Y �
n−1)2 + (Fn−1,2)2)(Y 2,�

n )q−2dξ.

Recall that we work with regularized coefficients (with δ > 0), so that Y 2,�
n and Y �

n are sufficiently regular 
so that the computations above are rigorous.

Applying Hölder inequality, then Lemma 5.12, we obtain

|Y 2,�
n |qLq ≤ cΔt

n−1∑
m=�

(|Y �
m|2Lq + |Fm,2|2Lq )|Y 2,�

m+1|
q−2
Lq .

Define Ȳ 2,�
n = supm=�,...,n |Y 2,�

m |Lq ; then

|Y 2,�
n |2Lq ≤ (Ȳ 2,�

n )2 ≤ CΔt

n−1∑
m=�

(
|Y �

m|2Lq + |Z1
m|2L2q |Z2

m|2L2q

)
.

Finally, taking expectation and using Minkowskii inequality yield

E
(
|Y 2,�

n |2MLq

) 1
M ≤ CΔt

n−1∑
m=�

(
E
(
|Y �

m|2MLq

) 1
M +

(
E
(
|Z1

m|4ML2q

)
E
(
|Z2

m|4ML2q

)) 1
2M

)
.

Gathering the estimates on Y 1,�
n and Y 2,�

n concludes the proof of Lemma 5.11. �
Remark 5.13. For the case q = 2; the contribution of the stochastic integral needs to be treated differently. 
We have for instance, for any κ ∈ (0, 12 ),

∣∣Sn−m
Δt eτA

(
σ′(Xm).Y �

m

)∣∣2
L(L2) = Tr

((
σ′(Xm).Y �

m

)2
S

2(n−m)
Δt e2τA

)

=
∑
i

∣∣(σ′(Xm).Y �
m

)2 e−τλi

(1 + Δtλi)n−m
ei
∣∣
L2

≤ C|Y �
m|2L2

∑
i

1
(1 + Δtλi)2(n−m) |ei|

2
L∞

≤ Cκ|Y �
m|2L2t

− 1
2−κ

n−m .

Proof of Lemma 5.7. For γ = 0, Lemma 5.7 is a straightforward consequence of Lemma 5.11 with Z1
n =

Z2
n = 0 and of the discrete Gronwall lemma, Lemma 5.12.
For γ > 0, we write, with Y �

n = Πn−1:�z�,

Y �
n = Sn−�

Δt z� + Δt
n−1∑
m=�

Sn−m
Δt G′(Xm).Y �

m +
n−1∑
m=�

Sn−m
Δt eτA

(
σ′(Xm).Y �

m

)
ΔWm,

and, thanks to Lemmas 5.2 and 5.3, and (15),

(
E(|(−A)γY �

n |2MLq

) 1
2M ≤ ct−β−γ

n−� E
(
|(−A)−βz�|2MLq

) 1
2M + cΔt

n−1∑
m=�

(t−
1
2−κ−γ

n−m + 1)
(
E|Y �

m|2MLq

) 1
2M

+ c

(
Δt

n−1∑
m=�

t
− 1

2− 1
q−2γ−κ

n−m

(
E|Y �

m|2MLq

) 1
M

) 1
2

.
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Using the estimate obtained for γ = 0, and the condition 1
2 + 1

q + 2γ + κ < 1, for sufficiently small κ > 0, 
then concludes the proof. �
Proof of Lemma 5.9. Again, we only treat the case q ∈ (2, ∞).

Define Y �
n = Πn−1:�+1z, where 0 ≤ � ≤ n − 1. If � = n − 1, Y �

n = z, and thus for s ∈
(
�Δt, (� + 1)Δt

)
one 

has DsY
�
�+1 = 0. If n > � + 1,

Y �
n = Πn−1Y

�
n−1 = SΔtY

�
n−1 + ΔtSΔtG

′(Xn−1).Y �
n−1 + SΔte

τA
(
σ′(Xn−1).Y �

n−1
)
ΔWn−1.

Using the chain rule and the identity DsΔWn−1 = 0 for s < (� + 1)Δt ≤ (n − 1)Δt, for every θ ∈ H

Dθ
sY

�
n = SΔtDθ

sY
�
n−1 + ΔtSΔtG

′(Xn−1).Dθ
sY

�
n−1 + SΔte

τA
(
σ′(Xn−1).Dθ

sY
�
n−1

)
ΔWn−1

+ ΔtSΔtG
′′(Xn−1).(Dθ

sXn−1, Y
�
n−1) + SΔte

τA
(
σ′′(Xn−1).(Dθ

sXn−1, Y
�
n−1)

)
ΔWn−1.

We apply Lemma 5.11, with � replaced by � + 1, and z�+1 = 0, Z1
m = Dθ

sXm, Z2
m = Y �

m), and M = 1. This 
gives, for n ≥ � + 2,

E|Dθ�
s Y �

n |2Lq ≤ CΔt
n−1∑

m=�+1

(
t
− 1

2− 1
q−κ

n−m + 1
)
E|Dθ�

s Y �
m|2Lq

+ CΔt
n−1∑

m=�+1

(
t
− 1

2− 1
q−κ

n−m + 1
)(
E|Dθ�

s Xm|4L2q

) 1
2
(
E|Y �

m|4L2q

) 1
2 .

Thanks to Lemma 5.8 and Lemma 5.7, when m > � + 1,

E|Dθ�
s Xm|4L2q ≤ CE|θ�|4L2q ;

and

E|Y �
m|4L2q = E|Πm−1:�+1z|4L2q ≤ C t

−4( 1
2−κ)

m−�−1
∣∣(−A)− 1

2+κz
∣∣4
L2q .

For m = � + 1, we use E|Y �
�+1|4L2q = |z|4L2q .

Thus

CΔt

n−1∑
m=�+1

(
1+ 1

t
1
2+ 1

q +κ

n−m

)(
E|Dθ�

s Xm|4L2q

) 1
2
(
E|Y �

m|4L2q

) 1
2

≤ CΔt
(
1 + 1

t
1
2+ 1

q +κ

n−l−1

)(
E|θ�|4L2q

) 1
2 |z|2L2q

+ CΔt1n>�+2

n−1∑
m=�+2

(
1 + 1

t
1
2+ 1

q +κ

n−m

) 1
t1−2κ
m−�−1

(
E|θ�|4L2q

) 1
2
∣∣(−A)− 1

2+κz
∣∣2
L2q

≤ CΔt
(
1 + 1

t
1
2+ 1

q +κ

n−l−1

)(
E|θ�|4L2q

) 1
2 |z|2L2q

+ C1n>�+2
(
1 + 1

t
1
2+ 1

q−κ

n−�−2

)(
E|θ�|4L2q

) 1
2
∣∣(−A)− 1

2+κz
∣∣2
L2q ,

using a straightforward comparison between the series and an integral. Applying Lemma 5.12 concludes the 
proof. �
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6. Proof of Theorem 4.6

Recall the definition of the scheme, see (31): for n ∈ {0, . . . , N − 1},

Xn+1 = SΔtXn + ΔtSΔtG(Xn) + SΔtσ(Xn)ΔWn, (68)

with the initial condition X0 = x, the condition NΔt = T , and the Wiener increments ΔWn = W
(
(n +

1)Δt
)
−W

(
nΔt

)
. Recall the notation SΔt =

(
I − ΔtA)−1.

Let ϕ be a function satisfying Assumption 3.4, and u(t, x) = E
[
ϕ
(
Xt(x)

)]
be defined by (27).

In order to justify all computations below, it is convenient to replace G and σ in (68) with the regularized 
coefficients Gδ and σδ introduced in Section 4, and to consider uδ defined by (26) instead of u. Since all 
upper bounds hold true uniformly with respect to δ, passing to the limit δ → 0 allows us to remove this 
regularization parameter. To simplify the notation, we do not mention δ in the computations.

Associated with the scheme (68), we introduce an auxiliary, continuous-time, process 
(
X̃(t)

)
t∈[0,T ], de-

fined on each interval [tn, tn+1] by

X̃(t) = Xn + (t− tn)SΔtAXn + (t− tn)SΔtG(Xn) + SΔtσ(Xn)
(
W (t) −W (tn)

)
. (69)

Equivalently, X̃(tn) = Xn, and for t ∈ [tn, tn+1],

dX̃(t) = SΔtAXndt + SΔtG(Xn)dt + SΔtσ(Xn)dW (t). (70)

Note that Lemma 5.1 is still true for δ = τ = 0 so that we have bounds on the moments of Xn in 
D((−A)α), α < 1

4 . Moreover

|(−A)αX̃(t)|Lp ≤ c|(−A)αXn|Lp , t ∈ [tn, tn+1). (71)

Using the notation �s = � if s ∈ [t�, t�+1), for s ∈ [0, T ], we have the formulation

Xk = Sk
Δtx + Δt

k−1∑
�=0

Sk−�
Δt G(X�) +

tk∫
0

Sk−�s
Δt σ(X�s)dW (s). (72)

Following the standard approach, introduced first in the SDE setting, see [46] and the monographs [31]
and [36], the weak error (33) is decomposed as follows:

Eϕ
(
X(T )

)
− Eϕ

(
XN

)
= E

[
u(T, x) − u(0, XN )

]
=

N−1∑
k=0

E
[
u(T − tk, Xk) − u(T − tk+1, Xk+1)

]

= E
[
u(T − Δt,X1) − u(T, x)

]
+

N−1∑
k=1

(
ak + bk + ck

)
,

(73)

with
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ak =
tk+1∫
tk

E〈AX̃(t) −ASΔtXk, Du
(
T − t, X̃(t)

)
〉dt,

bk =
tk+1∫
tk

E〈G(X̃(t)) − SΔtG(Xk), Du
(
T − t, X̃(t)

)
〉dt,

ck = 1
2

tk+1∫
tk

ETr
([

σ(X̃(t))2 − SΔtσ(Xk)2SΔt

]
D2u

(
T − t, X̃(t)

))
dt,

where in ck we have used the property σ(·)� = σ(·), see (19), Property 3.3.
In the following sections, we successively treat the terms E

[
u(T − Δt, X1) − u(T, x)

]
, ak, bk and ck. 

A technical result is given in Section 6.6.
We will control the error terms, in terms of Δt

1
2−κ with positive, arbitrarily small κ. We do not try to 

obtain optimal constants. The value of κ may change from line to line. At the end of the proof, gathering 
the estimates and choosing an appropriate κ gives the result.

6.1. Control of E
[
u(T − Δt, X1) − u(T, x)

]
We note that
∣∣E[u(T − Δt,X1) − u(T, x)

]∣∣ ≤ ∣∣E[u(T − Δt,X1) − u(T − Δt,X(Δt))
]∣∣

≤ C

(T − Δt)1−κ
(1 + |x|Lmax(p,2q))K+1(

E
∣∣(−A)−1+κ

(
X1 −X(Δt)

)∣∣2
Lq

) 1
2 ,

using Theorem 4.2.
We then write X1 −X(Δt) =

(
X1 − x

)
−
(
X(Δt) − x

)
, and note that

E|(−A)−1+κ(X1 − x)|2Lq ≤ C|(−A)−1+κ(SΔt − I)x|2Lq

+ Δt|(−A)−1+κSΔtG(x)|2Lq + CΔt|(−A)−1+κ|2R(L2,Lq)|SΔtσ(x)|2L(L2)

≤ CΔt1−2κ|x|2Lq + CΔt.

We have used the two following inequalities. First, for every β ∈ [0, 1) and q ∈ [2, ∞), there exists Cβ,q such 
that

|(−A)−β(SΔt − I)|L(Lq) = Δt|(−A)1−βSΔt|L(Lq) ≤ Cβ,qΔtβ , (74)

using the identity SΔt − I = ΔtASΔt and Lemma 5.2 (with n = 1).
Second, adapting the proof of Lemma 5.3, for α > 1

4 ,

|(−A)−α|2R(L2,Lq) < ∞.

Similarly,

E|(−A)−1+κ(X(Δt) − x)|2Lq ≤ CΔt1−2κ|x|2Lq + CΔt.

We thus obtain
∣∣E[u(T − Δt,X1) − u(T, x)

]∣∣ ≤ C(T )(1 + |x|Lmax(p,2q))K+1Δt
1
2−κ. (75)
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6.2. Control of ak

6.2.1. Decompositions
For each k ∈ {1, . . . , N − 1}, ak is decomposed into the following terms:

ak = a1
k + a2

k =
(
a1,1
k + a1,2

k + a1,3
k

)
+

(
a2,1
k + a2,2

k + a2,3
k

)
, (76)

where

a1
k = E

tk+1∫
tk

〈A(I − SΔt)Xk, Du(T − t, X̃(t))〉dt,

a2
k = E

tk+1∫
tk

〈A(X̃(t) −Xk), Du(T − t, X̃(t))〉dt,

and a1
k and a2

k are further decomposed into

a1,1
k = −ΔtE

tk+1∫
tk

〈A2Sk+1
Δt x,Du(T − t, X̃(t))〉dt,

a1,2
k = −ΔtE

tk+1∫
tk

〈Δt
k−1∑
�=0

A2Sk−�+1
Δt G(X�), Du(T − t, X̃(t))〉dt,

a1,3
k = −ΔtE

tk+1∫
tk

〈
k−1∑
�=0

A2Sk−�+1
Δt σ(X�)ΔW�, Du(T − t, X̃(t))〉dt,

and, using (69),

a2,1
k = E

tk+1∫
tk

(t− tk)〈SΔtA
2Xk, Du(T − t, X̃(t))〉dt,

a2,2
k = E

tk+1∫
tk

(t− tk)〈ASΔtG(Xk), Du(T − t, X̃(t))〉dt,

a2,3
k = E

tk+1∫
tk

〈ASΔtσ(Xk)
(
W (t) −W (tk)

)
, Du(T − t, X̃(t))〉dt.

Indeed, I − SΔt = −ΔtASΔt, and

Xk = Sk
Δtx + Δt

k−1∑
�=0

Sk−�
Δt G(X�) +

k−1∑
�=0

Sk−�
Δt σ(X�)ΔW�. (77)
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6.2.2. Treatment of a1
k

We treat successively the terms a1,1
k , a1,2

k and a1,3
k . The first quantity only needs elementary arguments 

and Theorem 4.2, with β ∈ [0, 12 ). The second quantity requires the stronger version of Theorem 4.2, with 
β ∈ [0, 1), contrary to [20], due to the Burgers type nonlinearity. The third quantity requires the use of the 
Malliavin calculus duality formula, and of Theorem 4.3 with β, γ ∈ [0, 12 ).

We also use repeatedly (71) combined with Cauchy–Schwarz inequality.

Treatment of a1,1
k

Using Theorem 4.2, with β = 1
2 − κ, we get for k ∈ {1, . . . , N − 1},

|a1,1
k | ≤ Cκ(1 + |x|Lmax(p,2q))K+1Δt

tk+1∫
tk

1
(T − t) 1

2−κ

∣∣(−A)− 1
2+κA2Sk+1

Δt x
∣∣
L2qdt

≤ Cκ(1 + |x|Lmax(p,2q))K+1Δt

tk+1∫
tk

1
(T − t) 1

2−κ

∣∣(−A) 1
2+2κSΔt(−A)1−κSk

Δtx
∣∣
L2qdt

≤ Cκ(1 + |x|Lmax(p,2q))K+1|x|Lq

Δt
1
2−2κ

t1−κ
k

tk+1∫
tk

1
(T − t) 1

2−κ
dt,

using Lemma 5.2.

Treatment of a1,2
k

Similarly, thanks to (15), the boundedness of the mappings F1 and F2 from Lq to Lq, thanks to Prop-
erty 3.2, using Theorem 4.2 with β = 1 − κ,

|a1,2
k | ≤ Cκ(1 + |x|Lmax(p,2q))K+1Δt

tk+1∫
tk

1
(T − t)1−κ

Δt

k−1∑
�=0

∣∣(−A) 1
2+3κSΔt(−A)1−κSk−�

Δt

∣∣
L(L2q)dt

≤ Cκ(1 + |x|Lmax(p,2q))K+1|x|LqΔt
1
2−3κ

tk+1∫
tk

1
(T − t)1−κ

dtΔt

k−1∑
�=0

1
t1−κ
k−�

≤ Cκ(1 + |x|Lmax(p,2q))K+1|x|LqΔt
1
2−3κ

tk+1∫
tk

1
(T − t)1−κ

dt.

Treatment of a1,3
k

Let k ∈ {1, . . . , N − 1}. For technical reasons, we decompose a1,3
k = a1,3,1

k + a1,3,2
k where

a1,3,1
k = −ΔtE

tk+1∫
tk

〈
k−2∑
�=0

A2Sk−�+1
Δt σ(X�)ΔW�, Du(T − t, X̃(t))〉dt

= −ΔtE

tk+1∫
〈
tk−1∫

A2Sk−�s+1
Δt σ(X�s)dW (s), Du(T − t, X̃(t))〉dt
tk 0
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a1,3,2
k = −ΔtE

tk+1∫
tk

〈A2S2
Δtσ(Xk−1)ΔWk−1, Du(T − t, X̃(t))〉dt,

with the convention that a1,3,1
1 = 0.

We first treat a1,3,1
k . Using the Malliavin calculus duality formula,

a1,3,1
k = −ΔtE

tk+1∫
tk

〈
tk−1∫
0

A2Sk−�s+1
Δt σ(X�s)dW (s), Du(T − t, X̃(t))〉dt

= −ΔtE

tk+1∫
tk

tk−1∫
0

Tr
(
σ(X�s)�A2Sk−�s+1

Δt D2u(T − t, X̃(t))DsX̃(t)
)
dsdt

= −ΔtE

tk+1∫
tk

tk−1∫
0

Tr
(
σ(X�s)�A2Sk−�s+1

Δt D2u(T − t, X̃(t))U(t, s)SΔtσ(X�s)
)
dsdt

= −ΔtE

tk+1∫
tk

tk−1∫
0

∑
i

D2u(T − t, X̃(t)).
(
A2Sk−�s+1

Δt σ(X�s)2ei, U(t, s)SΔtei

)
dsdt,

where we use that σ(x)� = σ(x), and we have introduced the linear operator U(t, s) such that DsX̃(t) =
U(t, s)SΔtσ(X�s). We then apply Theorem 4.3.

On the one hand, using Property 3.3,

(
E
∣∣A− 1

2+κ+2Sk−�s+1
Δt σ(X�s)2ei

∣∣2
L4q

) 1
2

≤
∣∣(−A)1−κSk−�s

Δt

∣∣
L(L4q)

∣∣(−A) 1
2+2κSΔt

∣∣
L(L4q)

(
E
∣∣σ(X�s)2ei

∣∣2
L4q

) 1
2

≤ CΔt−
1
2−2κ

t1−κ
k−�s

|ei|L4q ,

thanks to Lemma 5.2, under the condition that �s < k − 1.
On the other hand, we use Lemma 6.1, see Section 6.6. Thanks to Theorem 4.3, we thus have

|a1,3,1
k | ≤ CΔt(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

tk−1∫
0

CΔt−
1
2−2κ

(T − t)1−κt1−κ
k−�s

∑
i

(
E|(−A)− 1

2+κU(t, s)SΔtei|4L4q

) 1
4 dsdt

≤ CΔt
1
2−3κ(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

C

(T − t)1−κ
dt
(
Δt

k−2∑
�=0

1
t1−κ
k−�

)∑
i

(
|(−A)− 1

2+2κSΔtei|L4q

+ CΔt
1
2 |SΔtei|L4q

)
dt

≤ CΔt
1
2−5κ(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

C

(T − t)1−κ
dt

Indeed, 
∑ (

|(−A)− 1
2+2κSΔtei|L4q + CΔt

1
2 |SΔtei|L4q

)
≤ CΔt−3κ.
i
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It remains to treat a1,3,2
k . This is done with much simpler arguments: using Theorem 4.2,

|a1,3,2
k | ≤ CΔt(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t) 1

2−κ

(
ΔtE|(−A)− 1

2+κA2S2
Δtσ(Xk−1)|2R(L2,L2q)

) 1
2 dt

≤ CΔt(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t) 1

2−κ
dtΔt

1
2−1+κ,

using |(−A)− 1
2+3κ|R(L2,L2) < ∞ and |(−A)1−κSΔt|L(L2) ≤ CΔt−1+κ.

Conclusion
Gathering the estimates on a1,1

k , a1,2
k and a1,3

k , and summing for k ∈ {1, . . . , N − 1}, we obtain

N∑
k=1

∣∣a1
k

∣∣ ≤ CΔ 1
2−5κ(1 + |x|Lmax(p,2q))K+1

T∫
0

1
(T − t)1−κ

(
1 + 1

t1−κ

)
dt. (78)

6.2.3. Treatment of a2
k

Treatment of a2,1
k

Since ASΔt = − 1
Δt (I − SΔt), we rewrite

a2,1
k = −E

tk+1∫
tk

(t− tk)
Δt

〈A(I − SΔt)Xk, Du(T − t, X̃(t))〉dt

and observe that the right-hand side has the same structure as a1
k. Using the straightforward inequality 

t − tk ≤ Δt when tk ≤ t ≤ tk+1, we thus directly obtain that 
∑N−1

k=1 |a2,1
k | is bounded from above by the 

right-hand side of (78).

Treatment of a2,2
k

We again use Theorem 4.2 (with β = 1 − κ), inequality (15) with Proposition 3.2, and obtain

|a2,2
k | =

∣∣E
tk+1∫
tk

(t− tk)〈ASΔtG(Xk), Du(T − t, X̃(t))〉dt
∣∣

≤ CΔt(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−κ

∣∣(−A) 1
2+2κSΔt(−A)− 1

2−κG(Xk)
∣∣
L2qdt

≤ CΔt
1
2−2κ(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−κ

dt,

thanks to Lemma 5.2.

Treatment of a2,3
k

To treat this term, we again use the Malliavin calculus duality formula. Writing the Wiener increment 
as a stochastic integral, we obtain
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a2,3
k = E

tk+1∫
tk

〈
t∫

tk

ASΔtσ(Xk)dW (s), Du(T − t, X̃(t))〉dt

= E

tk+1∫
tk

E

t∫
tk

Tr
(
σ(Xk)�SΔtAD2u(T − t, X̃(t))DsX̃(t)

)
dsdt

= E

tk+1∫
tk

E

t∫
tk

Tr
(
σ(Xk)�SΔtAD2u(T − t, X̃(t))SΔtσ(Xk)

)
dsdt

= E

tk+1∫
tk

(t− tk)
∑
i

D2u(T − t, X̃(t)).
(
SΔtei, ASΔtσ(Xk)2ei

)
dt,

where we have used σ(x)� = σ(x), and the equality DsX̃(t) = SΔtσ(Xk) for tk ≤ s < t ≤ tk+1, obtained 
from (69). We then use Theorem 4.3 and obtain

|a2,3
k | ≤ CΔt(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−κ

dt
∑
i

∣∣(−A)− 1
2+κSΔtei

∣∣
L4q

∣∣(−A) 1
2+κSΔtσ(Xk)2ei

∣∣
L4q

≤ CΔt(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−κ

dt
(
Δt−2κ

∑
i

1

λ
1
2+κ
i

)
Δt−

1
2−κ.

Conclusion
Gathering the estimates on a2,1

k , a2,2
k and a2,3

k , and summing for k ∈ {1, . . . , N − 1}, we obtain

N∑
k=1

∣∣a2
k

∣∣ ≤ CΔ 1
2−2κ(1 + |x|Lmax(p,2q))K+1

T∫
0

1
(T − t)1−κ

(
1 + 1

t1−κ

)
dt. (79)

6.3. Control of bk

6.3.1. Decompositions
For each k ∈ {1, . . . , N − 1}, bk is decomposed into the following terms:

bk = b1k + b2k = b1k +
(
b2,1k + b2,2k + b2,3k + b2,4k

)
, (80)

where

b1k =
tk+1∫
tk

E〈(I − SΔt)G(Xk), Du
(
T − t, X̃(t)

)
〉dt,

b2k =
tk+1∫
tk

E〈G(X̃(t)) −G(Xk), Du
(
T − t, X̃(t)

)
〉dt

=
tk+1∫
tk

E

∑
i

[
Gi(X̃(t)) −Gi(Xk)

]
∂iu

(
T − t, X̃(t)

)
dt,

where Gi(·) = 〈G(·), ei〉 and ∂iu(·, ·) = 〈Du(·, ·), ei〉.
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In addition, b2k is further decomposed with

b2,1k = E

tk+1∫
tk

t∫
tk

∑
i

∂iu
(
T − t, X̃(t)

)
Tr

(
SΔtσ(Xk)2SΔtD

2Gi(X̃(s))
)
dsdt

b2,2k = E

tk+1∫
tk

t∫
tk

∑
i

∂iu
(
T − t, X̃(t)

)
〈SΔtAXk, DGi(X̃(s))〉dsdt

b2,3k = E

tk+1∫
tk

t∫
tk

∑
i

∂iu
(
T − t, X̃(t)

)
〈SΔtF (Xk), DGi(X̃(s))〉dsdt

b2,4k = E

tk+1∫
tk

∑
i

∂iu
(
T − t, X̃(t)

) t∫
tk

〈DGi(X̃(s)), SΔtσ(Xk)dW (s)〉dt,

thanks to Itô formula, and using σ(·)� = σ(·).

6.3.2. Treatment of b1k
We directly apply Theorem 4.2, with β = 1 − κ, and thanks to (74), Property 3.2, and inequality (15), 

we get

|b1k| ≤ C(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−κ

∣∣(−A) 1
2+2κSΔt(−A)− 1

2−κG(Xk)
∣∣
L(Lq)dt

≤ CΔt
1
2−2κ(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−κ

dt.

As a consequence,

N−1∑
k=1

|b1k| ≤ CΔt
1
2−2κ(1 + |x|Lmax(p,2q))K+1. (81)

6.3.3. Treatment of b2k
Control of b2,1k

To treat the term b2,1k , we expand the trace, using the orthonormal system 
(
ei
)
i∈N� , and with straight-

forward calculations we write

b2,1k = E

tk+1∫
tk

t∫
tk

∑
i

∂iu
(
T − t, X̃(t)

)
Tr

(
SΔtσ(Xk)2SΔtD

2Gi(X̃(s))
)
dsdt

= E

tk+1∫
tk

t∫
tk

∑
i,n

∂iu
(
T − t, X̃(t)

)
D2Gi(X̃(s)).

(
SΔten, SΔtσ(Xk)2en

)
dsdt

= E

tk+1∫
tk

t∫
tk

∑
n

〈Du
(
T − t, X̃(t)

)
, D2G(X̃(s)).

(
SΔten, SΔtσ(Xk)2en

)
〉dsdt
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Using Theorem 4.2, with β = 1
2 + κ, combined with inequality (15), and Properties 3.1 and 3.2, we get

|b2,1k | ≤ C(1 + |x|Lmax(p,2q))K+1
E

tk+1∫
tk

1
(T − t) 1

2+κ

t∫
tk

∑
j∈{1,2},n∈N�

(
E|D2Fj(X̃(s)).

(
SΔten, SΔtσ(Xk)2en

)
|2Lq

) 1
2+κ

dsdt

≤ CΔt(1 + |x|Lmax(p,2q))K+1
∑
n

|SΔten|L2q

tk+1∫
tk

1
(T − t) 1

2+κ
dt

≤ CΔt
1
2−κ(1 + |x|Lmax(p,2q))K+1

∑
n

1

λ
1
2+κ
n

tk+1∫
tk

1
(T − t) 1

2+κ
dt.

Control of b2,2k

As for the term a1,3
k , we need to further decompose

b2,2k = E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

(
SΔtAXk

)
〉dsdt

= b2,2,1k + b2,2,2k + b2,2,3k ,

where, using (77),

b2,2,1k = E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

(
Sk+1

Δt Ax
)
〉dsdt

b2,2,2k = E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

(
Δt

k−1∑
�=0

ASk−�+1
Δt G(X�)

)
〉dsdt

b2,2,3k = E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

(k−1∑
�=0

ASk−�+1
Δt σ(X�)ΔW�

)
〉dsdt.

The terms b2,2,1k and b2,2,2k are estimated using Theorem 4.2 in a straightforward way.
On the one hand, thanks to (15),

|b2,2,1k | ≤ CΔt

tk+1∫
tk

1
(T − t) 1

2+κ
dt(1 + |x|Lmax(p,2q))K+1∣∣Sk+1

Δt Ax|Lqdt

≤ C
Δt1−κ

t1−κ
k

(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t) 1

2+κ
dt.
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On the other hand,

|b2,2,2k | ≤ CΔt

tk+1∫
tk

1
(T − t) 1

2+κ
dt(1 + |x|Lmax(p,2q))K+1Δt

k−1∑
�=0

(∣∣ASk−�+1
Δt

∣∣
L(Lq) +

∣∣ASk−�+1
Δt B

∣∣
L(Lq)

)

≤ CΔt
1
2−2κ

tk+1∫
tk

1
(T − t) 1

2+κ
dt(1 + |x|Lmax(p,2q))K+1(Δt

k−1∑
�=0

1
t1−κ
k−�

)
.

It remains to treat b2,2,3k . Writing

k−1∑
�=0

ASk−�+1
Δt σ(X�)ΔW� =

tk∫
0

ASk−�r+1
Δt σ(X�r )dW (r)

as a stochastic integral, and subdividing the interval [0, tk] = [0, tk−1] ∪ [tk−1, tk], we have the decomposition

b2,2,3k = E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

( tk∫
0

ASk−�r+1
Δt σ(X�r )dW (r)

)
〉dsdt

= E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

( tk−1∫
0

ASk−�r+1
Δt σ(X�r )dW (r)

)
〉dsdt

+ E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

( tk∫
tk−1

ASk−�r+1
Δt σ(X�r )dW (r)

)
〉dsdt

= b2,2,3,1k + b2,2,3,2k .

Using the Malliavin calculus duality formula,

b2,2,3,1k

= E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

( tk−1∫
0

ASk−�r+1
Δt σ(X�r )dW (r)

)
〉dsdt

= E

tk+1∫
tk

t∫
tk

∑
n

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

( tk−1∫
0

ASk−�r+1
Δt σ(X�r )endβn(r)

)
〉dsdt

= E

tk+1∫
tk

t∫
tk

∑
n,m

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).em〉

tk−1∫
0

〈ASk−�r+1
Δt σ(X�r )en, em〉dβn(r)dsdt

= E

tk+1∫
tk

t∫
tk

tk−1∫
0

∑
n,m

〈ASk−�r+1
Δt σ(X�r )en, em〉D2u(T − t, X̃(t)).

(
DrX̃(t)en, DG(X̃(s)).em

)
drdsdt

+ E

tk+1∫ t∫ tk−1∫ ∑
n,m

〈ASk−�r+1
Δt σ(X�r )en, em〉〈Du(T − t, X̃(t)), D2G(X̃(s)).

(
em,DrX̃(s)en

)
〉drdsdt
tk tk 0
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= E

tk+1∫
tk

t∫
tk

tk−1∫
0

∑
n

D2u(T − t, X̃(t)).
(
U(t, r)SΔten, DG(X̃(s))ASk−�r+1

Δt σ(X�r )2en
)
drdtds

+ E

tk+1∫
tk

t∫
tk

tk−1∫
0

∑
n

〈Du(T − t, X̃(t)), D2G(X̃(s)).
(
ASk−�r+1

Δt σ(X�r )2en, U(s, r)SΔten
)
〉drdsdt,

where we have used the identities DrX̃(t) = U(t, r)SΔtσ(X�r ) and DrX̃(s) = U(s, r)SΔtσ(X�r ) for r <

tk−1 ≤ s ≤ t ≤ tk.
To estimate b2,2,3,1k we first write

E|(−A)− 1
2+κDG(X̃(s))ASk−�r+1

Δt σ(X�r )2en|2L4q ≤ cE|F ′
1(X̃(s))ASk−�r+1

Δt σ(X�r )2en|2L4q

+ cE|(−A)2κF ′
2(X̃(s))ASk−�r+1

Δt σ(X�r )2en|2L4q .

The treatment of the first term is straightforward, with upper bound given by c
∣∣ASk−�r+1

Δt

∣∣
L(L4q). For the 

second term, we use (10) and (12):

E|(−A)2κF ′
2(X̃(s))ASk−�r+1

Δt σ(X�r )2en|2L4q ≤ cE
(
1 + |(−A)3κX̃(s)|L8q )|(−A)1+3κSk−�r+1

Δt σ(X�r )2en|L8q

)2

≤ cE
(
(1 + |(−A)3κX̃(s)|L8q )|(−A)1+3κSk−�r+1

Δt |L(L8q)

)2
.

Therefore, using (71), we obtain:

(
E|(−A)− 1

2+κDG(X̃(s))ASk−�r+1
Δt σ(X�r )2en|2L4q

) 1
2 ≤ c(1 + 1

t3κk
|x|L8q )Δt−4κ 1

t1−κ
k−�r

.

Moreover by Lemma 6.1:
(
E|(−A)− 1

2+κU(t, r)SΔten|2L4q

) 1
2 ≤ c

(
|(−A)− 1

2+κSΔten|L4q + Δt
1
2−κ|SΔten|L4q

)
,

and using Theorem 4.3 we get∣∣∣ED2u(T − t, X̃(t)).
(
U(t, r)SΔten, DG(X̃(s))ASk−�r+1

Δt σ(X�r )2en
)∣∣∣

≤ c(1 + |x|Lmax(p,2q))K+1 1
(T − t)1−2κ (1 + t−3κ

k |x|L8q )Δt−4κ 1
t1−κ
k−�r

×
(
|(−A)− 1

2+κSΔten|L4q + Δt
1
2−κ|SΔten|L4q

)
≤ c(1 + |x|Lmax(p,2q))K+1 1

(T − t)1−2κ (1 + t−3κ
k |x|L8q )Δt−6κ 1

t1−κ
k−�r

1

λ
1
2+κ
n

.

The second term of b2,2,3,1k is treated similarly thanks to Theorem 4.2 (with β = 1
2 + κ):

∣∣∣E〈Du(T − t, X̃(t)), D2G(X̃(s)).
(
ASk−�rr+1

Δt σ(X�r )2en, U(s, r)SΔten
)
〉
∣∣∣

≤ c(1 + |x|Lmax(p,2q))K+1 1
(T − t) 1

2+κ
E
∣∣(ASk−�r

Δt σ(X�r )2en)(U(s, r)SΔten)
∣∣
Lq

≤ c(1 + |x|Lmax(p,2q))K+1 1
(T − t) 1

2+κ

∣∣ASk−�r
Δt

∣∣
L(L2q)E

∣∣U(s, r)SΔten
∣∣
L2q

≤ c(1 + |x|Lmax(p,2q))K+1 1
1
2+κ

Δt−κ 1
t1−κ

∣∣SΔten
∣∣
L2q
(T − t) k−�r
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≤ c(1 + |x|Lmax(p,2q))K+1 1
(T − t) 1

2+κ
Δt−

1
2−2κ 1

t1−κ
k−�r

1

λ
1
2+κ
n

.

We deduce

|b2,2,3,1k | ≤ C(1 + |x|Lmax(p,8q))K+2

tk+1∫
tk

t∫
tk

tk−1∫
0

∑
n

1
(T − t)1−2κ (1 + t−3κ

k |x|L8q )Δt−
1
2−κ 1

t1−κ
k−�r

1

λ
1
2+κ
n

drdsdt

≤ CΔt
1
2−4κ(1 + |x|Lmax(p,8q))K+3

tk+1∫
tk

1
t3κ

1
(T − t)1−κ

(
Δt

k−1∑
�=0

1
t1−κ
k−�

)(∑
n

1

λ
1
2+κ
n

)
dt

≤ CΔt
1
2−4κ(1 + |x|Lmax(p,8q))K+3

tk+1∫
tk

1
t3κ

1
(T − t)1−κ

dt,

using similar arguments to the control of a1,3
k .

To treat the remaining term b2,2,3,2k , we again use the Malliavin calculus duality formula. With the same 
arguments as for b2,2,3,1k , we get the identity

b2,2,3,2k = E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t), DG(X̃(s)).

( tk∫
tk−1

AS2
Δtσ(Xk−1)dW (r)

)
〉dsdt

= E

tk+1∫
tk

t∫
tk

tk∫
tk−1

∑
n

D2u(T − t, X̃(t)).
(
U(t, r)SΔten, DG(X̃(s))AS2

Δtσ(Xk−1)2en
)
drdtds

+ E

tk+1∫
tk

t∫
tk

tk∫
tk−1

∑
n

〈Du(T − t, X̃(t)), D2G(X̃(s)).
(
AS2

Δtσ(Xk−1)2en, U(s, r)SΔten
)
〉drdsdt,

and we get, using Theorems 4.2 and 4.3, and Lemma 6.1,

|b2,2,3,2k | ≤ CΔt2(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−κ

dt

∑
n

(
|(−A)− 1

2+κSΔten|L4q + Δt
1
2−κ|SΔten|L4q

)
|(−A)1+κS2

Δt|L(L4q)

≤ CΔt
1
2−3κ(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−κ

dt
∑
n

1

λ
1
2+κ
n

.

Control of b2,3k

The treatment of this term is straightforward, using Theorem 4.2, with β = 1
2 + κ, and Property 3.2. 

Indeed,

|b2,3k | =
∣∣∣E

tk+1∫ t∫ ∑
i

∂iu
(
T − t, X̃(t)

)
〈SΔtG(Xk), DGi(X̃(s))〉dsdt

∣∣∣

tk tk
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=
∣∣∣E

tk+1∫
tk

t∫
tk

〈Du
(
T − t, X̃(t)

)
, DG(X̃(s)).

(
SΔtG(Xk)

)
〉dsdt

∣∣∣

≤ C(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t) 1

2+κ

t∫
tk

(
E
∣∣(−A) 1

2+κSΔt(−A)− 1
2−κG(Xk)

∣∣2
Lq

) 1
2 dsdt

≤ CΔt
1
2−κ(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t) 1

2+κ
dt,

using 
∣∣SΔtB

∣∣
L(Lq) ≤ CΔt−

1
2−κ thanks to (15) and Lemma 5.2.

Control of b2,4k

The term b2,4k involves a stochastic integral. Similarly to the treatment of the term a3,2
k , we use the 

Malliavin calculus duality formula, and the identity DsX̃(t) = SΔtσ(Xk) for tk ≤ s < t ≤ tk+1. We obtain

|b2,4k | =
∣∣∣E

tk+1∫
tk

∑
i

∂iu
(
T − t, X̃(t)

)
〈

t∫
tk

〈DGi(X̃(s)), SΔtσ(Xk)dW (s)〉dt
∣∣∣

=
∣∣∣E

tk+1∫
tk

t∫
tk

Tr
((

DsX̃(t)
)�
D2u

(
T − t, X̃(t)

)
DG(X̃(s))SΔtσ(Xk)

)
dsdt

∣∣∣

=
∣∣∣E

tk+1∫
tk

t∫
tk

∑
n

D2u
(
T − t, X̃(t)

)
.
(
SΔten, DG(X̃(s))SΔtσ(Xk)2en

)
dsdt

∣∣∣

≤ C(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

t∫
tk

∑
n

1
(T − t)1−2κ |(−A)− 1

2+κSΔten|L4q

(
E
∣∣(−A)− 1

2+κDG(X̃(s))SΔtσ(Xk)2en
∣∣2
L4q

) 1
2 dsdt

≤ CΔt
1
2−4κ

∑
n

1

λ
1
2+κ
n

(1 + |x|Lmax(p,2q))K+1(1 + 1
t3κk

|x|L8q )
tk+1∫
tk

1
(T − t)1−2κ dt

≤ CΔt
1
2−4κ

∑
n

1

λ
1
2+κ
n

(1 + |x|Lmax(p,8q))K+2

tk+1∫
tk

(
1 + 1

t3κ
) 1
(T − t)1−2κ dt,

thanks to similar arguments as for the treatment of b2,2,3k .

Conclusion
Gathering the estimates on b2,1k , b2,2k , b2,3k and b2,4k , and summing for k ∈ {1, . . . , N − 1}, we obtain

N∑
k=1

∣∣b2k∣∣ ≤ CΔ 1
2−κ(1 + |x|Lmax(p,8q))K+2

T∫
0

(
1 + 1

t3κ
)(

1 + 1
(T − t)1−κ

)
dt. (82)
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6.4. Control of ck

6.4.1. Decompositions
For each k ∈ {1, . . . , N − 1}, ck is decomposed into the following terms:

ck = c1k + c2k + c3k = c1k + c2k +
(
c3,Ak + c3,Bk + c3,Ck + c3,Dk

)
, (83)

where (using the symmetry of D2u)

c1k = 1
2E

tk+1∫
tk

Tr
(
(I − SΔt)σ

(
X̃(t)

)2(I − SΔt)D2u
(
T − t, X̃(t)

))
dt,

c2k = E

tk+1∫
tk

Tr
(
SΔtσ

(
X̃(t)

)2(I − SΔt)D2u
(
T − t, X̃(t)

))
dt,

c3k = 1
2E

tk+1∫
tk

Tr
(
SΔt

[
σ
(
X̃(t)

)2 − σ(Xk)2
]
SΔtD

2u
(
T − t, X̃(t)

))
dt.

In addition, c3k is further decomposed as follows: for Λ ∈ {A,B, C,D},

c3,Λk = 1
2E

tk+1∫
tk

Tr
(
SΔtΛSΔtD

2u
(
T − t, X̃(t)

))
dt

= 1
2E

tk+1∫
tk

∑
n

D2u(T − t, X̃(t)).
(
SΔtΛen, SΔten

)
dt,

(84)

with the linear operators A, B, C, D obtained by applying Itô formula:

〈
[
σ
(
X̃(t)

)2 − σ(Xk)2
]
h1, h2〉 =

∑
Λ∈{A,B,C,D}

〈Λh1, h2〉,

with

〈Ah1, h2〉 = 1
2

t∫
tk

Tr
(
SΔtσ(Xk)2SΔtD

2σ2
h1,h2

(X̃(s))
)
ds

〈Bh1, h2〉 =
t∫

tk

〈SΔtAXk, Dσ2
h1,h2

(X̃(s))〉ds

〈Ch1, h2〉 =
t∫

tk

〈SΔtG(Xk), Dσ2
h1,h2

(X̃(s))〉ds

〈Dh1, h2〉 =
t∫

tk

〈Dσ2
h1,h2

(X̃(s)), SΔtσ(Xk)dW (s)〉ds,

using the notation σ2
h ,h = 〈σ(·)2h1, h2〉.
1 2
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For future reference, note the following identity:

〈Dσ2
en,em(x), h〉 =

∫
(0,1)

(σ2)′
(
x(ξ)

)
en(ξ)em(ξ)h(ξ)dξ = 〈Dσ2

en,h(x), em〉. (85)

6.4.2. Treatment of c1k
Since Theorem 4.3 is restricted to β, γ < 1

2 , this term needs some work:

|c1k| = 1
2

∣∣∣∣∣∣E
tk+1∫
tk

Tr
(
(I − SΔt)D2u

(
T − t, X̃(t)

)
(I − SΔt)σ

(
X̃(t)

)2)
dt

∣∣∣∣∣∣
≤ 1

2E
tk+1∫
tk

∑
n

∣∣D2u(T − t, X̃(t)).
(
(I − SΔt)en, (I − SΔt)σ(X̃(t))2en

)∣∣ dt

≤ C
(
1 + |x|Lmax(p,2q)

)K+1 ∑
n

tk+1∫
tk

1
(T − t)1−2κ

∣∣(−A)− 1
2κ(I − SΔt)en

∣∣
L4q

(
E
∣∣(−A)− 1

2+κ(I − SΔt)σ
(
X̃(t)

)2
en

∣∣2
L4q

) 1
2 dt

≤ C
(
1 + |x|Lmax(p,2q)

)K+1Δt
1
2−4κ

∑
n

λ
− 1

2+κ
n

tk+1∫
tk

1
(T − t)1−2κ

(
E
∣∣(−A)−3κσ

(
X̃(t)

)2
en

∣∣2
L4q

) 1
2 dt.

Using (10), (13), we get

∣∣(−A)−2κσ
(
X̃(t)

)2
en

∣∣
L4q ≤ C|(−A)−2κen|L8q

∣∣(−A)4κσ
(
X̃(t)

)2∣∣
L8q ≤ Cλ−2κ

n

(
1 +

∣∣(−A)5κX̃(t)
∣∣
L8q

)
.

As a consequence, using (71),

|c1k| ≤ C
(
1 + |x|Lmax(p,8q)

)K+2Δt
1
2−5κ

tk+1∫
tk

(
1 + 1

t5κ
) 1
(T − t)1−κ

dt. (86)

6.4.3. Treatment of c2k
The treatment of c2k is straightforward, using Theorem 4.3:

|c2k| ≤
∣∣∣E

tk+1∫
tk

∑
n

D2u
(
T − t, X̃(t)

)
.
(
SΔten, (I − SΔt)σ(X̃(t))

)
dt
∣∣∣

≤ C(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−2κ

∑
n

|(−A)− 1
2+κSΔten|L4q

∣∣(−A)− 1
2+κ(I − SΔt)

∣∣
L(L4q)dt

≤ C(1 + |x|Lmax(p,2q))K+1Δt
1
2−3κ

tk+1∫
tk

1
(T − t)1−2κ dt

∑
n

1

λ
1
2+κ
n

.

(87)
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6.4.4. Treatment of c3k
Control of c3,Ak

We proceed similarly, and applying Theorem 4.3 we obtain:

|c3,Ak | ≤ C(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−2κ

∑
n

|(−A)− 1
2+κSΔten|L4q

(
E|(−A)− 1

2+κSΔtAen|2L4q

) 1
2 dt

≤ CΔt−2κC(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−2κ dt

∑
n

1

λ
1
2+κ
n

(
E|Aen|2L4q

) 1
2 .

To have a control on 
(
E|Aen|2L4q

) 1
2 , let any h1 ∈ L4q and h2 ∈ Lr, with 1

4q + 1
r = 1; then

〈Ah1, h2〉 = 1
2

t∫
tk

Tr
(
SΔtσ(Xk)2SΔtD

2σ2
h1,h2

(X̃(s))
)
ds

= 1
2

tk+1∫
tk

∑
n

D2σ2
h1,h2

(X̃(s)).
(
SΔtσ(Xk)2en, SΔten

)
ds

≤ CΔt|h1|L4q |h2|Lr

∑
n

|SΔtσ(Xk)2en|L∞ |SΔten|L∞

≤ CΔt
1
2−κ|h1|L4q |h2|Lr

∑
n

1

λ
1
2+κ
n

.

Thus 
(
E|Aen|2L4q

) 1
2 ≤ CΔt

1
2−κ, and we obtain

|c3,Ak | ≤ CΔt
1
2−3κC(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−2κ dt

∑
n

1

λ
1
2+κ
n

.

Control of c3,Bk

Like a1,3
k and b2,2k , the term c3,Bk contains a bad term and require a careful analysis. We introduce the 

decomposition B = B1 + B2 + B3, and the associated terms c3,B1
k , c3,B2

k and c3,B3
k , with

〈B1h1, h2〉 =
t∫

tk

〈Sk+1
Δt Ax,Dσ2

h1,h2
(X̃(s))〉ds

〈B2h1, h2〉 =
t∫

tk

〈
tk∫

0

Sk−�r+1
Δt AG(X�r)dr,Dσ2

h1,h2
(X̃(s))〉ds

〈B3h1, h2〉 =
t∫

tk

〈
tk∫

0

ASk−�r+1
Δt σ(X�r )dW (r), Dσ2

h1,h2
(X̃(s))〉ds.

The terms c3,B1
k and c3,B2

k do not present difficulties, using (85) and standard arguments. Indeed, for any 
h1 ∈ L4q and h2 ∈ Lr, with 1 + 1 = 1,
4q r



248 C.-E. Bréhier, A. Debussche / J. Math. Pures Appl. 119 (2018) 193–254
〈B1h1, h2〉 ≤ CΔt|h1|L4q |h2|Lr |ASk+1
Δt x|L∞ ≤ C|x|Lp

Δt
3
4−3κ

t1−κ
k

|h1|L4q |h2|Lr ,

using |(−A)κSΔtx|L∞ ≤ |(−A)κSΔtx|W 1
2 +κ

2
≤ C|(−A) 1

4+2κSΔtx|L2 ≤ C

Δt
1
4+2κ |x|Lp .

Similarly, we have for B2

〈B2h1, h2〉 ≤ CΔt|h1|L4q |h2|Lr

tk∫
0

∣∣Sk−�r+1
Δt AG(X�r )

∣∣
L∞dr.

Moreover, using Property 3.2 and G = F1 + BF2,

∣∣Sk−�r+1
Δt AG(X�r)

∣∣
L∞ ≤

∣∣(−A) 1
2+2κSΔt|L(L

1
κ ,L∞)

|(−A)1−κSk−�r
Δt

∣∣
L(L

1
κ )

(
1 +

∣∣(−A)− 1
2−κB

∣∣
L(L

1
κ )

)
≤ C

∣∣(−A) 1
2+4κSΔt|L(L

1
κ )

≤ Δt−
1
2−4κt−1+κ

k−�r
,

using (15), as well as the following inequalities, which are consequences of Sobolev inequalities and of (9): 
for any x ∈ L

1
κ ,

∣∣(−A) 1
2+κSΔtx

∣∣
L∞ ≤ C

∣∣(−A) 1
2+κSΔtx

∣∣
W 2κ, 1

κ
≤ C

∣∣(−A) 1
2+4κSΔtx

∣∣
L

1
κ
.

We thus obtain

|c3,B1
k | + |c3,B2

k | ≤ C(1 + |x|Lmax(p,2q))K+1Δt
1
2−5κ

tk+1∫
tk

(
1 + 1

t1−κ

) 1
(T − t)1−2κ dt

∑
n

1

λ
1
2+κ
n

.

Finally, cB3
k requires a Malliavin integration. First, we write

c3,B3
k = 1

2E
tk+1∫
tk

∑
n

D2u(T − t, X̃(t)).
(
SΔtB3en, SΔten

)
dt

= 1
2E

tk+1∫
tk

∑
n,m

〈B3en, em〉D2u(T − t, X̃(t)).
(
SΔtem, SΔten

)
dt

= 1
2E

∫∫∫ ∑
n,m,j

〈ASk−�r+1
Δt σ(X�r )ej , Dσ2

en,em(X̃(s))〉D2u(T − t, X̃(t)).
(
SΔtem, SΔten

)
dβj(r)dsdt,

where for simplicity we use the notation 
∫∫∫ (

. . .
)
dβn(r)dsdt =

∫ tk+1
tk

∫ t

tk

∫ tk
0
(
. . .

)
dβn(r)dsdt.

Using the Malliavin calculus duality formula, for t ∈ [tk, tk+1] and s ∈ [tk, t], then

E

[∑
m,j

tk∫
0

〈ASk−�r+1
Δt σ(X�r )ej , Dσ2

en,em(X̃(s))〉D2u(T − t, X̃(t)).
(
SΔtem, SΔten

)
dβj(r)

]

= E

[∑
m,j

tk∫
D2σen,em(X̃(s)).

(
ASk−�r+1

Δt σ(X�r )ej ,DrX̃(s)ej
)
D2u(T − t, X̃(t)).

(
SΔtem, SΔten

)
dr
]

0
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+ E

[∑
m,j

tk∫
0

〈ASk−�r+1
Δt σ(X�r )ej , Dσ2

en,em(X̃(s))〉D3u(T − t, X̃(t)).
(
SΔtem, SΔten,DrX̃(t)ej

)
dr
]

= E

[∑
m,j

tk∫
0

D2σen,em(X̃(s)).
(
ASk−�r+1

Δt ej ,DrX̃(s)σ(X�r )ej
)
D2u(T − t, X̃(t)).

(
SΔtem, SΔten

)
dr
]

+ E

[∑
j

tk∫
0

D3u(T − t, X̃(t)).
(
SΔten, SΔtDσ2

en,ASk−�r+1
Δt ej

(X̃(s)),DrX̃(t)σ(X�r)ej
)
dr
]
,

using the identity σ(·)� = σ(·) for both lines, and (85) for the second line. Moreover,

∣∣∣D2σen,em(X̃(s)).
(
ASk−�r+1

Δt ej ,DrX̃(s)σ(X�r )ej
)∣∣∣ ≤ C|en|L∞ |em|L∞ |ASk−�r

Δt ej |L2 |DrX̃(s)σ(X�r )ej |L2∣∣∣Dσ2
en,ASk−�r+1

Δt ej
(X̃(s))

∣∣∣
L4q

≤ C|en|L∞ |ASk−�r+1
Δt ej |L∞ ,

and using Lemma 6.1 we get

E|DrX̃(s)σ(X�r )ej |2L2 ≤ CE|σ(X�r )ej |L2 ≤ C.

Then, using Theorem 4.3 and Proposition 4.5, we obtain

|c3,B3
k | ≤ C(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

t∫
tk

tk∫
0

Δt−
1
2−6κ

t1−κ
k−�r

1
(T − t)1−2κ drdsdt

+ C(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

t∫
tk

tk∫
0

Δt−
1
2−4κ

t1−κ
k−�r

1
(T − t) 1

2−κ
drdsdt

≤ CΔt
1
2−6κ(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t)1−2κ dt

+ CΔt
1
2−6κ(1 + |x|Lmax(p,2q))K+1

tk+1∫
tk

1
(T − t) 1

2−κ
dt.

Control of c3,Ck

Using (84), similarly to c3,Ak , we get

|c3,Ck | ≤ CΔt−2κ

tk+1∫
tk

1
(T − t)1−2κ dt

∑
n

1

λ
1
2+κ
n

(
E|Cen|2L4q

) 1
2 .

For any h1 ∈ L4q and h2 ∈ Lr, with 1
4q + 1

r = 1, we get

|〈Ch1, h2〉| ≤ CΔt|h1|L4q |h2|Lr |SΔtG(Xk)|L∞ ≤ CΔt−1/2−κ|h1|L4q |h2|Lr .
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We thus obtain

|c3,Ck | ≤ CΔt
1
2−2κ

tk+1∫
tk

1
(T − t)1−2κ dt

∑
n

1

λ
1
2+κ
n

.

Control of c3,Dk

Using (84), the definition of D, and the Malliavin calculus duality formula,

c3,Dk = 1
2E

tk+1∫
tk

∑
n,m

〈Den, em〉D2u(T − t, X̃(t)).
(
SΔtem, SΔten

)
dt

= 1
2E

tk+1∫
tk

t∫
tk

∑
j,n,m

〈Dσ2
en,em(X̃(s)), SΔtσ(Xk)ej〉dβj(s)D2u(T − t, X̃(t)).

(
SΔtem, SΔten

)
dt

= 1
2E

tk+1∫
tk

t∫
tk

∑
j,n,m

D3u(T − t, X̃(t)).
(
DsX̃(t)ej , SΔtem, SΔten

)
〈Dσ2

en,em(X̃(s)), SΔtσ(Xk)ej〉dsdt

= 1
2E

tk+1∫
tk

t∫
tk

∑
j,n,m

D3u(T − t, X̃(t)).
(
SΔtσ(Xk)ej , SΔtem, SΔten

)
〈Dσ2

en,em(X̃(s)), SΔtσ(Xk)ej〉dsdt

= 1
2E

tk+1∫
tk

t∫
tk

∑
j,n

D3u(T − t, X̃(t)).
(
SΔtσ(Xk)ej , SΔtDσ2

en,SΔtσ(Xk)ej (X̃(s)), SΔten
)
dsdt

= 1
2E

tk+1∫
tk

t∫
tk

∑
j,n

D3u(T − t, X̃(t)).
(
SΔtej , SΔtDσ2

en,SΔtσ(Xk)2ej (X̃(s)), SΔten
)
dsdt,

where we have used (85), and then (19).
We now use Proposition 4.5. Note that

|〈Dσ2
en,SΔtσ(Xk)2ej (X̃(s)), h〉| ≤ C|h|Lr |en|L4q |ej |L∞ ≤ C|h|Lr ,

for any h ∈ Lr, with 1
4q + 1

r = 1; thus 
(
E|Dσ2

en,SΔtσ(Xk)2ej (X̃(s))|2L4q

) 1
2 ≤ C.

We obtain

|c3,Dk | ≤ C(1 + |x|Lp)K
tk+1∫
tk

t∫
tk

1
(T − t) 1

2−κ

∑
j,n

| −A)− 1
2+κSΔtej |L4q |SΔten|L4qdsdt

≤ CΔt
1
2−3κ(1 + |x|Lp)K

tk+1∫
tk

1
(T − t) 1

2−κ
dt

∑
n

1

λ
1
2+κ
n

∑
j

1

λ
1
2+κ
j

.



C.-E. Bréhier, A. Debussche / J. Math. Pures Appl. 119 (2018) 193–254 251
Conclusion
Gathering the estimates on c3,Ak , c3,Bk , c3,Ck and c3,Dk , and summing for k ∈ {1, . . . , N − 1}, we obtain

N∑
k=1

∣∣c3k∣∣ ≤ CΔt
1
2−κ(1 + |x|Lmax(p,2q))K+1

T∫
0

(
1 + 1

(T − t)1−κ

)
dt. (88)

6.5. Conclusion of the proof of Theorem 4.6

Gathering (76), (78) and (79) allows to control the sum of ak. Similarly, bk is estimated thanks to (80), 
(81) and (82) whereas ck is estimated by (83), (86), (87) and (88).

Then, (33) follows from (75) and (73).

6.6. An auxiliary result

We used the estimate below for the treatment of several terms, for instance a1,3
k and b2,2,3,1k . Recall that 

DsX̃(t) = U(t, s)SΔtσ(X�) for t ∈ [tk, tk+1), s ∈ [t�, t�+1), and � ≤ k − 1.

Lemma 6.1. For every q ∈ [2, ∞), T ∈ (0, ∞) and κ > 0 sufficiently small, there exists Cq,κ(T ) such that 
for every h ∈ Lq, t ∈ [tk, tk+1), s ∈ [t�, t�+1), with 1 ≤ k ≤ N ,

(
E|(−A)− 1

2+κU(t, s)h|2KLq

) 1
2K ≤ Cq,κ(T )

(
|(−A)− 1

2+κh|Lq + Δt
1
2−κ|h|Lq

)
if k > � + 1. (89)

Proof of Lemma 6.1. Let s be fixed. It can be seen that Ut = U(t, s)h satisfies:

Ut = Utk +
t∫

tk

(
ASΔtUtk + SΔtG

′(Xk).Utk

)
dr +

t∫
tk

SΔt

(
σ′(Xk).Utk

)
dW (r),

Utk+1 = SΔtUtk + ΔtSΔtG
′(Xk).Utk + SΔt

(
σ′(Xk).Utk

)
ΔWk,

Ut�+1 = h.

First, for every t ∈ [tk, tk+1),

E|(−A)− 1
2+κUt|2Lq ≤ CE|(−A)− 1

2+κUtk |2Lq + CΔt2
∣∣ASΔt

∣∣2
L(Lq)E|(−A)− 1

2+κUtk |2Lq

+ CΔt1−2κ
E|Utk |2Lq + CΔtE

∣∣(−A)− 1
2+κSΔt

(
σ′(Xk).Utk

)∣∣2
R(L2,Lq)

≤ CE|(−A)− 1
2+κUtk |2Lq + CΔt1−2κ

E|Utk |2Lq + CΔt|(−A)
1
2q− 1

2+κ|2R(L2,Lq)E|Utk |2Lq .

Note that |(−A)
1
2q− 1

2+κ|2R(L2,Lq) < ∞ when 1
2q − 1

2 + κ < −1
4 ; this condition is satisfied when q > 2 and 

κ > 0 is chosen sufficiently small.
The result is clear for k = � + 1. For k > � + 1, since Utk = Πk−1:�+1h, we get, by Lemma 5.7,

Δt1−2κ
E|Utk |2Lq ≤ CΔt1−2κ

(k − �− 1)1−2κΔt1−2κ |(−A)− 1
2+κh|2Lq ≤ C|(−A)− 1

2+κh|2Lq .

Now,

Utk = Sk−�−1
Δt h + Δt

k−1∑
Sk−m

Δt BF ′(Xm).Utm +
k−1∑

Sk−m
Δt

(
σ′(Xm).Utm

)
ΔWm,
m=�+1 m=�+1
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and thus, with the condition 1
2q − 1

2 + κ < −1
4 fulfilled for κ > 0 sufficiently small,

E
∣∣(−A)− 1

2+κUtk |2L2q ≤ |(−A)− 1
2+κh|2Lq + C

(
Δt

k−1∑
m=�+1

1
t2κk−m

E|Utm |Lq

)2

+ CΔt

k−1∑
m=�+1

E|Utm |2Lq

≤ |(−A)− 1
2+κh|2Lq + CΔt2

1
t4κk−�−1

|h|2Lq + CΔt|h|2Lq

+ C

⎛
⎜⎝
⎛
⎝Δt

k−1∑
m=�+2

1
t2κk−m

1

t
1
2−κ

m−�−1

⎞
⎠

2

+ Δt
k−1∑

m=�+2

1
t1−2κ
m−�−1

⎞
⎟⎠ |(−A)− 1

2+2κh|2Lq

≤ C|(−A)− 1
2+2κh|2Lq + CΔt|h|2Lq .

This concludes the proof of Lemma 6.1. �
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