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RECENT ADVANCES IN VARIOUS FIELDS OF NUMERICAL PROBABILITY ∗, ∗∗

C.E. Bréhier1, 2, P.E. Chaudru de Raynal3, V. Lemaire4, F. Panloup5 and C.
Rey6

Abstract. The goal of this paper is to present a series of recent contributions on some various
problems of numerical probability. Beginning with the Richardson-Romberg Multilevel Monte-Carlo
method which, among other fields of applications, is a very efficient method for the approximation of
diffusion processes, we focus on some adaptive multilevel splitting algorithms for rare event simulation.
Then, the third part is devoted to the simulation of McKean-Vlasov forward and decoupled forward-
backward stochastic differential equations by some cubature algorithms. Finally, we tackle the problem
of the weak error estimation in total variation norm for a general Markov semi-group.

1. Introduction
During the last decades, probabilistic numerical methods received a growing attention. This can be explained

by several reasons: the need for giving some answers, even approximate ones, is increasing in many domains
such as (for instance) Biology, Physics, Finance, industrial ingeneering or Big Data related problems. This
first argument must be associated with two other ones: the exponential growth of the capacity of computers
combined with the a priori simplicity of crude Monte-Carlo methods (which is certainly not the only probabilistic
numerical method but probably the most well-known).
In this paper, we would like to present four recent contributions on the topic. Before going further, let us
note that although the works presented below are related to various numerical problems, they have in common
to combine algorithmic efficiency with theoretical sharpness. In this sense, they are in the continuity of the
numerous works on the topic of several French researchers since the 1980’s.
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In Section 2, Vincent Lemaire introduces a new estimator called Multilevel Richardson-Romberg (ML2R) which
combines the higher order bias cancellation of the Multistep Richardson-Romberg method introduced in [61] and
the variance control resulting from the stratification in the Multilevel Monte Carlo (MLMC) method introduced
in [29] (see also [37, 43]). In particular, it is proved that that one can build to build a combination which
outperforms MLMC. This note is based on a paper of the author with G. Pagès (see [55]).
In Section 3, Charles-Edouard Bréhier focuses on recent algorithms for the estimation of rare events. After
a brief review of reduction of variance strategies, especially the Multilevel Splitting approach (see [42]), the
author introduces different adaptive versions of the latter and states a series of its properties: the goal is to
build a theoretically unbiased estimator in an idealized setting and then to explain and to test numerically how
the algorithm should be modified to preserve the unbiasedness property in a more general setting. This note is
mainly based on the following joint works: [16] and [15].
In Section 4, Paul-Éric Chaudru de Raynal shortly describes a cubature algorithm for the computation of the
expectation of some functionals of the solution of a decoupled Mc Kean-Vlasov Forward Backward Stochastic
Differential Equation (MKV-FBSDE) type. This work is mainly based on a collaboration with C.A. Garc̀ıa
Trillos (see [25]).
Finally, in Section 5, Clément Rey considers the problem of the estimation of the weak error related to the
discretization schemes of a given Markov process. More precisely, for a general Rd-valued Markov process,
the author gives some estimates of the total variation distance between the marginals of the process and its
discretization scheme under some general conditions (including the non-degeneracy of the semi-group). As
an example, an application to the estimation of the weak error related to the Ninomiya-Victoir scheme (for
diffusions) is given. This part is based on a joint work with V. Bally.

2. Multilevel Richardson-Romberg extrapolation
We propose and analyze a new estimator called Multilevel Richardson-Romberg (ML2R) which combines

the higher order bias cancellation of the Multistep Richardson-Romberg method introduced in [61] and the
variance control resulting from the stratification in the Multilevel Monte Carlo (MLMC) method introduced
in [29] (see also [37, 43]). The Multilevel Monte Carlo method has been extensively applied to various fields
of numerical probability recently. We refer to the webpage http://people.maths.ox.ac.uk/gilesm/mlmc_
community.html for a comprehensive list of references in this field.

2.1. Framework
We aim at computing a very accurate approximation of I0 = E [Y0] by a Monte Carlo type estimator where

the (non-degenerate) random variable Y0 ∈ L2(P) cannot be simulated (exactly) at a reasonable cost. Let
(Ω,A,P) be a probability space and (Yh)h∈H be a family of real-valued random variables in L2(P) associated
to Y0 where H ⊂ (0,h] is an admissible subset of parameters having 0 as a limiting value and such that Hn ⊂ H
for every integer n > 1. Typically the random variable Yh results from a time discretization scheme of parameter
h or from an inner approximation in a nested Monte Carlo so that we will speak of h as the bias parameter
in what follows. We assume that the family (Yh)h∈H satisfies the following two conditions which formalize the
approximates Y0

∃α > 0, ck, R̄ > 1, E [Yh]−E [Y0] =
R̄∑
k=1

ckh
αk + o(hα(R̄+1)), (Bias error)

∃β > 0, V1 > 0,
∥∥Yh − Y0

∥∥2
2

= E
[∣∣Yh − Y0

∣∣2] 6 V1h
β . (Strong error)

Note that the parameters α, β, V1, ck and R̄ are structural parameters which depend on the family (Yh)h∈H.
In the sequel, we set θ =

√
V1/ var(Y0).

Thus the following two problems of numerical probability can be formalized within this framework.

http://people.maths.ox.ac.uk/gilesm/mlmc_community.html
http://people.maths.ox.ac.uk/gilesm/mlmc_community.html
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Brownian diffusion approximation: Let X = (Xt)t∈[0,T ] be a Brownian diffusion with drift function
b and diffusion coefficient σ, and its continuous Euler scheme X̄h = (X̄h

t )t∈[0,T ] with bias parameter
h = T

n , defined by

X̄h
t = X0 +

∫ t

0
b
(
X̄h
s

)
ds+

∫ t

0
σ
(
X̄h
s

)
dWs, where s = kh on [kh, (k + 1)h)

In the case Y0 = f(XT ) where f is a real-valued β–Hölder continuous function, β ∈ (0, 1], we consider
the approximation Yh = f(X̄h

T ). It is classical background that (Strong error) is satisfied with β.
Concerning (Bias error), the weak error expansion is valid with α = 1 and we refer to [67] if f is a
smooth function and to [8, 35] under ellipticity or hypo-ellipticity conditions. As for weak error, the
functional case Y0 = F

(
(Xt)t∈[0,T ]

)
is much more challenging. We can refer to [2] for results in this

direction and references on this topic.
Nested Monte Carlo: The purpose is to compute by simulation quantities of the form

E
[
f
(
E [X |Y ]

)]
with X = F (Z, Y )

where Y and Z are two independent random variables taking values in Rq
Y and Rq

Z respectively, and
F : Rq

Z ×Rq
Y → R is a Borel function. To comply with our framework, we set

H = {1/K, K > 1}, Y0 = f
(
E [X |Y ]

)
, Y 1

K
= f

(
1
K

K∑
k=1

F (Zk, Y )
)

where (Zk)k>1 is an i.i.d. sequence of random variables with the same distribution as Z and independent
of Y . If f is smooth enough we prove that the assumptions (Bias error) and (Strong error) are satisfied
with α = β = 1 (see [55] for details). For more references on the nested Monte Carlo in the field of
financial risk and actuary we refer to [12,28,40].

2.2. Crude Monte Carlo estimator
A crude Monte Carlo estimator to approximate I0 = E [Y0] can be summarized as follows. The starting point

is of course to fix a parameter h ∈ H (this bias parameter must be chosen carefully). So, let (Y (k)
h )k>1 be a

sequence of independent copies of Yh and the estimator INh = 1
N

∑N
k=1 Y

(k)
h . By the strong law of large numbers

and the central limit theorem we have a well-known control of the renormalized statistical error
√
N(INh −E [Yh])

which behaves as a centered Gaussian variable with variance var(Yh) as N goes to infinity. On the other hand,
there is a bias error due to the approximation of I0 by Ih = E [Yh].

A natural choice for measuring the random error INh −I0 is to consider the mean squared error E
[
(INh −I0)2] =∥∥INh − I0∥∥2

2
. Our aim is to minimize the cost of the simulation for a given target error, say ε > 0. The numerical

cost of this biased Monte Carlo procedure is given by Cost(INh ) = Nh−1. We look for the optimal parameters
h∗(ε) and N∗(ε) solution to the minimization problem(

h∗(ε), N∗(ε)
)

= argmin
‖IN
h
−I0‖26ε

Cost(INh ). (1)

Proposition 2.1. For a prescribed L2-error ε > 0, the optimal parameters h∗(ε) and N∗(ε) solution to (1) are
given by

h∗(ε) = (1 + 2α)− 1
2α∣∣c1∣∣ 1

α

ε
1
α , N∗(ε) =

(
1 + 1

2α

) var(Y0)
(

1 + θ(h∗(ε))
β
2

)2

ε2 , (2)
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with θ =
√
V1/ var(Y0). Furthermore, we have

lim sup
ε→0

ε2+ 1
α Cost

(
I
N∗(ε)
h∗(ε)

)
6
∣∣c1∣∣ 1

α

(
1 + 1

2α

)
(1 + 2α) 1

2α var(Y0).

This well-known result points out that the cost of the crude Monte Carlo estimator implemented with optimal
parameters (2) grows as ε−(2+ 1

α ) when ε goes to zero. In his seminal paper [29] Giles proves that the cost of a
Multilevel Monte Carlo estimator can grow as ε−2 log2(1/ε) in the most common case β = 1 and as ε−2 (which
is optimal for a Monte Carlo method) in the case β > 1.

2.3. Multilevel estimators
We now present a specific implementation of the general Multilevel Richardson-Romberg (ML2R) estimator

introduced in [55]. With this particular design the ML2R estimator is a weighted version of the classical
Multilevel Monte Carlo (MLMC) estimator. More preciselly, for a depth level parameter R ∈

{
2, . . . , R̄

}
and

a well chosen sequence of real weights (Wj)26j6R we consider the weighted Multilevel estimator based on the
following telescopic summation

E [YhR ] = E [Yh] +
R∑
j=2

Wj E
[
Yhj − Yhj−1

]
, (3)

where hj = M−(j−1)h, j = 1, . . . , R is a geometrically decreasing sequence of bias parameters depending on
M > 2 a fixed parameter. We denote by nj = M (j−1) the j-th refiner coefficient of the initial bias parameter
h ∈ H. Weights (Wj)j are discussed after a brief reminder on construction of the Multilevel estimator.

At each level j ∈
{

1, . . . , R
}

the computation of E
[
Yhj − Yhj−1

]
is performed by a standard Monte Carlo

procedure. The key point of a Multilevel estimator is that for each level we consider a number Nj = dNqje of
scenarios where q = (q1, . . . , qR) ∈ S+(R) =

{
q ∈ (0, 1)R,

∑R
j=1 qj = 1

}
in which Yhj and Yhj−1 are perfectly

correlated. More precisely we consider R copies of the biased family denoted Y (j) = (Y (j)
h )h∈H, j ∈

{
1, . . . , R

}
attached to independant random copies Y (j)

0 of Y0. The specific version of ML2R presented here then writes

INh,R,M,q = 1
N1

N1∑
k=1

Y
(1),k
h +

L∑
j=2

Wj

Nj

Nj∑
k=1

(
Y

(j),k
hj

− Y (j),k
hj−1

)
(4)

where for every j, (Y (j),k)k>1 is a sequence of independent copies of Y (j). This estimator depends now on
the parameters h, R, M and ratios (qj)16j6R of the total number of scenarios N . These parameters must be
carrefuly tuned to obtain an estimator with an optimal complexity for a given L2–error. The MLMC estimator
introduced by Giles corresponds to the case Wj = 1.

We now briefly present the construction of the weights (Wj)16j6R which are the highlight of our estimator.
Note that by Abel’s transform, the telescopic summation (3) rewrites

E [YhR ] =
R∑
j=1

wj E
[
Yhj
]

with wj = Wj −Wj+1, j = 1, . . . , R

where WR+1 = 0. The derivative weights (wj)16j6R are defined as in [61] in order to kill all terms in front of
the coefficients cr in (Bias error). This yields

R∑
j=1

wj E
[
Yhj
]

= E [Y0] +O(hαR).
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Such weights (wj)16j6R are obtained as the unique solution to a Vandermonde system and we get the explicit
expression (which depends uniquely on α, R and M) by standard Cramer formulas

wi = (−1)R−iM−α2 (R−i)(R−i+1)∏i−1
j=1(1−M−jα)

∏R−i
j=1 (1−M−jα)

.

From now on, we are looking for the optimal parameters h∗, R∗, q∗ = (q∗j )j=1,...,R∗ , M∗ minimizing the
numerical cost for a given L2–error ε > 0 (for clarity, we do not write the dependance in ε). We decompose this
global optimization problem in different steps and we first obtain the optimal allocation strategy (q∗1 , . . . , q∗R) as
a function of other fixed parameters. Note that this is a robust allocation which only depends on assumption
(Strong error) 

q∗1 = µ∗(1 + θh
β
2 ),

q∗j = µ∗θh
β
2

(∣∣Wj(R,M)
∣∣n− β2j−1+n

− β2
j√

nj−1+nj

)
, j = 2, . . . , R,

(5)

where µ∗ is the normalizing constant such that
∑R
j=1 qj = 1. Secondly, we obtain h∗ as a function of R and

finally we optimize in R. We obtain that R∗(ε) must grow like
√

log(1/ε) as ε goes to zero. This result is to
compare to the MLMC estimator where R∗(ε) grows like log(1/ε). Parameter N∗(ε) easily follows

N∗(ε) =
(

1 + 1
2αR

)var(Y0)
(

1 + θh
β
2
∑R
j=1

∣∣Wj(R,M)
∣∣(n− β2j−1 + n

− β2
j

)√
nj−1 + nj

)2

ε2∑R
j=1 qj(nj−1 + nj)

(6)

Theorem 2.2. Assume that lim
R→+∞

∣∣c
R

∣∣ 1
R = c̃ ∈ (0,+∞). For a prescribed L2–error ε > 0, the ML2R estimator

INh,R,M,q implemented with a fixed M > 2 and the following parameters

R∗(ε) =

1
2 + log(h c̃ 1

α )
log(M) +

√(1
2 + log(h c̃ 1

α )
log(M)

)2
+ 2 log(1/ε)

α log(M)


h∗(ε) = (1 + 2αR) 1

2αR ε−
1
αRM−

R−1
2

q∗ given in (5) and N∗ given in (6), satisfies

lim sup
ε→0

v(β, ε) Cost
(
INh,R,M,q

)
6 K(α, β,M)

with v(β, ε) =


ε2 (log(1/ε))−1 if β = 1,
ε2 if β > 1,
ε2e
− 1−β√

α

√
2 log(1/ε) log(M) if β < 1.

Note that in the case β = 1, ML2R is asymptotically more efficient than MLMC by a factor log (1/ε) which
goes to +∞ as ε goes to 0. This factor log (1/ε) is significant and provides a substantial gain in numerical
simulations especially when we look for an accurate result (ε small). Our estimator is half way between MLMC
and an unbiased Monte Carlo simulation (of cost ε−2).

In the case β < 1, ML2R is asymptotically much more efficient than MLMC estimator by a factor
ε−

1−β
α e
− 1−β√

α

√
2 log(M) log(1/ε) which goes to +∞ as ε goes to 0 in a very steep way. It seems clear that it is for

this setting that our estimator is the most powerful with respect to regular MLMC. In the case β > 1, the two
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Multilevel estimators achieve the same asymptotic rate ε−2 corresponding to a virtual unbiased Monte Carlo
method based on the direct simulation of Y0.

2.4. Numerical examples
Barrier option (without Brownian bridge method)

We consider an up-and-out call option in a Black-Scholes model discretized by a näıve Euler scheme to
illustrate the case β = 0.5 and α = 0.5. This path-dependent option with strike K = 100 and barrier L = 120 >
K is defined by its path-dependent payoff

ϕ(x) = e−rT (x(T )−K)+1{
maxt∈[0,T ] x(t)6L

}, x ∈ C([0, T ],R).

The parameters of the Black-Scholes model are s0 = 100, r = 0, σ = 0.15 and T = 1. For this set of parameters
the reference price is I0 = 1.855225.

Nested Monte Carlo for compound option pricing
A compound option is simply an option on an option. The exercise payoff of a compound option involves the

value of another option. A compound option then has two expiration dates T1 < T2 and two strike prices K1
and K2. We consider here the example of a European style Put on a Call where the underlying risky asset S
is still given by a Black-Scholes process with parameters (r, σ). On the first expiration date T1, the holder has
the right to sell a new Call option using the strike price K1. The new Call has expiration date T2 and strike
price K2. The payoff of such a Put-on-Call option writes

(K1 −E [(ST2 −K2)+ |ST1 ])+ .

To comply with our framework, we set H = {1/K, K > 1}

Y0 = f
(
E [ST2 |ST1 ]

)
, Y 1

K
= f

(
1
K

K∑
k=1

F (Zk, ST1)
)

where (Zk)k>1 is an i.i.d. N (0; 1)–distributed sequence, f(x) = (K1 − x)+ and F such that

ST2 = F (G,ST1) = ST1e
(r−σ2

2 )(T2−T1)+σ
√
T2−T1Z .

The parameters used for the underlying process (St)t∈[0,T2] are S0 = 100, r = 0.03 and σ = 0.3. The parameters
of the Put-on-Call payoff are T1 = 1/12, T2 = 1/2 and K1 = 6.5, K2 = 100. The reference price is I0 = 1.36857.

Numerical results and comments
We compare the two estimators MLMC and ML2R on these two examples. We first do a crude evaluation

of the structural parameters var(Y0) and V1, and consider that c1 = c̃ = 1. Then, for a fixed value of ε > 0,
the optimal parameters R, h, the optimal allocation strategy (qj)16j6R and the optimal sample size N are
expressed as a function of M > 2 (the unique free parameter). Finally we determine M ∈

{
2, . . . , 10

}
which

minimises the resulting cost of the estimator.
Using this fully automatic procedure we compare the empirical L2–error or empirical root mean squared error

(RMSE) of both estimators for ε = 2−k, k = 1, . . . , 8. The empirical RMSE is computed using 200 replications
of the estimator with the indicated reference price. In figure 1 (a) and (b) are depicted the CPU–time of one
estimator with respect to the empirical RMSE. The speed-up of ML2R over MLMC is significant on these two
highly biased examples. For ε = 0.1, the ML2R run about 33 times faster than MLMC in the Barrier option
pricing example and about 10 times faster in the nested Monte Carlo example. For more details on the numerical
aspects we refer to [55].
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(a) Barrier option discretized by an Euler scheme
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(b) Compound option pricing by a nested Monte Carlo

Figure 1. Log-log plot of the CPU–time in seconds as a function of empirical L2–error
(RMSE).
Each point corresponds to a prescribed value of the expected L2–error ε = 2−k for k = 1, . . . , 8.

3. Analysis of the Adaptive Multilevel Splitting algorithms for rare event
simulation

3.1. Introduction
The estimation of rare events is a crucial problem in many applications and has been the subject of many

studies in the last decades, since the pioneering works on Monte-Carlo methods in the 1950s; see for instance
Chapter 6 in [31], [38], [63]. For simplicity, we mainly focus on the problem of the estimation of the probability
of a rare event, although it is not the only interesting question: for instance, in the metastability context, one
also wishes to understand the behavior of the so-called reactive trajectories. We start with a description of the
crude Monte-Carlo method and of its limitations. We then briefly review some reduction of variance strategies,
especially the Multilevel Splitting approach introduced in [42] and revisited recently, starting from [30].

We then focus on adaptive versions of the latter, and describe its properties in two different situations.
Firstly, in an idealized setting, we state the algorithm and we emphasize on the unbiasedness of the estimator
of the probability. Secondly, we explain how the algorithm should be modified to handle a situation which
involves a Markov chain dynamics: we numerically demonstrate that unbiasedness is preserved provided that
the adaptive approach is appropriately implemented.

3.2. Crude Monte-Carlo method
Assume that X is a non-negative, real random variable on a probability space (Ω,F ,P), and that given a > 0,

we want to estimate the probability p = P(X > a). When a→ +∞, the probability p converges to 0.
We can use the Monte-Carlo procedure: if (Xm)m∈N∗ denotes a sequence of independent and identically

distributed random variables, with the same law as X, for any integer M ∈ N∗, the probability p can be
approximated by the empirical average

pMC
M = 1

M

M∑
m=1

1Xm>a.

It is clear that E[pMC
M ] = E[1X>a] = p (thus pMC

M is an unbiased estimator of p, for any fixed value of M) and
that Var(pMC

M ) = p(1−p)
M . Moreover, when M → +∞, the Central Limit Theorem implies that

√
M
(
pMC
M − p

)
converges in law to a Gaussian distribution N (0, p(1 − p)), with variance p(1 − p); asymptotic (symmetric)
confidence intervals for the estimation of p are thus of the form [pMC

M − qασM
M , pMC

M + qασM
M ], where qα denotes
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the quantile of level α of the standard Gaussian distribution: 1 − α = P(|Z| ≤ qα) if Z ∼ N (0, 1), and
σ2
M = 1

M

∑M
m=1

(
1Xm>a − pMC

M

)2 → p(1− p) is the empirical variance.
The length of the confidence interval goes to 0 when p → 0; however, meaningful interpretations can only

be given using the relative error εMC
M = qασM

pMC
M

√
M
∼ qα

√
p(1−p)

p
√
M

. For a given tolerance ε > 0, the control εMC
M ≤ ε

requires a number of realizations M of the order 1/p→ +∞, which starts to be prohitive on standard computers
when (approximately) p ≤ 10−9, especially when the simulation of a single Xm has a non-negligible cost.

3.3. Reduction of variance strategies
Two main strategies were initiated in the 1950s: importance sampling and importance splitting.
We can apply the basic importance sampling strategy for the approximation of p = E[1X>a]. The (zero-

variance) optimal change of measure P̃ is given by the conditional distribution P(·|X > a) given the (rare)
event {X > a}. As usual in this context, sampling according to this distribution requires the knowledge of the
unknown quantity p - which appears here as a normalizing constant. See [31], Sections 5 and 6.1.

For specific models, some importance sampling strategies have been proposed, based for instance on large
deviations theory. However the introduction of an importance function always modifies the model, which is
inappropriate for complex systems - think of an industrial code, that you might not be allowed to view and
modify. Instead, we prefer to see the model as a black box and to propose non-intrusive strategies.

3.4. Multilevel Splitting
The principle is as follows. We split the (small) probability p = P(X > a) into a (telescoping) product of

conditional probabilities which are easier to estimate. The latter are defined using an increasing sequence of
levels a0 < . . . < an, with a0 = 0 and an = a: we have p = P(X > a0)

∏n
j=1 P(X > aj |X > aj−1). Here the

sequence of levels must be fixed a priori, but its choice is crucial for the improvement of the estimation.
We define p0 = P(X > a0) and pj = P(X > aj |X > aj−1) for 1 ≤ j ≤ n, and we estimate independently

each pj thanks to the Crude Monte-Carlo procedure introduced above. Each computation involves an ensemble
of size M ∈ N∗ (independent of j for simplicity), and the associated estimator of pj is denoted by p(j)

M . Notice
that in practice a way to sample according to conditional distributions of X knowing X > aj−1 is required.

Since the random variables (p(j)
M )0≤j≤n are independent by construction, the quantity pMS =

∏n
j=0 p

(j)
M

is an unbiased estimator of
∏n
j=0 pj = p. One easily compute that when M → +∞ the variance satisfies

MVar
(
pMS) → (n + 1)p2

(
−1 + 1

n+1
∑n+1
j=1

1
pj

)
. Under the constraint

∏n
j=0 pj = p, the asymptotic variance

is then minimized for a fixed n when pj = p1/(n+1) for any 0 ≤ j ≤ n; then the optimum for n fixed brings
MVar

(
pMS)→ (n+ 1)p2 (p−1/(n+1) − 1

)
≥ −p2 log(p), the infimum being obtained when n→ +∞.

We thus need to choose n as large as possible, and then the levels aj such that pj = p1/(n+1).
In practice, we cannot a priori choose the levels in a nearly optimal way, such that the conditional probabilities

are all equal, without any further knowledge of the distribution ofX. One way to improve the Multilevel Splitting
algorithm is to compute random levels adaptively.

3.5. Adaptive Multilevel Splitting, ideal case
Many Adaptive versions of the Multilevel Splitting approach have been proposed in the recent years, and are

found with different names in the literature; see for instance [3], [20], [23], [22], [24] , [21], [34], [65], [64].
Let X1, . . . , Xn be i.i.d; we assume that the common distribution has a continuous cumulative distribution

function (see Assumption 1). If mn = min(Xi)1≤i≤n, we have the equality 1
n

∑n
i=1 1Xi>mn = 1 − 1

n ; although
mn is a random quantity, it can be interpreted as a level a1, which gives a probability p0 = 1 − 1

n . The basic
version (with k = 1 below) of the AMS algorithm uses this idea recursively, sampling according to conditional
distributions at each iteration, until the current level is above a.
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More generally, 1
n

∑n
i=1 1Xi>mnk = 1 − k

n where mn
k denotes the k-th order statistics of X1, . . . , Xn. The

generalization of the algorithm for k > 1 is motivated by several arguments: it could give a higher reduction of
variance than for k = 1; and in fact it is necessary to understand it to implement correctly the AMS algorithm
in the case of discrete time Markov processes, see Section 3.6.

3.5.1. The ideal case
We now review the results from [16] and [15]. The algorithm 1 defined below is well-posed and yields a family

of unbiased estimators under the following condition.

Assumption 1. X is a real-valued positive random variable which admits a continuous cumulative distribution
function (c.d.f.) F : t 7→ P(X 6 t).

For any x ∈ R+, we denote by L(X|X > x) the distribution of X conditional on {X > x}. In the ideal case,
we make the additional assumption that we know in practice how to sample from L(X|X > x).

3.5.2. The AMS algorithm
The definition of the Adaptive Multilevel Splitting Method (see Algorithm 1) depends on several parameters

given by the user:
• n ∈ N \ {0, 1} the number of replicas, which remains constant at each iteration;
• k ∈ {1, . . . , n− 1} the number of resampled particles at each iteration of the algorithm.

For any k ∈ {1, . . . , n}, we write Y(k) for the k-th order statistics independent and identically distributed real
valued random variables Y1, . . . , Yn, with continuous c.d.f: almost surely Y(1) < . . . < Y(k) < . . . < Y(n).

Algorithm 1 (Adaptive Multilevel Splitting).
Initialization: Define Z0 = 0. Sample n i.i.d. realizations X0

1 , . . . , X
0
n, with the law L(X).

Define Z1 = X0
(k), the k-th order statistics of the sample X0 = (X0

1 , . . . , X
0
n), and σ1 the (a.s.) unique

associated permutation: X0
σ1(1) < . . . < X0

σ1(n).
Set j = 1.

Iterations (on j ≥ 1): While Zj < a:
Conditional on Zj, sample k independent random variables (χj1, . . . , χ

j
k) distributed with L(X|X > Zj).

Resample particles as follows: if (σj)−1(i) ≤ k (i.e. Xj−1
i ≤ Zj), then Xj

i = χj(σj)−1(i); else Xj
i = Xj−1

i .
Define Zj+1 = Xj

(k), the k-th order statistics of Xj = (Xj
1 , . . . , X

j
n), and σj+1 the associated permutation.

Finally increment j ← j + 1.
End of the algorithm: Define Jn,k = j − 1 as the (random) number of iterations; thus ZJn,k < a ≤ ZJn,k+1.

The estimator of the probability p is defined by

p̂n,k = 1
n

Card
{
i; XJn,k

i > a
}(

1− k

n

)Jn,k
. (7)

3.5.3. Theoretical results
The main result from [15] is that the AMS algorithm 1 yields unbiased estimators given by (7) for the

probability p, for any values of the parameters n and k: in particular no asymptotic regime is required.

Theorem 3.1. For any n ∈ N∗, k ∈ {1, . . . , n−1}, and a > 0, such that p = P(X > a) > 0, p̂n,k is an unbiased
estimator of the probability p:

E[p̂n,k] = p. (8)

To analyze how efficient the algorithm is depending on n and k, one can look at the variance; more precisely,
in the regime when a and k are fixed and n→ +∞, a Central Limit Theorem holds, see [16]:
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Theorem 3.2. We have the following convergence in law, when n → +∞, and for fixed k and a (such that
p = P(X > a) > 0): √

n
(
p̂n,k − p

)
→ N

(
0,−p2 log(p)

)
. (9)

We observe that the asymptotic variance −p2 log(p) is the same as for the Multilevel Splitting algorithm with
fixed, optimally chosen levels; moreover it does not depend on k. Notice that this result justifies a reduction
of the variance with respect to the Crude Monte-Carlo procedure: the relative error is now of size qαp

√
− log(p)
pn ,

and the required number of interacting replicas n is of size
√
− log(p) = o

(
1
p

)
.

For this adaptive algorithm, a better notion of cost involves the mean number of iterations - which is of order
n/k: we prove in [15] that this cost is minimal when k = 1. Therefore our analysis reveals that taking k > 1
in the ideal case produces no improvement compared with k = 1; however it is an important first step for the
definition of appropriate algorithms in more complicated situations, for which the unbiasedness is preserved,
see Section 3.6.

Notice that when k = 1 the proof of Theorem 3.1 was already given in [34], where it was established that
Jn,1 follows a Poisson distribution with parameter −n log(p); the proof of Theorem 3.2 in this case also follows
by simple computations and the use of the delta-method.

The fundamental argument in [15] and [16] is the embedding of the estimation problem of p into the problem
of estimating the conditional probability p(x) = P(X > a|X > x) for any x ∈ [0, a]; for that purpose, we
introduce the estimator p̂n,k(x) obtained thanks to Algorithm 1 where in the initialization step the random
variables are generated according to L(X|X > x). Then Theorem 3.1 is a consequence of two facts:

• pn,k : x ∈ [0, a] 7→ E[p̂n,k(x)] is a solution of the functional equation in q (for some function θn,kp )

q(x) =
∫ a

x

(
1− k

n

)
q(y)fn,k(y;x)dy + θn,kp (x), (10)

where fn,k(·;x) is the density of the k-th order statistics in a sample of size n with law L(X|X > x);
• x ∈ [0, a] 7→ p(x) = P(X > a|X > x) is the unique solution of (10).

Equation (10) has a very natural interpretation: after the first iteration, if the current level Z is lower than a,
we can consider that the algorithm restarts at Z; the factor

(
1− k

n

)
accounts for the first iteration.

To obtain the Central Limit Theorem 3.2 and to derive cost estimates, a more refined analysis is necessary,
carried out in the case when the random variable X is exponentially distributed. This case is generic since
thanks to Assumption 1, we have U = F (X) is uniformly distributed in (0, 1), and − log(U) is exponentially
distributed. No close expressions for solutions of appropriate functional equations is available for finite n, and
we rely on an asymptotic analysis of some linear ODEs.

3.6. Beyond the ideal case
The content of this section is based on [14].

3.6.1. A Markov chain
Now we would like to explain how to implement a modified AMS scheme based on Algorithm 1, in the case

where the random variable X depends on the evolution of a Markov chain X = (X`)`∈N, given by

X`+1 = X` −∆t+
√

2β−1∆tG` X0 = x0, (11)

where the random variables (G`)`∈N are independent standard Gaussian random variables. In the numerical
simulations below we choose ∆t = 0.1. The parameter β > 0 can be interpreted as an inverse temperature.

Notice that this dynamics corresponds to a discretization of the following SDE dXt = −dt+
√

2β−1dBt using
the Euler-Maruyama method, with a time-step size ∆t > 0.
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Given b1 < b2, such that x0 ∈ (b1, b2), we want to estimate the probability p = p(x0, β) = P(τb2 < τb1), where
τb2 = inf{` > 1;X` > b2} and τb1 = inf{` > 1;X` < b1}. From now on x0 = 1, b1 = 0.1 and b2 = 1.9.

It is clear that for a fixed initial condition x0, p(x0, β) → 0 when β → +∞. Notice that p = P(X ≥ b2),
where X = sup0≤`≤min(τb1 ,τb2 )X`. Therefore X takes values in [x0, b2], and we have P(X = x0) > 0 and
P(X = b2) = p > 0; the latter identities imply that the c.d.f. of X is not continuous.

Another essential difference with the above ideal framework is that we are not able to sample according
to conditional distributions; instead we split the trajectories defining the replicas. The resampling step in
Algorithm 1 is then modified as follows: to sample each of the new trajectories, we pick at random one of
the non-resampled replicas, that we call Y = (Y`)`∈N. Then we sample X = (X`)`∈N by a splitting of Y at
a (stopping) time T : we define X` = Y` if ` ≤ T , and then sample a new trajectory starting at YT using the
Markov dynamics (11). If the current level is Z, we propose two choices for T , which lead to different algorithms
due to possible equalities of random variables Xj

i :

T− = inf {` > 1;Y` > Z} or T+ = inf {` > 1;Y` > Z} .

Using T = T− (defined with a large inequality), we define an Algorithm, which is referred to as AMS(−). In
order to use T = T+, we observe that due to possible equalities, we have to pick at random a trajectory Y
such that T+ < +∞; if it happens that no replica satisfies this condition, the algorithm stops and we set the
estimator to 0. The associated algorithm is referred to as AMS(+).

It turns out that both modified algorithms AMS(−) and AMS(+) lead to a biased estimation of the probability
p. A reason for this is that we might have Zj = Zj+1 at some step j, because of possible equalities of levels.
To correct this issue, a random number of replicas Kj ≥ k has to be killed and resampled at each iteration j:
if we define Kj = sup

{
i ∈ {1, . . . , n} ;Xj−1

(i) ≤ Z
j
}

, we now kill replicas such that (σj)−1(i) ≤ Kj , and sample
Kj new trajectories using the splitting strategy with the time T+. Notice that we can have Kj = n: in this
case no replica can be split, the algorithm stops and the estimator is set to 0.

We thus obtain an unbiased AMS algorithm. If in the definition (7) of the estimator p̂n,k we replace(
1− k

n

)Jn,k with the product
∏Jn,k

j=1

(
1− Kj

n

)
, we still get an unbiased estimator of p.

3.6.2. Numerical tests
We start with numerical results for the Generalized AMS algorithm, in Table 3.1 for β = 8 and β = 24.
Results are obtained with n ∈ {10, 50, 100} and k = 1; in the case n = 50, we also take k = 10. The estimator

pN is defined as a Monte-Carlo average over an ensemble of size N = 6.106: namely

pN = 1
N

N∑
m=1

p̂n,km

where (p̂n,km )1≤m≤N are computed using independent realizations, with the parameters n and k. We also include
the relative error εN = 100 1.96σN√

NpN
(in percent) and the length of the confidence intervals: δN = 2 1.96σN√

N
, where

the empirical variance is σ2
N = 1

N

∑N
m=1

(
p̂n,km − pN

)2.
The results when β = 8 can be compared with the probability estimated with a direct Monte-Carlo estimation,

with a sample of size N ′ = 6.108: we estimate pCMC
N ′ = 3.595 10−4, with a relative error 0.2%; the corresponding

confidence interval is [3.580 10−4, 3.610 10−4] and contains all the values of Table 3.1.
We also give a comparison with the algorithms AMS(−) and AMS(+) in Table 3.2, where k = 1.
Notice that the choice of a relatively large value for the latter is motivated by the following consideration: if

one of the algorithms introduces a bias in the estimation of the probability, it should increase when the time-step
∆t increase - since in the limit ∆t→ 0 we recover the idealized case, which exhibits no bias. As a consequence,
it is easier to exhibit a bias (if it exists) than for a smaller value of ∆t. Therefore, Table 3.1 can be interpreted
as numerical validation of the theoretical unbiasedness result for the unbiased AMS algorithm, while Table 3.2
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n 10 50 50 100 10 50 50 100
k 1 1 10 1 1 1 10 1
β 8 8 8 8 24 24 24 24
pN 3.597 10−4 3.596 10−4 3.596 10−4 3.597 10−4 1.20 10−10 1.22 10−10 1.21 10−10 1.21 10−10

δN 0.012 10−4 0.004 10−4 0.004 10−4 0.003 10−4 0.29 10−10 0.03 10−10 0.04 10−10 0.01 10−10

εN 0.09 % 0.03 % 0.03 % 0.02 % 6 % 0.6 % 0.8 % 0.2 %
Table 3.1. Results for the unbiased AMS algorithm

version AMS(+) AMS(+) AMS(−) AMS(+) AMS(+) AMS(−)
n 10 100 100 10 100 100
β 8 8 8 24 24 24
pN 2.958 10−4 3.257 10−4 1.741 10−4 5.079 10−11 6.049 10−11 1.397 10−12

δN 0.012 10−4 0.003 10−4 0.034 10−4 1.523 10−11 0.066 10−11 0.142 10−12

Table 3.2. Results for the modified algorithms AMS(−) and AMS(+)

exhibits the bias of the other modifications AMS(−) and AMS(+) - leading to a very poor underestimated
value, with possibly several orders of magnitude of difference.

3.7. Conclusion and perspectives
We have reviewed here some recent results on the Adaptive Multilevel Splitting Algorithm for the estimation

of a rare event probability. We have focused in Section 3.5 on the so-called ideal case and on the consistency
property: we obtain a family of unbiased estimators.

However, this ideal case is quite restrictive both theoretically - the cumulative distribution function must
be continuous - and from a practical point of view - we need to be able to sample according to conditional
distributions. Most of the interesting cases are excluded, such as the problem involving a discrete time Markov
process described above, in dimension possibly greater than 1.

The unbiased AMS algorithm introduced in Section 3.6 allows us to preserve the unbiasedness; moreover the
numerical simulations indicate that the modifications made in the algorithm are crucial. Further theoretical
and numerical investigations are contained in [14], especially in higher dimensional situations. The algorithm
requires to use an importance function ξ taking values in R: the unbiasedness holds independently of the choice
of ξ, but it is an open important question to study its impact on the efficiency.

Finally, unbiasedness of the unbiased AMS algorithm is not restricted to the estimation of the probabil-
ity: it also provides information about the so-called reactive trajectories, see for instance [13] for preliminary
simulations for the stochastic Allen-Cahn equation.

4. A cubature based algorithm to solve McKean-Vlasov forward and
decoupled forward-backward stochastic differential equation

We shortly describe how the cubature algorithm of Lyons and Victoir [56] can be adapted in order to compute
expectation of some functional of the solution of a decoupled Mc Kean-Vlasov Forward Backward Stochastic
Differential Equation (MKV-FBSDE) type. This work has been done with C.A. Garc̀ıa Trillos and we refer
to [25] for more details.
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4.1. The system
We call a McKean-Vlasov Forward Backward Stochastic Differential equation (MKV-FBSDE in short) the

following FBSDE system:  dXt =
∑d
i=0 Vi(t,Xt,Eϕi(Xt)) ◦ dBit

dYt = −f(s,Xt, Yt, Zt,Eϕf (Xt, Yt))dt+ ZtdB
1:d
t

X0 = x, YT = φ(XT )
− (12)

for any t in [0, T ], T > 0 be given. Here B1:d
t := (B1

t , · · · , Bdt )∗, t ≥ 0 (where “∗” stands for the transpose) is a
d-dimensional Brownian motion defined on some filtered probability space (Ω,F ,P, (Ft)t≥0) and B0

t = t. The
notation “◦” stands for the Stratonovitch integral. The {Vi, i = 0, · · · , d} is a family of smooth1 vector fields
from [0, T ]×Rd×R to R as well as the functions ϕi, i = 0, · · · , d from Rd to R, ϕf from Rd×R to R and the map-
ping f from [0, T ]×Rd×R×Rd×R to R. The function φ is also supposed to be a smooth function from Rd to R.

These processes may be regarded as a limit approximation for interacting systems with large number of
particles. They appeared initially in statistical mechanics, but are now used in many fields because of the big
range of applications requiring large populations interactions. For example, they are used in finance, as factor
stochastic volatility models [10] or uncertain volatility models [36]; in economics, in the theory of “mean field
games” recently developed by J.M. Lasry and P.L. Lions in a series of papers [50–53] (see the work of Carmona
and Delarue [18] for the probabilistic analysis) and also in physics, neuroscience, dynamic population models
etc... Here, this system can be also viewed as the probabilistic representation of a control problem of a marked
player in a mean field environment [25].

The note of Sznitman [66] gives a beautiful overview on the topic of systems with a large number of particles.
A proof on the existence and uniqueness of such a process can be found in [17] (see also [19] for more general
setting).

4.2. A cubature based algorithm for MKV-FBSDE processes
We give the main idea to construct a cubature based approximation scheme for computing quantities such

as E[φ(Xx
T )] or Y t,xt , t ∈ [0, T ] defined in (12).

4.2.1. Preliminaries: Cubature on Wiener space.
Cubature on Wiener space has been introduced by Lyons and Victoir [56]. Let us shortly described how this

method works.

For a given positive integer m and a positive real T , we call m-cubature on Wiener space (the set of continu-
ous functions from [0, T ] to Rd) a discrete probability measure QT with finite support on the set of continuous
function from [0, T ] to Rd with bounded variations such that the expectations of the Stratonovitch iterated
integrals up to order m are the same under the Wiener and the cubature measure.

Then, instead of solving an SDE (in Stratonovitch form)

dXt =
d∑
i=0

Vi(Xt) ◦ dBit,

on [0, T ], we solve a system of weighted ordinary differential equations having the same form as this SDE but
where the Brownian motion is replaced by a continuous with bounded variation path ωj : [0, T ]→ Rd associated

1say bounded and infinitely differentiable with bounded derivatives of any order.
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to a weight λj , j ∈ {1, . . . , n} where n = card{supp(QT )}:

dX̂j
t = V0(X̂j

t )dt+
d∑
i=1

Vi(X̂j
t )dwij(t), j = 1, . . . , n,

on [0, T ], with the convention w0
j (t) = t.

It is well seen that such method allows to approach the expectation of smooth functional of the SDE’s solution
by polynomials : by using the definition of the cubature, together with a Taylor expansion we obtain that, for
all smooth function F :

(EP − EQT )[F (XT )] ≤ CT (m+1)/2 max
j≤m+2

∥∥∥∥ ∂j∂xj F
∥∥∥∥
∞
, (13)

by using classical estimates on the remainder of the Taylor stochastic expansion, see [44] for example.
Obviously, if the constant C above, or if the time length interval T are not small enough, the error could be

large. In order to take benefit from the method, we have to use the Markovian structure of the process : we do not
apply the cubature on all the time interval, but on each small step of a subdivision T0 = 0 < T1 < · · · < TN = T
of that interval.

This approach leads to the construction of a tree, each node of the tree having a number n (depending on
m) of child. We call this object a cubature tree.

4.2.2. Cubature for MKV-FBSDE
The main issue in the case of a MKV-FBSDE is the McKean-Vlasov dependence that appears in the coeffi-

cients. This dependence breaks the Markov property (in the usual sense) of the process so that it is not possible
to apply, a priori, many classical analysis tools. In order to handle this problem, the idea consists in taking
benefit on the following crucial observation: given the law of the solution of the system, (12) is a classical time
inhomogeneous FBSDE (the law just acts as a time dependent parameter).

Let (νt)0≤t≤T be a family of probability measures on Rd, and let us fix the law in the McKean-Vlasov terms
of (12) to be (νt)0≤t≤T . For this modified system, we may apply a classical cubature FBSDE scheme (the time
dependence of the coefficients being handled as an additional dimension). The trick consists in taking advantage
of the decoupled setting: we first build a cubature tree (depending of the order of the cubature) and then go
back along the nodes of the tree by computing the backward process as conditional expectation of each node.
We refer to [26] or [27] for a detailed description of such algorithm.

Obviously, at each step of the scheme, we pay the price of using an arbitrary probability measure as parameter
for the coefficients instead of the law of the process. Therefore this law has to be chosen carefully in order to
keep a good control on the error and achieve convergence.

A first remark allows to reduce the problem: as in the classical FBSDE case, we can show that there exists
a deterministic decoupling field u : [0, T ]× Rd → R such that, for all t in [0, T ],

Yt = u(t,Xt).

Hence, the family of probability measures (νt)0≤t≤T has to be chosen as a proxy of the law of the forward
component only. A “good choice” is then to take at each step of the cubature tree the discrete law µ̂ given by the
Dirac measures at the solutions of the ODEs along the cubature paths and the corresponding aggregated weights.

4.2.3. A simple example
Before giving our results, we explain the main idea of it by means of an example on dimension one, using a

cubature of order m = 3, for a discretization with 2 steps. In this case, we may use a cubature formula with
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n = 2 paths given by {+t,−t}, and associated weights: {λ1 = 1/2, λ2 = 1/2}. The algorithm is illustrated in
Figure 2. We initialize the tree at a given point x, and the law at T0 as δx. Then, we find two descendants
given as the solution of an ODE that uses the position X, the two cubature paths, and an approximated law
using the information at time 0. Each descendant will have a weight equal to the product of the weight of its
parent times the weight given to the corresponding cubature path. Once all nodes at time T1 are calculated,
we obtain the discrete measure µ̂T1 , the law approximation at time T1. The process is then repeated for each
node at time T1 to reach the final time T = T2.

x

X̂
(1)
T1
, λ1

X̂
(1,1)
T2

,Λ(1,1) = λ1λ1

X̂
(1,2)
T2

,Λ(1,2) = λ1λ2

X̂
(2)
T1
, λ2

X̂
(2,1)
T2

,Λ(2,1) = λ2λ1

X̂
(2,2)
T2

,Λ(2,2) = λ2λ2

û(0, x)

û(T1, X̂
(1)
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)

û(T2, X̂
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T2
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)
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) = φ(X̂(2,1)
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)

û(T2, X̂
(2)
T1

)
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) = φ(X̂(1,2)
T2

)

û(T2, X̂
(2,2)
T2

) = φ(X̂(2,2)
T2

)

δx µ̂T1 µ̂T2 δx µ̂T1 µ̂T2

Figure 2. Left: Cubature tree. Right: Backward scheme.

Figure 2 right illustrates the idea behind the backward approximation: the approximated function û is defined
first at the leaves of the constructed tree, and then back-propagates using the approximated law to obtain û at
previous times. The back-propagation is made by conditional expectation: average with respect to the weight
of each cubature path.

4.2.4. Results
In [25] it is shown that this algorithm with this choice of approximation law leads to a first order approximation

scheme of Y (more precisely, the infinity norm of the approximation error decreases linearly with the number
of discretization steps). It is also possible to obtain higher orders of approximation by correcting some terms
in the algorithm and to relax the regularity of φ in (12) to Lipschitz, provided the vector fields are uniformly
elliptic. In all these cases, the algorithm can be parametrized in order to obtain an approximation of the law of
the forward component of any order.

5. Approximation of Markov semigroup in total variation distance

5.1. Introduction
Framework. We consider the d dimensional Markov chain

Xn
k+1 = ψk+1(Xn

k ,
Zk+1√
n

), k = 0, · · · , n− 1 (14)

where (ψk)k∈{1,·,n} is a sequence of smooth functions from: Rd × RN to Rd such that ψ(x, 0) = x and Zk ∈
RN , k ∈ {1, · · · , n}, is a sequence of independent random variables. We denote µnk+1(x, dy) = P (Xn

k+1 ∈ dy |
Xn
k = x) the transition kernels of this chain. We fix δ = 1/n and consider the time grid tk = kδ. Moreover

we introduce a Markov process (Xt)t>0 and define µk+1(x, dy) = P (Xtk+1 ∈ dy | Xtk = x). Finally we denote
by (Pnk )k∈{0,·,n} (respectively (Ptk)k∈{0,·,n}) the discrete semigroup induced by µn (resp. µ) such that for
f : Rd 7→ R, Pn0 f = f and Pnk+1f = µnk+1P

n
k f (resp. P0f = f and Ptk+1f = µk+1Ptkf).
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Preliminary result. A first standard result is the following. Assume that there exists h > 0, p ∈ N such that
for every f ∈ Cp(Rd), k ∈ {1, · · · , n},∣∣∫ f(y)µnk (x, dy)−

∫
f(y)µk(x, dy)

∣∣ 6 C‖f‖p,∞δ1+h (15)

where ‖f‖p,∞ designates the supremum norm of f and of its derivatives up to order p. Then, for every T > 0,

max
tk≤T

|E[f(Xn
k )]− E[f(Xtk)]| 6 C‖f‖p,∞δh. (16)

It means that (Xk)k∈{0,·,n} is an approximation scheme of order h for the Markov process (Xt)t>0. In the case
of the Euler scheme for diffusion processes, this result, with h = 1, has first been proved in the seminal papers of
Milstein [57] and of Talay and Tubaro [68] (see also [44]). A very rich literature on this topic followed. Similar
results were obtained in various situations: diffusion processes with jumps (see [62], [39]) or diffusion processes
with boundary conditions (see [33], [32], [11]) for instance. See [41] for an overview of this subject. More
recently, approximation schemes of higher order (h = 2), based on a cubature method, have been introduced
and studied by Kusuoka [48], Lyons [56], Victoir, Ninomiya [58], Alfonsi [1], Kohatsu-Higa and Tankov [45].
Our abstract result intends to cover all these situations.

5.2. Estimates of the error in the total variation distance
Our first result concerns convergence in total variation distance: we want to obtain (16) with ‖f‖p,∞ replaced

by ‖f‖∞. In the case of the Euler scheme for diffusion processes, a first result of this type has been obtained
by Bally and Talay [8], [9] using the Malliavin calculus (see also Guyon [35]). Afterwords Konakov, Menozzi
and Molchanov [46], [47] obtained similar results using a parametrix method. Recently Kusuoka [49] obtained
estimates of the error in total variation distance for the Victoir Ninomiya scheme. Our second result establishes
the rate of convergence of the density function and its derivatives.

Abstract regularization properties.We first remark that the crucial property which allows to replace ‖f‖p,∞ by
‖f‖∞ in (16) is the regularization property of the semigroup. Let us give a precise statement. Let η > 0, p ∈ N
be fixed and f a R-valued measurable function on Rd. We say that a semigroup (Pk)k∈{0,·,n} satisfies Rp,η if

Rp,η ‖Pkf‖p,∞ 6
C

tηk
‖f‖∞ . (17)

We consider also a dual regularization property: let P ∗ be the dual semigroup of P (that is 〈P ∗k g, f〉 = 〈g, Pkf〉
with the scalar product in L2(Rd)). The semigroup P satisfies R∗p,η if

R∗p,η ‖P ∗k f‖p,1 6
C

tηk
‖f‖1 , (18)

where ‖f‖p,1 designates the L1 norm of f and of its derivatives up to order p. Finally, we give a stronger
assumption Rp,η which implies both Rp,η and R∗p,η. We say that Rp,η is satisfied if for all multi-indexes α and
β with |α|+ |β| = p, we have

Rp,η
∥∥∂αPk∂βf∥∥∞ 6

C

t
η(|α|+|β|)
k

‖f‖∞ . (19)

In addition to (15), we will also suppose that the following dual estimate of the error in short time holds between
the measure µ and µn:

|〈g, (µnk − µk)f〉| 6 C ‖g‖p,1 ‖f‖∞ δ1+h. (20)
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Having this properties at hand we can state the following result.

Theorem. We fix T, h > 0, p ∈ N and we assume that the short time estimates (15) and (20) hold (with this
p and h). Moreover, we assume that (17) holds for (Ptk)k∈{0,·,n} and that (18) holds for (Pnk )k∈{0,·,n} . Then,
there exists some constants C > 0 such that

∀0 < S 6 T, sup
S6tk6T

‖Ptkf − Pnk f‖∞ 6
C

Sηp
δh‖f‖∞. (21)

Approximation Markov chain. In this section we focus on the approximation scheme and the dual regular-
ization property. We are not able to prove R∗p,η for (Pnk )k∈{0,·,n} but we can overcome this issue. Indeed, we
introduce the following modification (regularization) of Pn : we define

∀k ∈ {0, · · · , n}, X
n

k = δ1+hG+Xn
k , (22)

with G a standard normal random variable independent from Xn and we define also

P
n

kf(x) = E[f(Xn

k )|Xn

0 = x]. (23)

We will be able to prove that Pn satisfies Rp,η and moreover Pnkf is close to Pnk f in total variation distance.
Combining these two properties we can deduce that (29) holds even if Pn does not satisfy R∗p,η. Then, the
following step consists in giving sufficient conditions on the approximation scheme to obtain such a P

n. We
will use some integration by parts formulas of Malliavin type based on the noise Zk ∈ RN . In order to do it,
we assume that the law of each Zk is lower bounded by the Lebesgue measure: there exists some zk ∈ RN and
r∗, ε∗ > 0 such that for every measurable set A ⊂ Br∗(zk) one has

P (Zk ∈ A) > ε∗λ(A) (24)

where λ is the Lebesgue measure. If this property holds then one may use a ”splitting method” in order to
represent Zk as

Zk√
n

= χkUk + (1− χk)Vk

where χk, Uk, Vk are independent random variables, χk is a Bernoulli random variable and
√
nUk ∼ ϕr∗(u)du

with ϕr∗ ∈ C∞(RN ). This decomposition allows us to use the abstract Malliavin calculus based on Uk, developed
in [4] and [5], in order to obtain integration by parts formulas and then to prove Rp,η. The crucial point is that
the density ϕr∗ of

√
nUk is smooth and we control its logarithmic derivatives. This allows to derive integration

by parts formulas and to obtain convenient estimates for the weights which appear in these formulas. It is worth
mentioning that a variant of the Malliavin calculus based on a similar splitting method has already been used
by Nourdin and Poly [59] (see also [60] and [54]). They use the so-called Γ-calculus (see e.g. [7] for background).
Finally we will make the following assumptions

∀p ∈ N, 1 ∧ max
k∈{0,·,n}

E[|Zk|p] <∞, (25)

∀r ∈ N∗, sup
k∈{0,··· ,n}

∑
16|β|6r

∑
06|α|6r−|β|

sup
x∈Rd

sup
z∈RN

|∂αx ∂βz ψk| <∞, (26)

∃λ∗ > 0, ∀k ∈ {1, · · · , n}, inf
x∈Rd

inf
|ζ|=1

N∑
i=1
〈∂ziψk(x, 0), ζ〉2 > λ∗. (27)

Distance estimations. Now we can state our main result.
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Theorem. Consider a Markov semigroup Ptk and its approximation scheme Pnk , k ∈ {0, · · · , n} defined above.
We fix T, h > 0, p ∈ N and we assume that the short time estimates (15) and (20) hold (with this p and h).
Moreover, we assume (24), (25), (26) and (27) and that (17) holds for the semigroup Ptk . Then, we have the
following results.
A. The regularization P

n of Pn defined by (23) satisfies

sup
k∈{0,·,n}

‖Pnk f − P
n

kf‖∞ 6 Cδh‖f‖∞. (28)

B. For every S > 0 we have

sup
S6tk6T

‖Ptkf − Pnk f‖∞ 6
C

Sηp
δh ‖f‖∞ . (29)

C. We denote pnk the density funtion of Pnk . For every t > 0, Pt(x, dy) = pt(x, y)dy with (x, y) → pt(x, y)
belonging to C∞(Rd × Rd) and for every R,S, ε > 0 and every multi-indexes α, β we have

sup
S6tk6T

sup
|x|+|y|6R

∣∣∂αx ∂βy ptk(x, y)− ∂αx ∂βy pnk (x, y)
∣∣ 6 Cδh(1−ε) (30)

with a constant C which depends on R,S, ε and on |α|+ |β| (and may blow up as ε ↓ 0).

In contrast with (16) and (29) which have a rather elementary proof once we have the appropriate regular-
ization properties, the estimate (30) is based on a non trivial interpolation result from [6]. Notice however that
those estimates are sub-optimal (because of ε > 0).

5.3. The Ninomiya Victoir scheme
We illustrate this theorem when Xn is the Ninomiya Victoir scheme for a diffusion process. This is a variant

of the result already obtained by Kusuoka [49] in the case where Zk has a Gaussian distribution (and so the
standard Malliavin calculus is available). Since in our paper Zk has an arbitrary distribution, our result may
be seen as an invariance principle as well. We consider the d dimensional diffusion process

dXt =
N∑
i=1

Vi(Xt) ◦ dW i
t + V0(Xt)dt (31)

with V0, Vi ∈ C∞b (Rd;Rd), i = 1, · · · , N and W = (W 1, · · · ,WN ) a Brownian motion and ◦dW i
t denotes the

Stratonovich integral with respect to W i. The infinitesimal operator of this Markov process is

A = V0 + 1
2

N∑
k=1

V 2
k (32)

with the notation V f(x) = 〈V (x),∇f(x)〉. Let us define exp(V )(x) := ΦV (x, 1) where ΦV solves the determin-
istic equation ΦV (x, t) = x +

∫ t
0V (ΦV (x, s))ds. We present now the Ninomiya Victoir scheme. We consider a

sequence ρk, k ∈ N of independent Bernoulli random variables and we define ψk : Rd × RN+1 → Rd in the
following way

ψk(x,w) = exp(w0V0) ◦ exp(w1V1) ◦ · ◦ exp(wNVN ) ◦ exp(w0V0)(x), if ρk = 1,
ψk(x,w) = exp(w0V0) ◦ exp(wNVN ) ◦ · ◦ exp(w1V1) ◦ exp(w0V0)(x), if ρk = −1.
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Here w = (w0, w1, · · · , wN ). with w0
k = 1/2n, wik = Zik/

√
n, for i = 1, · · · , N . Moreover Zik, i = 1, · · · , d, k ∈ N

are independent random variables which verify (24) and moreover satisfy the following moment conditions:

E(Zik) = E((Zik)3) = 0, E((Zik)2) = 1, E((Zik)4) = 6. (33)

In the original paper of Ninomiya Victoir, the random variables Zik are standard normal distributed, and then
verify (24). The new point here is that we do not require that Zk follows this particular law anymore but only
the weaker assumptions (24) and (33). We also denote tk = Tk/n. One step of our scheme is given by

Xn
k+1 = ψk+1(Xn

k , wk+1). (34)

Under an ellipticity condition we are able to give an estimate of the total variation distance between a
diffusion process of the form (31) and its Ninomiya Victoir scheme.

Theorem. Suppose that Vi ∈ C∞b (Rd;Rd), i = 0, ..., N and moreover

inf
|ξ|=1

N∑
i=1
〈Vi(x), ξ〉2 > λ∗ > 0 ∀x ∈ Rd. (35)

Then for every 0 < S 6 T and every bounded and measurable function f : Rd → R

sup
S6tk6T

|E(f(Xtk))− E(f(Xn
k ))| 6 C

S1/2 δ
2 ‖f‖∞ . (36)
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[14] C.E. Bréhier, M. Gazeau, L. Goudenège, T. Lelièvre and M. Rousset. Unbiasedness of some generalized Adaptive

Multilevel Splitting algorithms. arXiv preprint arXiv:1505.02674, 2015.
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