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Abstract. We introduce and analyze an explicit time discretization scheme

for the one-dimensional stochastic Allen-Cahn, driven by space-time white

noise. The scheme is based on a splitting strategy, and uses the exact solution
for the nonlinear term contribution.

We first prove boundedness of moments of the numerical solution. We

then prove strong convergence results: first, L2(Ω)-convergence of order almost
1/4, localized on an event of arbitrarily large probability, then convergence in

probability of order almost 1/4.

The theoretical analysis is supported by numerical experiments, concerning
strong and weak orders of convergence.

1. Introduction. In this article, we define and study new numerical schemes for
the time discretization of the following Stochastic Partial Differential Equation
(SPDE),

∂u(t, ξ)

∂t
=
∂2u(t, ξ)

∂ξ2
+ u(t, ξ)− u(t, ξ)3 + Ẇ (t, ξ)

driven by Gaussian space-time white noise, with ξ ∈ (0, 1) a one-dimensional space
variable – and homogeneous Dirichlet boundary conditions.

The Allen-Cahn equation has been introduced [1] as a model for a two-phase
system driven by the Ginzburg-Landau energy

E(u) =

∫
|∇u|2 +

1

ε2
V (u),

where u is the ratio of the two species densities, and V = (u2 − 1)2 is a double
well potential. The first term in the energy models the diffusion of the interface
between the two pure phases, and the second one pushes the solution to two possible
stable states ±1 (named the pure phases, i.e. minima of V ). The behavior of the

2010 Mathematics Subject Classification. Primary: 65C30, 60H35; Secondary: 60H15.
Key words and phrases. Stochastic partial differential equations, splitting schemes, Allen-Cahn

equation.
∗ Corresponding author: Charles-Edouard Bréhier.
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interface in the regime ε → 0 is described in terms of mean curvature flow, see for
instance [10, 11, 16, 17, 18].

The stochastic version of the Allen-Cahn equation models the effect of thermal
perturbations by a additional noise term, see for instance [19, 20, 44]. The behavior
as ε→ 0 has been studied for instance in [20] in dimension 1 (with space-time white
noise), and [21, 62] in higher dimension (with more regular noise).

The stochastic Allen-Cahn equation is also a popular model for the study and sim-
ulation of rare events in infinite dimensional stochastic system, see for instance [8,
47, 58, 59].

In this work, our aim is to study numerical schemes for the stochastic Allen-Cahn
equation. In the theoretical analysis, we only focus on the temporal discretization.
To perform numerical simulations, a spatial discretization is required: we use a
standard finite difference method.

Numerical schemes for SPDEs have been extensively studied in the last two
decades, see for instance the monographs [38, 50, 53]. Compared with the numer-
ical discretization of Stochastic Differential Equations (SDEs), both temporal and
spatial discretization are required. In addition, the temporal regularity of the solu-
tions of SPDEs depends heavily on the spatial regularity of the noise perturbation,
and this affects orders of convergence. For instance, consider equations with glob-
ally Lipschitz continuous coefficients. For SDEs, the solutions are Hölder continuous
with exponents α < 1/2, and the Euler-Maruyama scheme has in general a strong or-
der of convergence 1/2 and a weak order 1: see for instance the monographs [45, 55].
For semilinear parabolic SPDEs, driven by space-time white noise, in dimension 1,
the solutions are only Hölder continuous with exponents α < 1/4, and (explicit or
implicit) Euler type schemes only have strong order 1/4 and weak order 1/2. We re-
call that strong convergence usually refers to convergence in mean-square sense: see
for instance [14, 22, 23, 26, 27, 28, 29, 35, 36, 37, 46, 54, 57, 60]. Weak convergence
refers to convergence in distribution: recent contributions are [7, 12, 15, 39].

For discretization of equations such as the stochastic Allen-Cahn equation, the
main difficulty is the polynomial coefficient, which is not globally Lipschitz contin-
uous. Standard schemes with explicit discretization of such coefficients cannot be
applied. Defining efficient numerical schemes for stochastic equations with non glob-
ally Lipschitz continuous coefficients is delicate: see for instance the recent work [33],
and the monograph [32], and references therein. The general methodology has been
recently applied to various examples of SPDEs: see for instance [2, 4, 34, 40, 41, 42].
We also mention [30] for the analysis of a tamed Euler scheme for a class of SPDEs.

The case of the Allen-Cahn equation has been treated in the recent work [3],
with a scheme based on an exponential integrator and a tamed discretization of the
nonlinear coefficient, see also the recent preprint [61]. References [48, 49] present
analysis of implicit schemes. Finally, a Wong-Zakai approximation has been con-
sidered in [52].

In this work, we introduce new schemes, based on a splitting (also referred to as
splitting-up) strategy, see for instance [5, 6, 24, 25] in the SPDE case, and [43, 51]
for the deterministic Allen-Cahn equation. Indeed, the solution of the ordinary
differential equation ż = z − z3 has a known explicit expression. The splitting
strategy then consists in solving separately the contributions of the linear coefficient
with the noise, and of the nonlinear coefficient. Several schemes may be chosen to
treat the first contribution: exponential and linear implicit Euler integrators may
be used.
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We mostly focus on the following scheme (other schemes will be defined when
performing numerical simulations). Let us write the stochastic Allen-Cahn equation
as an evolution equation in the sense of Da Prato-Zabczyk, [13]:

dX(t) = AX(t)dt+ Ψ0(X(t))dt+ dW (t),

with Ψ0(x) = x−x3, and where A is the Laplace operator, with Dirichlet boundary
conditions, on L2(0, 1). Then the numerical scheme, with time-step size ∆t > 0, is
defined by the recursion:{

Yn = Φ∆t(Xn),

Xn+1 = S∆tYn + S∆t

(
W ((n+ 1)∆t)−W (n∆t)

)
,

where S∆t = (I − ∆tA)−1 corresponds to the choice of a linear implicit Euler
integrator, and

Φ∆t(z) =
z√

z2 + (1− z2)e−2∆t
.

Observe that the discrete-time process
(
Xn

)
n∈N may be interpreted as the solution

of a standard linear implicit Euler scheme for a modified SPDE, with nonlinear
coefficient Ψ∆t(z) = ∆t−1(Φ∆t(z) − z), in the spirit of [31]. The coefficient Ψ∆t

satisfies the same type of one-sided Lipschitz condition as Ψ0, uniformly with respect
to ∆t.

Our first contribution is the analysis of the splitting scheme introduced above.
We first prove moment bounds, uniform with respect to ∆t. Our main result,
Theorem 4.1, is a strong convergence result, with order of convergence almost 1/4,
localized on an event of arbitrarily large probability, in the spirit of [5]. We also
state and prove several straightforward consequences of Theorem 4.1, related with
other types of convergence:

• convergence in mean-square sense, with no order of convergence,
• convergence in probability of order almost 1/4, in the spirit of [57],
• weak convergence, with order almost 1/4, rejecting exploding trajectories in

the spirit of [56].

We also provide numerical simulations to illustrate the rates of convergence of the
scheme introduced above, and compare with a few variants.

These numerical experiments lead us to conjecture that our results may be im-
proved as follows. First, we conjecture that the strong order is equal to 1/4, in the
standard sense, i.e. that it is possible to get rid of the localization in Theorem 4.1.
But we expect the analysis to be considerably more complex and similar to [3]. Sec-
ond, we conjecture that the weak order is equal to 1/2, when considering sufficiently
smooth test functions. Again the analysis requires more complex arguments. We
plan to investigate these questions in future works.

This article is organized as follows. The setting is introduced in Section 2. The
splitting schemes are introduced in section 3. Results concerning the auxiliary flow
map Φ∆t are given in Section 3.3. A priori bounds on the moments of the numerical
solutions are given in Section 3.4. Our main results are stated in Section 4.1, and
their proofs are given in Sections 4.2 and 4.3. Numerical experiments to investigate
strong and weak orders of convergence are reported in Section 5.

2. Setting. We work in the standard framework of stochastic evolution equations
with values in infinite dimensional separable Hilbert and Banach spaces. We refer
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for instance to [9, 13] for details. Let H = L2(0, 1), and E = C([0, 1]). We use the
following notation: for x1, x2 ∈ H, x ∈ E,

〈x1, x2〉 =

∫ 1

0

x1(ξ)x2(ξ)dξ , ‖x1‖H =
(∫ 1

0

x1(ξ)2dξ
) 1

2 , |x|E = max
ξ∈[0,1]

|x(ξ)|.

To simplify notation, we often write ‖x‖ = ‖x‖H and |x| = |x|E .

2.1. Assumptions.

2.1.1. Linear operator. Let A denote the unbounded linear operator on H, with{
D(A) = H2(0, 1) ∩H1

0 (0, 1)

Ax = ∂2
ξx, ∀ x ∈ D(A).

It is well-known that A generates a strongly continuous semi-group, both on H and
on E. We use the notation

(
etA
)
t≥0

. More precisely, it is an analytic semi-group.

Finally, let en =
√

2 sin(nπ·) and λn = n2π2, for n ∈ N. Note that Aen = −λnen,
and that

(
en
)
n∈N is a complete orthonormal system of H.

2.1.2. Wiener process. Let
(
Ω,F ,P

)
denote a probability space, and consider a

family
(
βn
)
n∈N of independent standard real-valued Wiener processes. Then set

W (t) =
∑
n∈N

βn(t)en.

This series does not converge in H. However, if H̃ is an Hilbert space, and L ∈
L2(H, H̃) is a linear, Hilbert-Schmidt, operator, then LW (t) is a Wiener process on

H̃, centered and with covariance operator LL?.

2.1.3. Stochastic convolution. The linear equation, with additive noise,

dX(t) = AX(t)dt+ dW (t), X(0) = 0,

admits a unique (global) mild solution in H

X(t) =

∫ t

0

e(t−s)AdW (s) = WA(t),

called the stochastic convolution.
Moreover, this process is continuous with values in E. Moment estimates are

satisfied: for all T ∈ (0,∞) and all p ∈ N, there exists Cp(T ) ∈ (0,∞) such that

E
[

sup
0≤t≤T

‖WA(t)‖2pH + sup
0≤t≤T

|WA(t)|2pE
]
≤ Cp(T ). (1)

2.2. Allen-Cahn equation. The potential energy function V : R → R is defined
by

V (z) =
z4

4
− z2

2
.

Then the function Ψ0 = −V ′ satisfies a one-sided Lipschitz condition: for all z1, z2 ∈
R, (

Ψ0(z2)−Ψ0(z1)
)(
z2 − z1

)
≤ |z2 − z1|2.

However, Ψ0 is not globally Lipschitz continuous.
In this article, we consider the stochastic Allen-Cahn equation, with additive

space-time white noise, i.e. the Stochastic Partial Differential Equation

dX(t) = AX(t)dt+ Ψ0(X(t))dt+ dW (t), X(0) = x0, (2)
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with an initial condition x0 ∈ E.
We quote the following well-posedness result, see for instance [9, Chapter 6].

Proposition 1. For all T ∈ (0,∞), there exists a unique global mild solution(
X(t)

)
0≤t≤T of (2), with values in E. Moreover, for every p ∈ N, there exists

Cp(T ) ∈ (0,∞) such that

E
[

sup
0≤t≤T

|X(t)|2pE
]
≤ Cp(T )

(
1 + |x0|2pE

)
.

3. Numerical schemes. Since the coefficient Ψ0 is not globally Lipschitz contin-
uous, it is well-known that explicit discretization schemes are not appropriate –
unless combined with a taming strategy, as in [3, 30] for instance. Fully implicit
schemes are expensive, and split-step schemes such as defined in [48, 49], with an
implicit discretization for the contributions depending on Ψ0, may be defined.

In the case of Allen-Cahn equations, our strategy, detailed below, consists in
replacing these implicit steps with the exact solution of the flow associated with
Ψ0, in the spirit of [43, 51].

3.1. Splitting schemes. Introduce the auxiliary ordinary differential equation

ż = Ψ0(z), z(0) = z0 ∈ R.

The flow of this equation is known: the unique solution
(
z(t)

)
t≥0

is given by

z(t) = Φt(z0) =
z√

z2
0 + (1− z2

0)e−2t
, t ≥ 0. (3)

The splitting schemes we consider may be written in the following abstract form:
let ∆t > 0 denote the time-step size, then{

Yn = Φ∆t(Xn),

Xn+1 = Γ
(
Yn,∆t, (W (t))n∆t≤t≤(n+1)∆t

)
.

(4)

To complete the definition of the numerical schemes, it remains to provide the
definition of the mapping Γ, corresponding to the approximation of the stochastic
convolution. In the analysis below, three examples are considered:

Γexact
(
y,∆t, (W (t))n∆t≤t≤(n+1)∆t

)
= e∆tAy +

∫ (n+1)∆t

n∆t
e((n+1)∆t−t)AdW (t),

Γexpo
(
y,∆t, (W (t))n∆t≤t≤(n+1)∆t

)
= Sexpo

∆t y + Sexpo
∆t ∆Wn,

Γimp
(
y,∆t, (W (t))n∆t≤t≤(n+1)∆t

)
= Simp

∆t y + Simp
∆t ∆Wn

where ∆Wn = W
(
(n + 1)∆t

)
−W

(
n∆t

)
are Wiener increments, and with linear

operators

Sexpo
∆t = e∆tA , Simp

∆t =
(
I −∆tA

)−1
.

Numerical experiments, see Section 5; will also be performed for other schemes,
based on different splitting strategies.

When using the splitting scheme with Γ = Γexact, both sub-steps are solved
exactly. On the contrary, when using the other examples, there is an error due to
the discretization of the stochastic convolution.

We use the notation Xexact
n , Xexpo

n and X imp
n , when choosing Γ = Γexact, Γexpo

and Γ = Γimp respectively. To simplify, we do not mention the dependence with
respect to ∆t.
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3.2. Auxiliary SPDE. Define auxiliary functions Ψt, for t > 0, as follows: for all
z ∈ R,

Ψt(z) =
Φt(z)− z

t
. (5)

An important tool in the analysis is the auxiliary equation

dX(∆t)(t) = AX(∆t)(t)dt+ Ψ∆t

(
X(∆t)(t)

)
dt+ dW (t) , X(∆t)(0) = x0, (6)

with nonlinear coefficient Ψ0 in (2) replaced with Ψ∆t.
Observe that the numerical schemes defined by (4), based on the splitting method,

can be interpreted as standard numerical schemes for the auxiliary equation (6):
Xexact
n+1 = e∆tAXexact

n + ∆te∆tAΨ∆t(X
exact
n ) +

∫ (n+1)∆t

n∆t
e((n+1)∆t−t)AdW (t),

Xexpo
n+1 = Sexpo

∆t Xexpo
n + ∆tSexpo

∆t Ψ∆t(X
expo
n ) + Sexpo

∆t ∆Wn,

X imp
n+1 = Simp

∆t X
imp
n + ∆tSimp

∆t Ψ∆t(X
imp
n ) + Simp

∆t ∆Wn.

The schemes Xexact and Xexpo correspond to versions of the exponential Euler
scheme, applied to the auxiliary equation (6). The scheme X imp is the standard
linear implicit Euler scheme, applied to the auxiliary equation (6).

The auxiliary process solution of (6) and the three schemes are well-defined.
Indeed, it is straightforward to check that, for any positive ∆t, the mapping Ψ∆t

is globally Lipschitz continuous, see Lemma 3.1 below. This property allows us to
perform computations in a simple framework, for instance a standard fixed point
argument can be used to establish well-posedness of (6). However, the Lipschitz
constant of Ψ∆t is not uniform for ∆t ∈ (0,∆t0), for any ∆0 > 0, since Ψ0 is not
globally Lipschitz continuous.

Remark 1. One may also introduce the following scheme:

Xacc
n+1 = e∆tAXacc

n + (−A)−1
(
I − e∆tA

)
Ψ∆t(X

acc
n ) +

∫ (n+1)∆t

n∆t

e((n+1)∆t−t)AdW (t).

This scheme corresponds to the application of the accelerated exponential Euler
scheme to the auxiliary equation. However, this scheme is not based on a splitting
method.

3.3. Results concerning the auxiliary coefficients Φ∆t and Ψ∆t. In this sec-
tion, we state several results concerning the real valued mappings Φ∆t and Ψ∆t

defined by (3) and (5), with t = ∆t. Proofs are postponed to the Appendix A.
Note that the estimates below are uniform for ∆t ∈ [0,∆t0], for any arbitrary

∆t0 > 0 – and without loss of generality assume ∆t0 < 1. Moreover, the estimates
are consistent when ∆t = 0, with Φ0(z) = z and Ψ0(z) = z − z3.

The first result yields global Lipschitz continuity of Φ∆t.

Lemma 3.1. For every ∆t0 ∈ (0, 1), for all ∆t ∈ [0,∆t0], the mapping Φ∆t is
globally Lipschitz continuous, and the Lipschitz constant is bounded from above uni-
formly for ∆t ∈ [0,∆t0]. More precisely, for all z1, z2 ∈ R,∣∣Φ∆t(z2)− Φ∆t(z1)

∣∣ ≤ e∆t|z2 − z1|.

The second result yields a one-sided Lipschitz condition for Ψ∆t.

Lemma 3.2. For every ∆t0 ∈ (0, 1), for all ∆t ∈ [0,∆t0], the mapping Ψ∆t satisfies
a one-sided Lipschitz condition, uniformly for ∆t ∈ [0,∆t0]. More precisely, for all
z1, z2 ∈ R, (

Ψ∆t(z2)−Ψ∆t(z1)
)(
z2 − z1

)
≤ e∆t(z2 − z1)2.
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In addition to the one-sided Lipschitz condition from Lemma 3.2 above, Ψ∆t is
locally Lipschitz continuous.

Lemma 3.3. For every ∆t0 ∈ (0, 1), there exists C(∆t0) ∈ (0,∞), such that for
all ∆t ∈ [0,∆t0] and all z1, z2 ∈ R,∣∣Ψ∆t(z2)−Ψ∆t(z1)

∣∣ ≤ C(∆t0)|z2 − z1|
(
1 + |z1|3 + |z2|3

)
.

In addition, for all z ∈ R,

|Ψ∆t(z)| ≤ C(∆t0)(1 + |z|4).

Finally, the following result makes precise the speed of convergence of Ψ∆t to
Ψ0, when ∆t→ 0.

Lemma 3.4. For every ∆t0 ∈ (0, 1), there exists C(∆t0) ∈ (0,∞) such that, for
all ∆t ∈ [0,∆t0] and z ∈ R,

|Ψ∆t(z)−Ψ0(z)| ≤ C(∆t0)∆t(1 + |z|5).

3.4. Moment bounds.

3.4.1. Moment bounds for solutions of the auxiliary SPDE (6). Using the one-sided
Lipschitz condition for Ψ∆t, from Lemma 3.2, the same arguments used to get
Proposition 1 yield the following moment bounds for the solution X(∆t) of the
auxiliary equation, uniformly in ∆t ∈ (0,∆t0], for arbitrary ∆t0 ∈ (0, 1).

Proposition 2. For all T ∈ (0,∞), there exists a unique global mild solution(
X(∆t)(t)

)
0≤t≤T of (6), with values in E. Moreover, for every p ∈ N, and every

∆t0 ∈ (0, 1), there exists Cp(T,∆t0) ∈ (0,∞) such that

sup
∆t∈(0,∆t0]

E
[

sup
0≤t≤T

|X(∆t0)(t)|2pE
]
≤ Cp(T,∆t0)

(
1 + |x0|2pE

)
.

Observe that, when ∆t > 0, the mapping Ψ∆t is globally Lipschitz continu-
ous, the existence of moments is thus a standard result. The one-sided Lipschitz
condition ensures that the estimate is uniform for ∆t ∈ (0,∆t0].

3.4.2. Moment bounds for solutions of the numerical schemes (4). Let ∆t0 ∈ (0, 1),
and ∆t ∈ (0,∆t0] denote a time-step size. Let

(
Xn

)
n∈N0

be defined by the numer-

ical scheme (4), with the mapping Γ ∈
{

Γexact,Γexpo,Γimp
}

. For T ∈ (0,∞), let

NT,∆t = b T∆tc.

Proposition 3. Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). For any p ∈ N, there exists
Cp(t,∆t0) ∈ (0,∞) such that for all ∆t ∈ (0,∆t0] and all x0 ∈ E,

E
[

sup
0≤n≤NT,∆t

|Xn|2pE
]
≤ Cp(T,∆t0)(1 + |x0|2pE ).

The proof uses the following result, in the situation with Ψ0 replaced with 0
in (2).

Lemma 3.5. Let
(
ωn
)
n=0,...,NT,∆t

be defined by ω0 = 0, and

ωn+1 = Γ
(
ωn,∆t, (W (t))n∆t≤t≤(n+1)∆t

)
.

Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). For any p ∈ N, there exists Cp(T,∆t0) ∈ (0,∞)
such that for all ∆t ∈ (0,∆t0],

E
[

sup
0≤n≤NT,∆t

|ωn|2pE
]
≤ Cp(T,∆t0).
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Before sketching the proof of Lemma 3.5, we provide a detailed proof of Propo-
sition 3.

Proof of Proposition 3. Let rn = Xn − ωn, for n ∈ {0, . . . , NT,∆t}.
Then r0 = x0, and (with S∆t = Sexact

∆t = e∆tA when Γ = Γexact)

rn+1 = Xn+1 − ωn+1 = S∆t

(
Φ∆t(Xn)− ωn

)
= S∆t

(
Φ∆t(rn + ωn)− Φ∆t(ωn)

)
+ S∆t

(
Φ∆t(ωn)− ωn

)
.

In addition, the linear operator S∆t ∈
{
Sexact

∆t , Sexpo
∆t , Simp

∆t

}
satisfies |S∆tx|E ≤

|x|E , for all x ∈ E and all ∆t > 0, as a consequence of the maximum principle
for the Laplace operator. On the one-hand, using Lipschitz continuity of Φ∆t, see
Lemma 3.1, then ∣∣S∆t

(
Φ∆t(rn + ωn)− Φ∆t(ωn)

)∣∣
E
≤ e∆t|rn|E .

On the other hand, thanks to Lemma 3.3, and the identity Φ∆t(z)− z = ∆tΨ∆t(z),∣∣S∆t

(
Φ∆t(ωn)− ωn

)∣∣
E
≤ C(∆t0)∆t(1 + |ωn|4E).

The last two estimates prove that

|rn+1|E ≤ e∆t|rn|E + C(∆t0)∆t(1 + |ωn|4E),

and by discrete Gronwall’s Lemma, for all n ∈ {0, . . . , NT,∆t},

|rn|E ≤ C(T,∆t0)
(
1 + |x0|E + sup

0≤m≤NT,∆t

|ωm|4E
)
.

Applying the estimate of Lemma 3.5 then concludes the proof of Lemma 3.

It remains to give a sketch of proof of Lemma 3.5.

Sketch of proof of Lemma 3.5. When Γ = Γexact, then ωn = WA(n∆t), and thus
the result is a straightforward consequence of (1).

When Γ = Γexpo, define

ω̃(t) = e(t−n∆t)Aωn +

∫ t

n∆t

e∆tAdW (s) , n∆t ≤ t ≤ (n+ 1)∆t.

When Γ = Γimp, define

ω̃(t) = ωn + (t− n∆t)ASimp
∆t ωn +

∫ t

n∆t

Simp
∆t dW (s) , n∆t ≤ t ≤ (n+ 1)∆t.

Note that ω̃ is a continuous process, with values in E, and satisfies ω̃(n∆t) = ωn.
For all t ≥ 0 and ξ ∈ [0, 1], let ω̃(t, ξ) = ω̃(t)(ξ).

We claim that, for all T ∈ (0,∞), p ∈ N, ∆t0 ∈ (0, 1), and α ∈ (0, 1
4 ), there

exists Cα,p(T,∆t0) such that for all ∆t ∈ (0,∆t0],

E
∣∣ω̃(t, ξ2)− ω̃(t, ξ1)

∣∣2p ≤ Cα,p(T,∆t0)|ξ2 − ξ1|4αp , ∀ t ∈ [0, T ], ξ1, ξ2 ∈ [0, 1],

E
∣∣ω̃(t2, ξ)− ω̃(t1, ξ)

∣∣2p ≤ Cα,p(T,∆t0)|t2 − t1|2αp , ∀ t1, t2 ∈ [0, T ], ξ ∈ [0, 1].

The proof of this statement uses only standard arguments (see [13]), it is left to
the reader. Note that ω̃(0) = 0, and ω̃(t, 0) = ω̃(1) = 0 for all t ≥ 0. Then the
application of the Kolmogorov regularity criterion concludes the proof.
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4. Convergence analysis of the splitting schemes. Our main result, Theo-
rem 4.1, and several consequences, are stated in Section 4.1. Section 4.2 is devoted
to a detailed proof of Theorem 4.1, and the other results are then proved in Sec-
tion 4.3.

4.1. Statements. Our main result is the following.

Theorem 4.1. Let T ∈ (0,∞), ∆t0 ∈ (0, 1), and α ∈ (0, 1
4 ). There exists

Cα(T,∆t0) ∈ (0,∞), such that, for every ∆t ∈ (0,∆t0], M ∈ N and x0 ∈ E,
with ‖(−A)αx0‖H <∞, then

E
[
1

Ω
(∆t)
M

(T )
sup

0≤n≤NT,∆t

‖Xn−X(n∆t)‖2H
]
≤ Kα(M,T,∆t0)∆t2α(1 + |x0|8E +‖(−A)αx0‖2H)

with Kα(M,T,∆t0) ≤ Cα(T,∆t0)(1 +M6) exp(Cα(T,∆t0)M6), and

Ω
(∆t)
M (T ) =

{
sup

0≤k∆t≤T
|Xk|E + sup

0≤t≤T
|X(∆t)(t)|E ≤M

}
.

Moreover, there exists C(T,∆t0) such that for every x0 ∈ E, ∆t ∈ (0,∆t0] and
every M ∈ N

P
(
Ω

(∆t)
M (T )c

)
≤ C(T,∆t0)(1 + |x0|E)

M
.

Remark 2. The condition ‖(−A)αx0‖H <∞ may be relaxed using standard argu-
ments. If one assumes ‖(−A)βx0‖H <∞ with β ∈ [0, α], a factor of the type tα−βn

needs to be introduced. To simplify notation, we only consider the case β = α and
leave the details of the general case to the interested readers.

Let us state three straightforward consequences of Theorem 4.1, presenting other
standard ways to describe the error of the numerical scheme. Proofs are postponed
to Section 4.3.

Corollary 1. The numerical scheme is mean-square convergent. Precisely, for
every T ∈ (0,∞), and any initial condition x0 ∈ E, with ‖(−A)αx0‖H <∞, then

E
[

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H
]
→

∆t→0
0.

Corollary 2. The numerical scheme converges in probability with order α, for all
α < 1

4 . More precisely, for every α ∈ (0, 1
4 ), K ∈ (0,∞), and any initial condition

x0 ∈ E, with ‖(−A)αx0‖H <∞, then

P
(

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖H ≥ K∆tα
)
→

∆t→0
0.

Corollary 3. Let T ∈ (0,∞), ∆t0 ∈ (0, 1), and α ∈ (0, 1
4 ). For every ε ∈ (0, 1),

there exists M = Mα(ε, T,∆t0) ∈ (0,∞) and C = Cα(ε, T,∆t0) ∈ (0,∞) such that
for any bounded Lipschitz continuous function ϕ : H → R, with ‖ϕ‖∞+Lip(ϕ) ≤ 1,
and for every ∆t ∈ (0,∆t0] and x0 ∈ E, with ‖(−A)αx0‖H <∞, then∣∣E[ϕ(X(T ))

]
− E

[
ϕ(XNT,∆t

)1
Ω

(∆t)
M (T )c

]∣∣ ≤ ε+ C∆tα.

This weak convergence result is not expected to be optimal. First, it is based
on the concept of rejecting exploding trajectories: with a more technical analysis,
it may be possible to remove the ε error term. Second, as will be confirmed by the
numerical experiments below, the order of convergence α may be replaced with 2α,
using the standard weak convergence analysis, for functions ϕ of class C2, bounded
and with bounded derivatives. These improvements will be investigated in future
works.
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4.2. Proof of Theorem 4.1.

4.2.1. Two auxiliary lemmas. We first state two auxiliary results.

Lemma 4.2. Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). For every α < 1
4 , there exists

Cα(T,∆t0) ∈ (0,∞) such that for all ∆t ∈ (0,∆t0]

E
[

sup
0≤n≤NT,∆t

‖ωn −WA(n∆t)‖2H
]
≤ Cα(T,∆t0)∆t2α.

Proof of Lemma 4.2. If Γ = Γexact, then ωn = WA(n∆t), and there is nothing to
prove. When Γ = Γexpo or Γimp, then

ωn =

n−1∑
k=0

∫ (k+1)∆t

k∆t

Sn−k∆t dW (t),

and, one has the following result, see for instance [57, Theorem 3.2]: for all p ∈ N,
there exists Cp,α(T,∆t0) such that for all ∆t ∈ (0,∆t0],

sup
0≤n≤NT,∆t

E‖ωn −WA(n∆t)‖pH ≤ Cp,α(T,∆t0)∆tαp.

It remains to control the expectation of the supremum. Let α ∈ (0, 1
4 ), and, set

α̃ = α+ 1
p , with p ∈ N, p ≥ 2, chosen sufficiently large to have α̃ < 1

4 . Then

E
[

sup
0≤n≤NT,∆t

‖ωn −WA(n∆t)‖pH
]
≤ E

[ ∑
0≤n≤NT,∆t

‖ωn −WA(n∆t)‖pH
]

≤ NT,∆tCp,α̃(T,∆t0)∆tα̃p

≤ TCp,α̃(T,∆t0)∆tα̃p−1,

with α̃p− 1 = pα. Then, since p ≥ 2(
E
[

sup
0≤n≤NT,∆t

‖ωn −WA(n∆t)‖2H
]) 1

2

≤
(
E
[

sup
0≤n≤NT,∆t

‖ωn −WA(n∆t)‖pH
]) 1

p ≤ Cα(T,∆t0)∆tα.

This concludes the proof.

Lemma 4.3. Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). For every p ∈ N and α < 1
4 , there

exists Cp,α(T ) ∈ (0,∞), such that for any initial condition x0 with ‖(−A)αx0‖H <
∞, and all ∆t ∈ (0,∆t0], then for all t, s ∈ [0, T ],

E
[
‖X(∆t)(t)−X(∆t)(s)‖2pH

]
≤ Cp,α(T )(1 + ‖(−A)αx0‖2pH )∆t2pα.

Proof of Lemma 4.3. We give a sketch of proof, and give details only for p = 1.
Let 0 ≤ s < t ≤ T . Then

E‖X(∆t)(t)−X(∆t)(s)‖2H ≤ C(T )‖etAx0 − esAx0‖2H
+ C(T )E‖WA(t)−WA(s)‖2H

+ C(T )

∫ t

s

E‖Ψ∆t(X
(∆t)(r))‖2dr

+ C(T )

∫ s

0

(t− s)2α

(s− r)2α
E‖Ψ∆t(X

(∆t)(r))‖2Hdr.

First, ‖etAx0 − esAx0‖H ≤ |t− s|α‖(−A)αx0‖H .
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The inequality E‖WA(t)−WA(s)‖2H ≤ Cα(T ) ≤ |t− s|2α is a standard temporal
regularity result, see for instance [13][Theorem 7.4].

Finally, it remains to apply Lemma 3.3, and the moment bound from Proposi-
tion 2 to conclude.

4.2.2. Error between solutions of exact and auxiliary equations. The following result
states convergence of the X(∆t) to X when ∆t goes to 0. The order of convergence
is 1, and there is no need for localization.

Proposition 4. Let T ∈ (0,∞) and ∆t0 ∈ (0, 1). There exists C(T,∆t0) ∈ (0,∞)
such that for all x0 ∈ E and ∆t ∈ (0,∆t0],

E
[

sup
0≤t≤T

‖X(∆t)(t)−X(0)(t)‖2H
]
≤ C(T,∆t0)

(
1 + |x0|10

E

)
∆t2.

Proof of Proposition 4. Let R(∆t)(t) = X(∆t)(t)−X(0)(t). Then

dR(∆t)(t) = AR(∆t)(t)dt+
(
Ψ∆t(X

(∆t)(t))−Ψ0(X(0)(t))
)
dt,

with R(∆t)(0) = 0. As a consequence,

1

2

d‖R(∆t)(t)‖2

dt
= 〈AR(∆t)(t), R(∆t)(t)〉+ 〈Ψ∆t(X

(∆t)(t))−Ψ0(X(0)(t)), R(∆t)(t)〉

≤ −λ1‖R(∆t)(t)‖2 + 〈Ψ∆t(X
(∆t)(t))−Ψ∆t(X

(0)(t)), R(∆t)(t)〉

+ ‖Ψ∆t(X
(0)(t))−Ψ0(X(0)(t))‖‖R(∆t)(t)‖.

Using the one-sided Lipschitz condition from Lemma 3.2, and Lemma 3.4, then

1

2

d‖R(∆t)(t)‖2

dt
≤
(
e∆t0 +

1

2

)
‖R(∆t)(t)‖2 +

1

2
‖Ψ∆t(X

(0)(t))−Ψ0(X(0)(t))‖2

≤ C‖R(∆t)(t)‖2 + C∆t2
(
1 + |X(0)(t)|10

E

)
.

Using Gronwall’s lemma, and Proposition 1 then concludes the proof.

4.2.3. Proof of Theorem 4.1. We are now in position to prove the main result of
this article, Theorem 4.1. Thanks to Proposition 4, it is sufficient to look at the
error Xn −X(∆t)(n∆t).

Define rn = Xn − ωn. Note that

Xn+1 − S∆tXn −∆tS∆tΨ∆t(Xn) = ωn+1 − S∆tωn,

thus
rn+1 = S∆trn + ∆tS∆tΨ∆t(Xn).

This identity yields (since r0 = X0 = x0)

Xn − ωn = rn = Sn∆tx0 + ∆t

n−1∑
k=0

Sn−k∆t Ψ∆t(Xk).

We are now in position to make precise the decomposition of the error:

Xn −X(∆t)(n∆t) =
(
Sn∆t − en∆t

)
x0 + ωn −WA(n∆t)

+

n−1∑
k=0

∫ (k+1)∆t

k∆t

[
Sn−k∆t Ψ∆t(Xk)− e(n∆t−t)AΨ∆t(X

(∆t)(t))
]
dt.

First, there exists Cα ∈ (0,∞), such that for all n ∈ N,

‖
(
Sn∆t − en∆t

)
x0‖H ≤ Cα∆tα‖(−A)αx0‖H .
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In addition, the error term ωn −WA(n∆t) is controlled thanks to Lemma 4.2.
It remains to deal with
n−1∑
k=0

∫ (k+1)∆t

k∆t

[
Sn−k∆t Ψ∆t(Xk)− e(n∆t−t)AΨ∆t(X

(∆t)(t))
]
dt

= ∆t

n−1∑
k=0

Sn−k∆t

[
Ψ∆t(Xk)−Ψ∆t(X

(∆t)(k∆t))
]

+

n−1∑
k=0

∫ (k+1)∆t

k∆t

Sn−k∆t

[
Ψ∆t(X

(∆t)(k∆t)−Ψ∆t(X
(∆t)(t))

]
dt

+

n−1∑
k=0

∫ (k+1)∆t

k∆t

[
Sn−k∆t − e

(n∆t−t)A]Ψ∆t(X
(∆t)(t))dt.

Since Ψ∆t is not globally Lipschitz continuous uniformly in ∆t ∈ (0,∆t0), a
localization argument is introduced.

For M ∈ N, and n ∈ {0, . . . , NT,∆t}, let

Ω
(∆t)
n,M =

{
sup

0≤k≤n
|Xk|E + sup

0≤t≤n∆t
|X(∆t)(t)|E ≤M

}
.

Note that for all k ∈ {0, . . . , n− 1}, 0 ≤ 1
Ω

(∆t)
n,M

≤ 1
Ω

(∆t)
k,M

≤ 1.

Let εn = 1
Ω

(∆t)
n,M

‖Xn −X(∆t)(n∆t)‖2H . Then

E
[

sup
0≤m≤n

εm
]
≤ C sup

0≤m≤n
‖
(
Sm∆t − em∆t

)
x0‖2H + CE

[
sup

0≤m≤n
‖ωm −WA(m∆t)‖2H

]
+ CT∆t

n−1∑
k=0

E
[
1

Ω
(∆t)
k,M

‖Ψ∆t(Xk)−Ψ∆t(X
(∆t)(k∆t))‖2

]
+ CT

n−1∑
k=0

∫ (k+1)∆t

k∆t

E‖Ψ∆t(X
(∆t)(k∆t))−Ψ∆t(X

(∆t)(t))‖2dt

+ CT

n−1∑
k=0

∫ (k+1)∆t

k∆t

E
∥∥[Sn−k∆t − e

(n∆t−t)A]Ψ∆t(X
(∆t)(t))

∥∥2

H
dt

≤ Cα(T )(1 + ‖(−A)αx0‖2H)∆t2α

+ C(1 +M6)T∆t

n−1∑
k=0

E[ sup
0≤m≤k

εm]

+ Cα(T )(1 +M6)∆t2α

+ Cα(T )(1 + |x0|8E)∆t2α.

We have first used the estimate above and Lemma 4.2. Moreover, if x1, x2 ∈ E
satisfy |x1|E ≤M, |x2|E ≤M , then

‖Ψ∆t(x2)−Ψ∆t(x1)‖H ≤ C(∆t0)(1 +M3)‖x2 − x1‖H .
Thus

E
[
1

Ω
(∆t)
k,M

‖Ψ∆t(Xk)−Ψ∆t(X
(∆t)(k∆t))‖2

]
≤ C(1 +M6)E

[
1

Ω
(∆t)
k,M

‖Xk −X(∆t)(k∆t)‖2
]
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≤ C(1 +M6)E[ sup
0≤m≤k

εm].

Finally, we have used Lemma 4.3, and the standard estimates to control ‖Sn−k∆t −
e(n∆t−t)A‖L(H).

Applying the discrete Gronwall’s Lemma,

E
[

sup
0≤m≤n

εm
]
≤ Kα(T,M)∆t2α(1 + |x0|8E + ‖(−A)αx0‖2H),

with Kα(T,M) ≤ Cα(T )(1 +M6) exp(Cα(T )M6T ).

To conclude, note that Ω
(∆t)
NT,∆t,M

= Ω
(∆t)
M (T ), and that

E
[
1

Ω
(∆t)
NT,∆t,M

sup
0≤n≤NT,∆t

‖Xn −X(∆t)(n∆t)‖2H ] ≤ E[ sup
0≤n≤NT,∆t

εn].

In addition,

1−P
(
Ω

(∆t)
NT,∆t,M

)
≤

E
[

sup
0≤k≤NT,∆t

|Xk|E + sup
0≤t≤T

|X(∆t)(t)|E
]

M
≤ C(T,∆t0)(1 + |x0|E)

M
,

thanks to Propositions 2 and 3.
These estimates, combined with Proposition 4, conclude the proof of Theo-

rem 4.1.

4.3. Proof of the Corollaries.

Proof of Corollary 1. Let M be an arbitrary integer. Then, for all ∆t ∈ (0,∆t0],

E
[

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H ]

= E
[
1

Ω
(∆t)
M (T )

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H ]

+ E
[
1

Ω
(∆t)
M (T )c

sup
0≤n≤NT,∆t

‖Xn −X(∆t)(n∆t)‖2H ]

≤ Cα(M,T,∆t0, x)∆t2α

+ P
(
Ω

(∆t)
M (T )c

) 1
2
(
E
[

sup
0≤n≤NT,∆t

‖Xn‖4H + ‖X(n∆t)‖4H ]
) 1

2

≤ Cα(M,T,∆t0, x)∆t2α +
Cα(T,∆t0, x)√

M
,

thanks to Theorem 4.1, Cauchy-Schwarz inequality, and Propositions 1 and 3. Thus,
letting first ∆t→ 0, then M →∞, yields

lim sup
∆t→0

E
[

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H ] ≤ Cα(T,∆t0, x)√
M

→
M→∞

0,

which concludes the proof of Corollary 1.

Proof of Corollary 2. Let K ∈ (0,∞) be an arbitrary positive real number, and
M ∈ N be an arbitrary integer. Let α̃ ∈ (α, 1

4 ). Then

P
(

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖H ≥ K∆tα
)
≤ P

(
Ω

(∆t)
M (T )c

)
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+ P
({

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖H ≥ K∆tα

}
∩ Ω

(∆t)
M (T )

)
≤ Cα(T,∆t0, x)

M
+

1

K2∆t2α
E
[
1

(Ω
(∆t)
M (T )

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖2H
]

≤ Cα(T,∆t0, x)

M
+

1

K2
Kα̃(M,T,∆t0)∆t2(α̃−α),

thanks to Theorem 4.1. Thus, letting first ∆t→ 0, then M →∞, yields

lim sup
∆t→0

P
(

sup
0≤n≤NT,∆t

‖Xn −X(n∆t)‖H ≥ K∆tα
)
≤ Cα(T,∆t0, x)

M
→

M→∞
0,

which concludes the proof of Corollary 2.

Proof of Corollary 3. Let ε ∈ (0, 1), and M ∈ N be such that, for all ∆t ∈ (0,∆t0],

P
(
Ω

(∆t)
M (T )c

)
≤ C(T,∆t0)(1 + |x0|E)

M
≤ ε.

Then∣∣E[ϕ(X(T ))
]
− E

[
ϕ(XNT,∆t

)1
Ω

(∆t)
M (T )

]∣∣ ≤ ∣∣E[(ϕ(X(T ))− ϕ(XNT,∆t
)
)
1

Ω
(∆t)
M (T )

]∣∣
+ E

[
ϕ(X(T ))1

Ω
(∆t)
M (T )c

]
≤ E

[∥∥X(T )−XNT,∆t

∥∥
H

1
Ω

(∆t)
M (T )

]
+ ε

≤ Cα(T,∆t0, x)∆tα + ε,

thanks to the assumption that ϕ is bounded and Lipschitz continuous, with ‖ϕ‖∞+
Lip(ϕ) ≤ 1, and to Theorem 4.1. This concludes the proof of Corollary 3.

5. Numerical experiments. This section is devoted to numerical simulations, in
order to investigate the properties of the numerical scheme (4), with the choice
Γ = Γimp of the linear implicit Euler scheme:{

Yn = Φ∆t(Xn),

Xn+1 = S∆tYn + S∆t

(
W ((n+ 1)∆t)−W (n∆t)

)
,

(7)

with S∆t = (I −∆tA)−1. All simulations are performed with this choice of integra-
tor. Indeed, we expect that there is no gain in the orders of convergence when using
the version Γ = Γexp, with S∆t = e∆tA. In addition, computing such exponential
operators may be expensive in more complex situations, for instance where eigen-
values and eigenfunctions of A are not explicitly known, or in higher dimensional
domains. It is thus natural to restrict our simulations to the linear implicit Euler
scheme.

Spatial discretization is performed using a standard finite differences scheme,
with a fixed mesh size. The dependence of the error with respect to this spatial
discretization parameter is not studied in this article: we only focus on the temporal
discretization error.

Variants of the scheme (7) are introduced below, in Section 5.1. They are based
on other splitting strategies. The numerical simulations allow us to compare the
orders of convergence of these methods.

First, in Section 5.2, strong orders of convergence of the schemes are compared.
We observe that in practice the result of Theorem 4.1 holds true without requiring

the introduction of the set Ω
(∆t)
M (T ), and that all the methods are expected to have
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the same order of convergence, equal to 1/4. We conjecture that the strong order
of convergence of the scheme (7) is equal to 1/4.

Second, in Section 5.3, weak orders of convergence of the schemes are compared.
Note that the rejection of exploding trajectories, as suggested by Corollary 3, is not
performed: we may take ε = 0. Moreover, the test function is of class C2, bounded
and with bounded derivatives. In addition, one of the alternative splitting schemes
defined below has a lower weak error. Based on these numerical simulations, we
conjecture that the weak order of convergence is then equal to 1/2 for the scheme (7).
This question will be studied in future works.

We also plan to study generalizations in higher dimension.

5.1. Variants of the numerical scheme (7). We define three numerical schemes,
for each value of the time-step size ∆t > 0. We recall that S∆t = (I −∆tA)−1, and
use the notation ∆Wn = W ((n+ 1)∆t)−W (n∆t) for Wiener increments.

Method 1, given by the scheme (8), is the scheme studied above, (4), with the
linear implicit Euler integrator. The definition of Method 2, given by the scheme (9),
is motivated by [49]. Finally, the definition of Method 3 is motivated by [8]. We have
checked that the three variants give consistent results. In addition, the observations
are stable with respect to the choice of the mesh size.

Method 1. {
Y 1
n = Φ∆t(X

1
n),

X1
n+1 = S∆tY

1
n + S∆t∆Wn,

(8)

Method 2. 
Y 2,1
n = S∆t

2
X2
n

Y 2,2
n = Φ∆t(Y

2,1
n )

X2
n+1 = S∆t

2

(
Y 2,2
n + ∆Wn

)
.

(9)

Method 3. 
Y 3,1
n = S∆t

2

(
X3
n + 1

2∆Wn

)
Y 3,2
n = Φ∆t(Y

3,1
n )

X3
n+1 = S∆t

2

(
Y 3,2
n + 1

2∆Wn

)
.

(10)

Remark 3. Using different splitting strategies yields other numerical schemes. For
instance, we may have considered the scheme defined by

Y 1
n = Φ ∆t

2
(Xn)

Y 2
n = S∆t

(
Y 1
n + ∆Wn)

Xn+1 = Φ ∆t
2

(Y 2
n ).

Numerical experiments for this scheme are not reported, since they do not differ
from Method 1.

Remark 4. It is observed in numerical experiments below that the costs of Meth-
ods 2 and 3 are of the same order, and they are twice the cost of Method 1. This
behavior is not surprising since, at each iteration, one linear system (with S∆t) is
solved in Method 1, and two linear systems are solved in Methods 2 and 3.
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Figure 1. Mean square error order for T = 1, ∆x = 2.5 10−4 and
105 independent realizations.

5.2. Strong convergence. In order to study the strong order of convergence, one
needs to compare trajectories computed using the same Wiener path, which con-
straints the construction of the associated Wiener increments. It is customary to
compare the numerical solution computed with time-step size ∆t, with a reference
solution computed using a much smaller time-step size. Instead, we estimate the
mean-square error

E‖X(∆t)
N −X( ∆t

2 )

2N ‖2

where X
(∆t)
N is the numerical scheme, with time-step size ∆t, and N∆t = T . The

solutions are computed using the same Wiener path for one value of ∆t, and using
independent Wiener paths when changing ∆t. One needs to check that this error
is bounded from above by Cα(T )∆t2α: by a telescoping sum argument, since by
Corollary 2 the scheme is mean-square convergent, this property is equivalent to a
standard error estimate

E‖X(∆t)
N −X(T )‖2 ≤ C ′α(T )∆t2α.

In addition, note that the order of convergence of the error E‖X(∆t)
N −X( ∆t

2 )

2N ‖2 is
exactly what matters in the analysis of Multilevel Monte Carlo algorithms, which
are used in the context of weak convergence – see Section 5.3 below.

The simulations are performed with T = 1, a mesh size ∆x = 2.5 10−4, and
computing Monte-Carlo averages over 105 independent realizations. The numerical
results, in logarithmic scale, are reported in Figure 1. We observe that the mean-
square error converges with order 2α = 1/2, for the three methods.
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5.3. Weak convergence. Weak orders of convergence deal with the behavior of
the error

E
[
ϕ
(
X

(∆t)
N

)]
− E

[
ϕ(X(T ))

]
where ϕ : H → R is a test function, with appropriate regularity properties. Pre-
cisely, in the numerical experiments below, the test function is given by

ϕ(x) = exp
(
−5‖x‖2H

)
which is of class C2, bounded and with bounded derivatives. Our aim is to check
that the weak order of convergence is equal to 2α = 1/2, where α = 1/4 is the
strong order.

Experiments to identify weak rates of convergence are plagued by statistical
error, and thus we need to use a variance reduction strategy. Instead of directly

comparing E
[
ϕ(X

(∆t)
N )

]
with a reference value, estimated by an independent Monte

Carlo experiment with much smaller time step, we use a form of Multilevel Monte
Carlo method. Precisely, we estimate (by a standard Monte Carlo average) the
error

E
[
ϕ
(
X

(∆t)
N

)]
− E

[
ϕ
(
X

( ∆t
2 )

2N

)]
using the same Wiener paths (as explained in Section 5.2), but different time-step
sizes, respectively ∆t and ∆t

2 . Between two successive levels, the time-step size ∆t
is decreased, and computations at different levels use independent Wiener paths.
Contrary to the standard Multilevel Monte Carlo strategy, the number of realiza-
tions per level is not optimized (it is the same at each level): still the computational
cost is significantly reduced (thanks to the strong convergence property checked in
Section 5.2), and the observation of the weak orders of convergence is improved a
lot.

The comparison of E
[
ϕ
(
X

(∆t)
N

)]
with a reference value E

[
ϕ

(
X

( ∆t

2K
)

N

)]
esti-

mated with a smaller time step ∆t
2K is performed using a straightforward telescoping

sum procedure.
The simulations are performed with T = 1, ∆x = 2.5 10−4, and with 105 indepen-

dent Monte Carlo realizations at each level. The numerical results, in logarithmic
scale, are reported in Figure 2. We observe that the weak error converges with order
2α = 1/2 for three methods, and that Method 3 seems more efficient.

Appendix A. Proof of auxiliary results. Let ∆t0 ∈ (0, 1), and ∆t ∈ (0, 1).
Note that the properties are straightforward when ∆t = 0: then Φ0(z) = z and
Ψ0(z) = z − z3.

Recall (see (3) and (5)) that, for all ∆t ≥ 0 and z ∈ R,

Φ∆t(z) =
z√

z2 + (1− z2)e−2∆t
=

z√
e−2∆t + (1− e−2∆t)z2

, Ψ∆t(z) =
Φ∆t(z)− z

∆t
.

Proof of Lemma 3.1. The mapping Φ∆t is of class C1, and for all z ∈ R,

d

dz
Φ∆t(z) =

e−2∆t(
e−2∆t + (1− e−2∆t)z2

)3/2 ∈ [0, e∆t].

The conclusion is straightforward.
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10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

step size ∆ t

w
ea

k 
er

ro
r

 

 

Order 1

Order 0.5

Method 1 : Order 0.53
Method 2 : Order 0.77
Method 3 : Order 0.55

Figure 2. Weak error order for T = 1, ∆x = 2.5 10−4 and 105

independent realizations.

Proof of Lemma 3.2. We claim that, for all z ∈ R,

dΨ∆t(z)

dz
≤ e∆t.

To get this estimate, first compute

dΨ∆t(z)

dz
=

d

dz

( z

∆t

( 1√
e−2∆t + (1− e−2∆t)z2

− 1
))

=
1

∆t

( e−2∆t[
e−2∆t + (1− e−2∆t)z2

]3/2 − 1
)

=
1

∆t

(
fz(∆t)− fz(0)

)
,

where, for all t ≥ 0 and z ∈ R,

fz(t) =
e−2t[

z2 + (1− z2)e−2t
]3/2 .

Then, for fixed z ∈ R, and all t ≥ 0, compute

f ′z(t) = fz(t)
(
−2 +

3(1− z2)e−2t

z2 + (1− z2)e−2t

)
= fz(t)−

3z2fz(t)

z2 + (1− z2)e−2t

≤ fz(t).



SPLITTING SCHEMES FOR STOCHASTIC ALLEN-CAHN 19

Thanks to Gronwall’s Lemma, and fz(0) = 1, one gets for all t ≥ 0, and fixed z ∈ R,

f ′z(t) ≤ fz(t) ≤ et.

Then, for all z ∈ R,

dΨ∆t(z)

dz
=
fz(∆t)− fz(0)

∆t
≤ e∆t

which concludes the proof of the claim. Concluding the proof of Lemma 3.2 is then
straightforward.

Proof of Lemma 3.3. Following the computations from the proof of Lemma 3.2
above, for all z ∈ R,∣∣∣∣dΨ∆t(z)

dz

∣∣∣∣ =
1

∆t

∣∣fz(∆t)− fz(0)
∣∣ ≤ 3e3∆t(1 + |z|2).

Indeed, for fixed z ∈ R, and t ≥ 0, using that fz(t) ∈ [0, et],

∣∣f ′z(t)∣∣ ≤ fz(t) +
3|z|2fz(t)

e−2t + (1− e−2t)|z|2
≤ et + 3|z|2e3t.

This concludes the proof of the first estimate. The second estimate is straightfor-
ward, since Ψ∆t(0) = 0.

Proof of Lemma 3.4. Let z ∈ R be fixed. Note that

Ψ∆t(z)−Ψ0(z) =
z

∆t

(
gz(∆t)− gz(0)−∆tg′z(0)

)
with gz(t) = 1√

z2+(1−z2)e−2t
, and g′z(0) = 1− z2.

The derivatives of gz satisfy, for all t ≥ 0,

g′z(t) = gz(t)
(

1− z2

z2 + (1− z2)e−2t

)
g′′z (t) = gz(t)

[(
1− z2

z2 + (1− z2)e−2t

)2

− z2(1− z2)e−2t

(z2 + (1− z2)e−2t)2

]
.

Note that z2 + (1 − z2)e−2t = e−2t + (1 − e−2t)z2 ≥ e−2t ≥ e−2∆t0 , when
0 ≤ t ≤ ∆t ≤ ∆t0. Then it is straightforward to check that for all t ∈ [0,∆t]

|gz(t)| ≤ e∆t0 , |g′z(t)| ≤ e∆t0(1 + e2∆t0 |z|2) , |g′′z (t)| ≤ 2e∆t0
(
1 + e2∆t0 |z|2

)2
.

Thus |g′′z (t)| ≤ C(∆t0)(1 + |z|4), and applying Taylor’s formula then concludes the
proof.
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[29] I. Gyöngy and D. Nualart, Implicit scheme for stochastic parabolic partial differential equa-

tions driven by space-time white noise, Potential Anal., 7 (1997), 725–757.
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22 CHARLES-EDOUARD BRÉHIER AND LUDOVIC GOUDENÈGE
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