
Chaos 29, 033126 (2019); https://doi.org/10.1063/1.5081440 29, 033126

© 2019 Author(s).

On a new class of score functions to
estimate tail probabilities of some stochastic
processes with adaptive multilevel splitting
Cite as: Chaos 29, 033126 (2019); https://doi.org/10.1063/1.5081440
Submitted: 14 November 2018 . Accepted: 26 February 2019 . Published Online: 19 March 2019

Charles-Edouard Bréhier , and Tony Lelièvre 

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/1476640043/x01/AIP/HA_AuthorServices_CHAOS_PDFCover/HA_AuthorServices_CHAOS_PDFCover.jpg/686254725256755a63754d4141593558?x
https://doi.org/10.1063/1.5081440
https://doi.org/10.1063/1.5081440
https://aip.scitation.org/author/Br%C3%A9hier%2C+Charles-Edouard
http://orcid.org/0000-0002-4023-4982
https://aip.scitation.org/author/Leli%C3%A8vre%2C+Tony
http://orcid.org/0000-0002-3412-113X
https://doi.org/10.1063/1.5081440
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5081440
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5081440&domain=aip.scitation.org&date_stamp=2019-03-19


Chaos ARTICLE scitation.org/journal/cha

On a new class of score functions to estimate
tail probabilities of some stochastic processes
with adaptive multilevel splitting

Cite as: Chaos 29, 033126 (2019); doi: 10.1063/1.5081440

Submitted: 14 November 2018 · Accepted: 26 February 2019 ·
Published Online: 19March 2019 View Online Export Citation CrossMark

Charles-Edouard Bréhier1,a) and Tony Lelièvre2,b)

AFFILIATIONS

1Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR5208, Institut Camille Jordan, F-69622 Villeurbanne, France
2Université Paris-Est, CERMICS (ENPC), INRIA, 6-8-10 Ave. Blaise Pascal, 77455 Marne-la-Valleée, France

Note: This article is part of the Focus Issue on “Rare Event Sampling Methods: Development, Analysis and Application.”
a)brehier@math.univ-lyon1.fr
b)lelievre@cermics.enpc.fr

ABSTRACT

We investigate the application of the adaptive multilevel splitting algorithm for the estimation of tail probabilities of solutions of stochastic
di�erential equations evaluated at a given time and of associated temporal averages. We introduce a new, very general, and e�ective family of
score functions that is designed for these problems.We illustrate its behavior in a series of numerical experiments. In particular, we demonstrate
how it can be used to estimate large deviations rate functionals for the longtime limit of temporal averages.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081440

The simulation of rare events is a challenging computational issue
that appears in many �elds of science and engineering. This arti-
cle is devoted to the design and themathematical analysis of a new
class of Monte Carlo methods, based on the adaptive multilevel
splitting strategy, which has been developed in the last decade.
Numerical experiments are performed to validate and illustrate
our new algorithms.

I. INTRODUCTION

Fast and accurate estimation of rare event probabilities, and
the e�ective simulation of these events, is a challenging computa-
tional issue, which appears inmany �elds of science and engineering.
Since rare events are often the ones that matter in complex systems,
designing e�cient and easily implementable algorithms is a crucial
question, which has been the subject of many studies in the recent
years.

Since the pioneering works on Monte Carlo methods, several
classes of algorithms have been developed, see, for instance, the
monographs.3,15,41 The most popular strategies are importance sam-
pling and splitting. On the one hand, importance sampling consists
of changing the probability distribution, such that under the new

probability distribution, the events of interest are not rare anymore.
Appropriate reweighting then yields consistent estimators. This strat-
egy has, for instance, been applied recently to simulate rare events in
climate models.37 On the other hand, splitting techniques consist of
writing the rare event probability as a product of conditional proba-
bilities which are simpler to estimate, and in using interacting particle
systems in order to estimate these conditional probabilities.

In this article, a class of splitting algorithms is considered. Split-
ting techniques have been introduced in the 1950s29 and have been
extensively studied in the last two decades.16,20,25,26 Many variants
have appeared in the literature: generalized multilevel splitting,6,7

RESTART,47,48 Subset simulation,4 Nested sampling,43,44 Reversible
shaking transformationswith interacting particle systems,1,27 genealo-
gical particle analysis,21,49 etc.

The adaptive multilevel splitting (AMS) algorithm18 is designed
to estimate rare event probabilities of the type P(τB < τA), where τA
and τB are stopping times associated with a Markov process X, typi-
cally the entrance times of X in regions A and B of the state space. In
many applications, A and B are metastable states for the process. The
algorithm is based on selection and mutation mechanisms, which
leads to the evolution of a system of interacting replicas. The selec-
tion is performed using a score function, which is often referred to as
a reaction coordinatewhen dealingwithmetastable systems.We refer
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to Sec. III B for a precise algorithmic description, but let us �rst recall
the role of the score function, which is the principal object studied in
this article. The score function is chosen by the user and is denoted
by ξ in the following. It is de�ned on the state space of the process, it
is real-valued, and it allows one to measure the “distance” to the tar-
get set B. It is assumed that there exists zmax such that ξ(x) > zmax for
all x ∈ B. Each replica in the algorithm is a trajectory of the process,
stopped when entering A or B; the score of the replica is the maxi-
mumof the score function over this trajectory. Iteratively, the replicas
with the lowest scores are removed, and the replicas with largest
scores are duplicated (using some statistically consistent procedure).
Aswill become clear from the discussion below, the expectation of the
estimator of the probability obtained by AMS is exactly P(τB < τA)

(the estimator is unbiased) whatever the choice of the score function.
This enables easy parallelization of the code: one can consider the
average of the estimators obtained with independent runs of AMS to
reduce the statistical variance. However, the variance (and thus the
statistical error) of the estimator highly depends on the score func-
tion. The choice of the score function thus has a huge impact on the
practical e�ciency of the algorithm. It is desirable to design families
of score functions that are both general and e�ective.

The objective of this article is to design and test new score func-
tions, using the AMS strategy, to estimate probabilities of the type

P[8(XT) > a] or P

[

1
T

∫ T

0
φ(Xt)dt > a

]

, where a is a threshold, 8

and φ are real-valued functions, and (Xt)0≤t≤T is a Markov process.
In fact, as will be explained below, the probabilities of interest can
be rewritten as P(τB < τA), associated with an auxiliary Markov pro-
cess. Our main contribution is the identi�cation of appropriate score
functions related to this interpretation and which return a non-zero
value for the estimator of the probability of interest. By using then
an AMS algorithm which �ts in the Generalized Adaptive Multilevel
Splitting framework,11 one can construct unbiased estimators of the
probability (and possibly of other quantities of interest).

The e�ciency of the approach is investigated with numerical
experiments, using several test cases taken from the literature on rare
events. First, validation is performed on one-dimensional Gaussian
models (Brownian Motion,46 Ornstein-Uhlenbeck process49). More
complex test cases then illustrate the e�ciency of the approach and of
the new score functions introduced in this article: drifted Brownian
Motion, three-dimensional Lorenz model.5,32 Estimations of proba-

bilities depending on temporal averages 1
T

∫ T

0
φ(Xs)ds are also con-

sidered for two models:24 the one-dimensional Ornstein-Uhlenbeck
process and a driven periodic di�usion. In these examples, values of
large deviations rate functionals for the longtime limit T →∞ are
estimated.

In the last decade, many works have been devoted to the analy-
sis and applications of AMS algorithms. A series of work has been
devoted to the analysis of the so-called ideal case,9,13,14,28 namely,
when the AMS algorithm is applied with the optimal score function
(namely, the so-called committor function). In practice, this opti-
mal score function is unknown. Beyond the ideal case, consistency11

(unbiasedness of the small probability estimator) and e�ciency17

(variance of the small probability estimator) have been studied.
Moreover, the adaption of the original algorithm to the discrete-in-
time setting has been studied in detail in Ref. 11. It can be used to
compute transition times between metastable states,19 return times,30

or other observables associated with the rare event of interest.34 The
AMS algorithm has been successfully applied in many contexts: the
Allen-Cahn stochastic partial di�erential equation,12,39 the simula-
tion of Bose-Einstein condensates,36 molecular dynamics and com-
putational chemistry,2,19,31,45 nuclear physics,33–35 and turbulence,8,38

for example.
This article is organized as follows. Section II presents the pre-

cise mathematical setting, in particular, the rare event probability of
interest is de�ned by (7). A general formulation of theAMSalgorithm
designed to estimate this quantity is provided in Sec. III, in particu-
lar, see Sec. III B for the full algorithmic description. Examples of
appropriate score functions are discussed in Sec. IV. To overcome the
limitations of a vanilla strategy, Sec. IV A, our main contribution is
the construction of the score functions presented in Sec. IVB. Finally,
numerical experiments are reported in Sec. V.

II. SETTING

We consider stochastic processes, with values in R
d, in dimen-

sion d ∈ N, which are solutions of Stochastic Di�erential Equations
(SDEs) of the type for 0 ≤ t0 ≤ t ≤ T and x0 ∈ R

d

dX
t0 ,x0
t = f (t,X

t0 ,x0
t )dt + σ(t,Xt0 ,x0

t )dW(t), (1)

where X
t0 ,x0
t ∈ R

d, with the initial condition

X
t0 ,x0
t0
= x0. (2)

The noise [W(t)]t≥0 is given by a standard Wiener process with val-
ues in R

D, for some D ∈ N. The coe�cients f : [0,T]× R
d → R

d

and σ : [0,T]× R
d → R

d×D are assumed to be su�ciently smooth
to ensure global well-posedness of the SDE.

In this work, two types of rare events associated with

(X
t0 ,x0
t )0≤t≤T are considered. Let a ∈ R denote a threshold, and let

8,φ : R
d → R be two measurable functions. First, we are interested

in tail probabilities for the random variable8(X
t0 ,x0
T ), namely, in

P
[

8(X
t0 ,x0
T ) > a

]

. (3)

Second, we are interested in tail probabilities for temporal averages,
which is de�ned as

P

[

1

T − t0

∫ T

t0

φ(X
t0 ,x0
t )dt > a

]

. (4)

We will investigate numerically the performance of AMS estimators
for both (3) and (4) on various examples. In particular, we will con-
sider the regime T →∞ for (4) in order to estimate large deviations
rate functionals.

Note that the case of temporal averages (4) can be rewritten in
the form of (3). Indeed, the probability (4) may be written as (3)

for the auxiliary process de�ned by X̃
t0 ,x0
t =

(

X
t0 ,x0
t ,Y

t0 ,x0
t

)

, where

Y
t0 ,x0
t = φ(x0), and for t > t0

Y
t0 ,x0
t = 1

t − t0

∫ t

t0

φ(Xt0 ,x0
s )ds

and with 8̃(x, y) = y. The process
(

Y
t0 ,x0
t

)

t0≤t≤T
is the solution of the

following ordinary di�erential equation (ODE):

dY
t0 ,x0
t = 1

t − t0

[

φ(X
t0 ,x0
t )− Y

t0 ,x0
t

]

, t > t0, Y
t0 ,x0
t0
= φ(x0)
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coupled with the SDE for the di�usion process
(

X
t0 ,x0
t

)

t0≤t≤T
. This

trick will be used for our numerical experiments below. Therefore,
in the following, we present the AMS algorithm and discuss its
theoretical properties only for (3).

For future purposes, observe that the target probability (3) may
be written as ua(t0, x0), where

ua(t, x) = P
[

8(Xt,x
T ) > a

]

(5)

is the solution (under appropriate regularity assumptions) of the
backward Kolmogorov equation

{

∂ua(t,x)
∂t
+ Ltua(t, x) = 0 for t ∈ [0,T] and x ∈ R

d,

ua(T, x) = 18(x)>a for x ∈ R
d,

(6)

where the in�nitesimal generator Lt is de�ned by: for all test
functions ϕ, Ltϕ(x) = f (t, x) · ∇ϕ(x)+ 1

2
σ(t, x)σ (t, x)? : ∇2ϕ(x).

Approximating the solutions of PDEs of this type using deterministic
methods is in general possible only when the dimension d is small.
Instead, Monte Carlo methods may be used. However, naive Monte
Carlo algorithms are not e�cient in the rare event regime, e.g., when
a→∞ or when the di�usion coe�cient is of the type σε =

√
εσ

and ε → 0.
In practice, discrete-time approximations are implemented. Let

1t > 0 denote the time step size of the integrator (for instance, the
standard Euler-Maruyama method), with T = N1t and t0 = n01t,
where n0 ∈ N0,N ∈ N, n0 ≤ N.With a slight abuse of notation, let us
denote the discrete-time process obtained after discretization of (1)
by

(

X
n0 ,x0
n

)

n0≤n≤N
. The time-discrete counterpart of (3) is then

P
[

8(X
n0 ,x0
N ) > a

]

. (7)

The algorithms presented below are used to estimate probabilities of
the type (7).

Remark 1. It is assumed that the initial condition is determinis-
tic: X

n0 ,x0
n0 = x0. The adaptation of the algorithms presented below to the

case of a random initial condition is straightforward, by simply using
the Markov property: P

[

8(XN) > a
]

=
∫

P
[

8(X
n0 ,x0
N ) > a

]

dµ0(x0),
where µ0 denotes the law of Xn0 .

Remark 2. Instead of using an integrator with time step size
1t, one may use an integrator with a smaller time step size δt (such
that 1t

δt
∈ N) to de�ne the discrete-time process. This does not change

the general presentation of the algorithm. The question of the choice of
1t and δt in practice is not trivial and highly depends on the model
under study. In the numerical experiments below (Sec. V), it is always
assumed that δt = 1t.

III. GENERAL FORMULATION OF THE ADAPTIVE

MULTILEVEL SPLITTING ALGORITHM

A. Context

The goal is to estimate the probability p given by (7), in the
regime where p is small, which is, for example, the case when a is
large.

It is convenient to introduce an auxiliary process
(

Zn

)

n0≤n≤N
such that Zn =

(

n1t,X
n0 ,x0
n

)

. Indeed, let

A = {(T, x); 8(x) ≤ a} , B = {(T, x); 8(x) > a}

and de�ne the associated stopping times

τA = inf {n ≥ n0, n ∈ N0; Zn ∈ A} ,
τB = inf {n ≥ n0, n ∈ N0; Zn ∈ B} .

Then, the probability p given by (7) can be rewritten as

p = P
[

8(X
n0 ,x0
N ) > a

]

= P(τB < τA). (8)

We are then in a position to build algorithms that �t in the Gener-
alized Adaptive Multilevel Splitting framework developed in Ref. 11,
which ensures that the obtained estimators of the probability (8) are
unbiased.

For that, a score function, or reaction coordinate, ξ , needs to
be given. Following the above interpretation, ξ may depend on z =
(n1t, x).

To run the algorithm and de�ne simple unbiased estimators of
p, only one requirement is imposed on the function ξ : there exists
ξmax such that

B ⊂ {z; ξ(z) > ξmax} ,

which in the context of this article is rephrased as

8(x) > a =⇒ ξ(T, x) > ξmax. (9)

The principle of the splitting algorithm is then to write

P(τB < τA) = P(τζ1 < τA)P(τζ2 < τA|τζ1 < τA)

× P(τζ3 < τA|τζ2 < τA) · · ·P(τB < τA|τξmax < τA)

for an increasing sequence of levels (ζq)q≥1, where τζ = inf{n ≥
n0; ξ(Zn) > ζ }. If the levels are well chosen, then the successive con-
ditional probabilities P(τζq+1 < τA|τζq < τA) are easy to compute.

The principle of the adaptive multilevel splitting algorithm18 is to
choose the levels adaptively, so that the successive conditional prob-
abilities P(τζq+1 < τA|τζq < τA) are constant and �xed. The levels
constructed in the algorithm are then random.

B. The adaptive multilevel splitting algorithm

Before giving the detailed algorithm, let us roughly explain the
main steps (we also refer to Ref. 11 for more details and intuition on
the algorithm). In the initialization, one samples nrep trajectories fol-
lowing (1) and (2) and compute the score of each trajectory, namely,
the maximum of ξ attained along the path. Then, the algorithm pro-
ceeds as follows: one discards the trajectory that has the smallest
score and in order to keep the number of trajectories �xed, a new
one is created by choosing one of the remaining trajectories at ran-
dom, copying it up to the score of the killed trajectory, and sampling
the end of trajectory independently from the past. This is called the
partial resampling. One thus obtains a new ensemble of nrep trajecto-
ries on which one can iterate by again discarding the trajectory which
has the smallest score. As the iteration goes, one thus obtains trajec-
tories with larger and larger scores, and an estimate of the probability
of interest is obtained as (1− 1/nrep)

QiterP(τB < τA|τξmax < τA) [note
that (1− 1/nrep) is an estimate of the conditional probability to reach
level ζq+1 conditionally to the fact that level ζq has been reached],
where Qiter is the number of iterations required to reach the maxi-
mum level ξmax. In practice,P(τB < τA|τξmax < τA) is estimated by the
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proportion of trajectories that reach B before A at the last iteration of
the algorithm, namely, when all the trajectories satisfy τξmax < τA.

Actually, the algorithm has to be adapted in order to take into
account situations when more than one particle has the smallest
score, which happens with non-zero probability for Markov chains.
Let us now give the details of the AMS algorithm.

To simplify notation, in the sequel, the initial condition x0 and
the time n0 are omitted in the notation of the replicas.

(a) Input
• nrep ∈ N, the number of replicas,
• a score function z = (n1t, x) 7→ ξ(n1t, x) ∈ R and a stop-
ping level ξmax ∈ R such that (9) is satis�ed.

(b) Initialization
• Sample nrep independent realizations of the Markov process

Xj =
(

Xj
m

)

n0≤m≤N
, 1 ≤ j ≤ nrep

following the dynamics (1) and (2).

• Compute the score of each replica,Mj = max
n0≤m≤N

ξ(m1t,X
j
m).

• Compute the level Z = min
1≤j≤nrep

Mj.

• De�neK =
{

j ∈
{

1, . . . , nrep
}

; Mj = Z
}

.
• Set q = 0, p̂ = 1, B = 1.

(c) Stopping criterion If Z ≥ ξmax or card(K) = nrep, then setB = 0.
(d) while B = 1

• Update
–q← q+ 1 and p̂← p̂ ·

(

1− card(K)
n

)

.
• Splitting
–Reindex the replicas, such that

{

Mj = Z if j ∈ {1, . . . , card(K)} ,
Mj > Z if j ∈

{

card(K)+ 1, . . . , nrep
}

.

–For replicas with index j ∈ {1, . . . , card(K)}, sample labels
`1, . . . , `card(K), independently anduniformly in {card(K)
+ 1, . . . , nrep}.

• Partial resampling
– Remove the replicas with label j ∈ {1, . . . , card(K)}.
– For j ∈ {1, . . . , card(K)}, de�nemj = inf{m ∈ {n0, . . . ,N};
ξ(X

`j
m) > Z}.

– Form ∈
{

n0, . . . ,mj

}

, set X
j
m = X

`j
m .

– Sample a new trajectory
(

X
j
m

)

mj≤m≤N
with the Markov

dynamics (1) driven by independent realizations of the
Brownian motion.

• Level computation

– Compute the scoresMj = max
n0≤m≤N

ξ(m1t,X
j
m).

– Compute the level Z = min
1≤j≤nrep

Mj.

– De�ne the setK =
{

j ∈
{

1, . . . , nrep
}

; Mj = Z
}

.
(e) Stopping criterion If Z ≥ ξmax or card(K) = nrep, then setB = 0.
(f) End while
(g) Update: p̂← p̂ 1

nrep

∑nrep
j=1 1

8(X
j
N )≥a

.

(h) Output: p̂ and Qiter = q.

Remark 3. We presented the algorithm in its simplest form.
There are many variants, see Ref. 11. For example, the killing level

Z can be de�ned as Z = M(k) where M(1) ≤ M(2) ≤ · · · ≤ M(nrep)

denotes an increasing relabeling of the scores (Mj)1≤j≤nrep (order
statistics).

C. Consistency result

Let p̂ and Qiter be the outputs of the realization of the above
algorithm. We quote the following result,11 which states that the out-
put p̂ of the algorithm described in Sec. III B is an unbiased estimator
of the probability given by (7).

Theorem 1. Let ξ be a score function and ξmax ∈ R be such
that (9) is satis�ed. Let nrep ∈ N be a given number of replicas. Assume
that almost surely the algorithm stops after a �nite number of iterations:
Qiter <∞ almost surely.

Then, p̂ is an unbiased estimator of the probability p given by (8)

E[p̂] = P
[

8(X
n0 ,x0
N ) > a

]

.

Note that if ψ : R
d → R is a function with support included in

{x; 8(x) > a}, i.e.,ψ(x) = 0 if8(x) ≤ a, then anunbiased estimator
of E[ψ(X

n0 ,x0
N )] is given by replacing the �nal update in the above

algorithm [see step (g)], by

p̂← p̂
1

nrep

nrep
∑

j=1
ψ(X

j
N).

The unbiasedness property is crucial in practice for the following two
reasons. First, it is very easy to parallelize the estimation of rare events
using this property. Indeed, since the estimator is unbiased whatever
the value of nrep, to obtain a convergent estimation, one has to sim-
ply �x nrep to a value that enables the computation of p̂ on a single
CPU, and then to sample M independent realizations of this p̂, run
in parallel. In the large M limit, one obtains a convergent estimator
of the quantity of interest by simply considering the average of the
realizations of p̂. Second, the practical interest of Theorem 1 is that
since E(p̂) is the same whatever the choice of the numerical parame-
ters (namely, nrep and ξ ), one can compare the results obtained with
di�erent choices to get con�dence in the result. For example, one can
consider the con�dence intervals obtained withM independent real-
izations of p̂ for two di�erent choices of ξ , and check whether these
con�dence intervals overlap or not.

Remark 4. In the algorithm described in Sec. III B, the set K
de�ned in the initialization and in the level computation steps may
have a cardinal strictly larger than 1, even if the level Z is de�ned as
the minimum of the scores over the replicas. This simply means that
more than one replica has a score that is the smallest among the repli-
cas. In the discrete-time setting (namely, forMarkov chains), this occurs
with non-zero probability, and it requires an appropriate modi�cation
of the original AMS algorithm, as described above, see Ref. 11 for more
details.

Note that in particular, there is a possibility that the algorithm
stops if card(K) = nrep, in which case there is an extinction of the
system of replicas.

IV. CHOICES OF THE SCORE FUNCTION

Let us now describe the various score functions we will consider
in order to estimate (7).
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A. Vanilla score function and limitations

The simplest choice consists of choosing the score function as
given by

ξstd(n1t, x) = 8(x) (10)

with ξmax = a. In this case, the score function does not depend on the
time variable.

If the conditional probability

q = P

[

8(X
n0 ,x0
N ) > a

∣

∣

∣

∣

max
n0≤n≤N

8(Xn0 ,x0
n ) > a

]

is small, the performance of this vanilla strategymay be poor. Indeed,
only a small proportion of the replicas have a non-zero contribution
to the value of the estimator of the probability (7). It may even hap-
pen that all the replicas satisfy max

n0≤n≤N
8(X

n0 ,x0
n ) > a but that none of

them satis�es8(X
n0 ,x0
N ) > a. In that situation, the algorithm returns

p̂ = 0 to estimate p > 0. One of the goals of this work is to construct
score functions that circumvent that issue: with the score functions
introduced below, almost surely p̂ 6= 0.

Let us illustrate the limitation of the vanilla score function on a
straightforward example. Assume that the initial condition x0 of the
process satis�es 8(x0) > a, then max

n0≤n≤N
8(X

n0 ,x0
n ) > a with proba-

bility 1. Thus, the conditional probability q is equal to p. In such
a case, applying the AMS algorithm using the vanilla score func-
tion is equivalent to applying the crude Monte Carlo method (the
stopping criterion is satis�ed right after the initialization, where inde-
pendent replicas are used). In this situation, the vanilla score function
is obviously ine�ective, and new score functions need to be designed.

B. Time-dependent score functions

As discussed above, it is natural to design score functions ξ ,
which satisfy the following condition:

{

8(X
n0 ,x0
N ) > a

}

=
{

max
n0≤n≤T

ξ(n1t,Xn0 ,x0
n ) > 1

}

. (11)

The choice of the value ξmax = 1 on the right-hand side above is
arbitrary, but no generality is lost. Indeed, if a score function ξ sat-
isfying (11) is used in the above AMS algorithm, with ξmax = 1, at

the last update, the ratio
(

1
nrep

)

∑nrep
j=1 1

8(X
j
N )≥a

is identically equal to

1, since all replicas satisfy max
n0≤n≤T

ξ(n1t,X
n0 ,x0
n ) > 1. In particular, by

construction p̂ 6= 0 (provided Qiter <∞).
As will be seen below, in practice it is more natural to identify

functions ξ̃ taking values in (−∞, 1], which satisfy the condition

{

8(X
n0 ,x0
N ) > a

}

=
{

max
n0≤n≤T

ξ̃ (n1t,Xn0 ,x0
n ) = 1

}

, (12)

instead of (11). To justify the use of the algorithm in this case,

observe that ξ̄ (t, x) = ξ̃ (t, x)+ 1ξ̃ (t,x)=1 then satis�es (11). In addi-

tion, when running the algorithm, choosing either ξ̄ or ξ̃ exactly
yields the same result. We are thus in the setting where the unbiased-
ness result of Theorem1 applies. The score functions presented below
will satisfy (12) instead of (11).

One of the novelties of this article is the introduction of the
following score function:

ξnew(n1t, x) =
[

8(x)− a
]

18(x)≤a +
n1t

N1t
18(x)>a. (13)

Observe that ξnew takes values in (−∞, 1], and that ξnew(n1t, x) = 1
if and only if n = N and 8(x) ≥ a. Thus, the condition (12) is sat-
is�ed. We refer to Fig. 1 for a schematic representation of this score
function.

Note that the score function de�ned by (13) only depends on the
function8, on the threshold a, and on the �nal timeT = N1t. Itmay
thus be applied in any situation, but in some cases better score func-
tions may be built upon using more information on the dynamics.
The practical implementation is very simple.

Let us explain how theAMS algorithmproceedswhen usedwith
the score function (13). Observe that

{

max
n0≤n≤N

ξnew(n1t,Xn0 ,x0
n ) ≥ 0

}

=
{

max
n0≤n≤N

8(Xn0 ,x0
n ) > a

}

.

FIG. 1. Level lines of the score function
(t, x) 7→ ξnew(t, x), with 8(x) = x, a =
1, T = 1.
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FIG. 2. Level lines of the score function
(t, x) 7→ ξ anew(t, x), with a(t) = atT−1,
and8(x) = x, a = 1, T = 1.

The �rst iterations of the algorithm, up to reaching level 0, are thus
devoted to construct nrep replicas, which satisfy the weaker condi-

tion
{

max
n0≤n≤N

8(X
n0 ,x0
n ) > a

}

. In other words, if the stopping level

ξmax in the algorithm is set equal to 0 instead of 1, one thus recovers
the vanilla AMS algorithm described above, applied with the score
function ξ(t, x) = 8(x) (independent of time t).

Compared with the vanilla score function, the AMS
algorithm with the new score function does not stop when
{

max
n0≤n≤N

8(X
n0 ,x0
n ) > a

}

. In terms of splitting, one can observe that

this consists of writing

P
[

8(X
n0 ,x0
N ) > a

]

= P

[

8(X
n0 ,x0
N ) > a

∣

∣

∣

∣

max
n0≤n≤N

8(Xn0 ,x0
n ) > a

]

× P

[

max
n0≤n≤N

8(Xn0 ,x0
n ) > a

]

,

and the remaining e�ort consists of estimating the above conditional
probability.

More generally, one can observe that for every n1 ∈ {n0, . . . ,N},

{

max
n0≤n≤N

ξnew(n1t,Xn0 ,x0
n ) ≥ n1

N

}

=
{

max
n1≤n≤N

8(Xn0 ,x0
n ) > a

}

.

The construction of the score function (13) is associated with the
following family of nested events:

{

max
n0≤n≤N

ξnew(n1t,Xn0 ,x0
n ) ≥ 1

}

⊂ · · · ⊂
{

max
n0≤n≤N

ξnew(n1t,Xn0 ,x0
n ) ≥ n1

N

}

,

⊂ · · · ⊂
{

max
n0≤n≤N

ξnew(n1t,Xn0 ,x0
n ) ≥ 0

}

,

which equivalently may be rewritten as

{

8(X
n0 ,x0
N ) > a

}

⊂ · · · ⊂
{

max
n1≤n≤N

8(Xn0 ,x0
n ) > a

}

,

⊂ · · · ⊂
{

max
n0≤n≤N

8(Xn0 ,x0
n ) > a

}

.

In the selection procedure, the intervals [n11t,N1t] are iteratively
reduced (by increasing the left end point of the interval), until they
ultimately contain only the point N1t (the right end point of the
interval that remains �xed).

To conclude, we mention that the construction given by (13)
can be generalized as follows. Let a : [0,T]→ R be a non-decreasing
function, such that a(T) = a. De�ne

ξ anew(n1t, x) =
[

8(x)− a(n1t)
]

18(x)≤a(n1t) +
n1t

N1t
18(x)>a(n1t).

(14)
The score function ξnew de�ned by (13) is a particular case of (14),
with a(t) = a. Optimizing the choice of the function a may help
improve the e�ciency of the algorithm. Note that condition (12) is
satis�ed with ξ = ξ anew. We refer to Fig. 2 for a schematic representa-
tion of this score function.

C. The optimal score function: The committor

function

For the general setting presented in Sec. III A where one
wants to estimate P(τB < τA), the committor function is de�ned as
z 7→ P

z(τB < τA), where the superscript z refers to the initial condi-
tion of the process Z. In Ref. 17, it is shown that, in a continuous-time
setting, the asymptotic variance (as the number of replicas nrep goes
to in�nity) of the AMS algorithm is minimized when using the com-
mittor function as the score function. It is thus interesting to look at
what the committor function looks like in our context. Note that it
is also shown in Corollary 2.9 of Ref. 17 that the average number of
iterations of AMS is of the order−nrep log(p) whatever the choice of
the score function: this is why we only concentrate on the scaling in
p of the variance, depending on the choice of the score function. For
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FIG. 3. Level lines of the committor func-
tion (t, x) 7→ ξcom(t, x), in the Brownian
Motion case X(t) = B(t), with a = 1 and
T = 1.

the optimal score function, namely, the committor function, the vari-
ance scales like −p2 log(p), see Corollary 2.8 in Ref. 17, whereas for
bad committor functions, one can get twice the variance of a brute
force Monte Carlo, namely, 2p.

In our context, the committor function is given by

ξcom(n1t, x) = P
[

8(Xn,x
N ) > a

]

. (15)

For the discussion, it is more convenient to consider the continuous-
time version ξcom(t, x) = P

[

8(Xt,x
T ) > a

]

, for t ∈ [0,T], that we still
denote ξcom with a slight abuse of notation. Recall that ua(t, x) =
P
[

8(Xt,x
T ) > a

]

= ξcom(t, x) satis�es the Kolmogorov backward
equation (6), as explained in Sec. II.

As mentioned above, the asymptotic variance (as the number
of replicas nrep goes to in�nity) of the AMS algorithm is minimized
when using the committor function as the score function.17 The

asymptotic variance is then
−p2 log(p)

nrep
, where p is the probability that

is estimated. The analysis of the AMS algorithm in the ideal case, i.e.,
when using the committor function as the score function, has been
performed in many works.9,13,14,28

Of course, in practice, the committor function is unknown and
the asymptotic variance depends on the chosen score function. It
has been proved17 that the asymptotic variance is always bounded

from above by
2p(1−p)
nrep

, for any choice of the score function, where we

recall that the asymptotic variance of the vanillaMonte Carlomethod

is
p(1−p)
nrep

. This can be seen as a sign of the robustness of the AMS

approach to estimate rare event probability (contrary to the impor-
tance sampling method, which may result in a dramatic increase
in the asymptotic variance compared with the vanilla Monte Carlo
method).

For simple Gaussian models, namely, when X is a Brown-
ian Motion, an Ornstein-Uhlenbeck process, or a drifted Brownian
Motion, it is possible to compute analytically the committor function.
This is useful to validate algorithms on test cases, as will be illustrated
in Sec. V. Figure 3 represents the level lines of the committor function
for a one-dimensional Brownian Motion (with T = 1 and a = 1). In

that case,

ξcom(t, x) = 1− F

(

a− x√
T − t

)

,

where F is the cumulative distribution function of the standardGaus-
sian distributionN (0, 1), to be compared to the level sets of ξnew and
ξ anew in Figs. 1 and 2. This form leads one to de�ne other families of
appropriate score functions

ξ(t, x) = 1− F
[

φ(t, x)
]

,

where φ(t, x) →
t→∞

(−∞)18(x)>a + (+∞)18(x)<a. But the e�ciency

depends more on the choice of φ. In practice, we did not observe
much gain in our numerical experiments, compared to the score
function ξnew introduced in Sec. IV B.

Let us mention that various techniques have been proposed in
order to approximate the committor function, in particular in the
context of importance sampling techniques for rare events, since
the committor function also gives the optimal change of measure.
If di�usions with vanishing noise are considered,22,23,46 solutions of
associated Hamilton-Jacobi equations are good candidates to esti-
mate the committor function. See also Ref. 42 for approximations
based on coarse-grained models. Whether such constructions are
possible when considering temporal averages, instead of the terminal
value of the process is unclear.

V. NUMERICAL SIMULATIONS

Let p denote the rare event probability of interest. An estimator
of p is calculated as the empirical average over independent realiza-
tions of the AMS algorithm, given a choice of score function ξ . The
main objective of this section is to investigate the behavior of the
algorithmwhen choosing ξ = ξnew given by (13). A comparison with
the vanilla score function ξ = ξstd given by (10) is provided.

Let nrep ∈ N denote the number of replicas, and letM ∈ N, and
(

p̂m
)

1≤m≤M be the output probabilities ofM independent realizations
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of the AMS algorithm. We report the values of the empirical average

p̂ = 1

M

M
∑

m=1
p̂m

and of the empirical variance σ̂ 2 = 1
M−1

∑M
m=1(p̂m − p̂)2. Con�dence

intervals are computed as
[

p̂− 1.96σ̂√
M

, p̂+ 1.96σ̂√
M

]

,

assuming that the number of realizationsM is su�ciently large to use
the Gaussian, Central Limit Theorem, regime.

Recall that E[p̂] = E[p̂1] = p, whatever the choice of the score
function ξ and of the number of replicas nrep, thanks to Theorem 1.
The variance of the estimator and thus the e�ciency strongly
depends on ξ . In the experiments below, the empirical variance σ̂ 2 is

compared with the optimal asymptotic variance
−p2 log(p)

nrep
for (adap-

tive) multilevel splitting algorithms, which is obtained in the regime
nrep →∞, when choosing the (unknown in general) committor
function ξ = ξcom as the score function. The di�erence between the
empirical variance and the optimal one can be seen as a measure of
how far the chosen score function is from the committor.

Recall that, as explained in Sec. IV B, it is su�cient to compare
the asymptotic variances (instead of computational costs) for di�er-
ent choices of the score functions, since we are only interested in the
behavior as p tends to 0. In this regime, for the mean number of iter-
ations for one realization of the algorithm, the score function only
plays a role in a multiplicative constant.

In some of the numerical experiments below, the conditional
probability

q = P

[

8(XN) > a

∣

∣

∣

∣

max
0≤n≤N

8(Xn) > a

]

(16)

is also estimated by

q̂ = p̂

p̂max

,

where p̂max = 1
M

∑M
m=1 p̂max,m is the estimator of the probability

pmax = P

[

max
0≤n≤N

8(Xn) > a

]

, (17)

which is estimated using the vanilla score function ξ = ξstd.

A. Validation using two Gaussian models

In this section, we validate the AMS algorithm with various
score functions on simple models for which the probability of the
rare event is known with arbitrary precision.

1. Brownian motion

We follow here numerical experiments from Ref. 46. Let d = 1
and consider the di�usion process given by

dX(t) =
√

2β−1dW(t), X(0) = 0.1,

where
[

W(t)
]

t≥0 is a standard real-valued Wiener process.

The dynamics is discretized using the explicit Euler-Maruyama
method, with time step size 1t = 10−3 (note that the numerical
scheme gives here the exact solution)

Xn+1 = Xn +
√

2β−11tζn

with X0 = X(0) = 0.1, where
(

ζn
)

0≤n≤N are independent standard

Gaussian random variables.
The goal is to estimate the probability

p = P
(

|XN | > 1
)

.

This corresponds to the choice8(x) = |x|, a = 1, T = 1 so thatN =
T/1t = 103.

Since X(t) = X(0)+W(t), the law of X(t) is a Gaussian dis-
tribution, and the value of P(|X(1)| ≥ 1) can be computed exactly
in terms of the cumulative distribution function of the standard
Gaussian distribution.

In the numerical experiment reported in Table I, the number
of replicas is set equal to nrep = 103, and the empirical average is
computed overM = 103 independent realizations of the algorithm.

This numerical experiment validates the algorithm using
ξ = ξnew in the case of a one-dimensional Brownian Motion. The
empirical variance σ̂ 2 is much smaller than

p(1−p)
nrep

, which would be

obtained using a naive Monte Carlo strategy (using nrep independent
replicas). It is observed that the ratio between the empirical and the
optimal variances increases when p decreases, but in practice this
increase only has a limited impact and the new algorithm remains
e�ective.

TABLE I. Brownian Motion, nrep = 103, M = 103.

β p̂ p (1t = 0) Con�dence interval σ̂ 2 −p2 log(p)
nrep

2 3.196× 10−1 3.197× 10−1 [3.188× 10−1, 3.203× 10−1] 1.362× 10−4 1.166× 10−4

4 1.617× 10−1 1.614× 10−1 [1.612× 10−1, 1.621× 10−1] 5.456× 10−5 4.751× 10−5

8 4.983× 10−2 4.983× 10−2 [4.963× 10−2, 5.002× 10−2] 9.815× 10−6 7.447× 10−6

16 6.411× 10−3 6.386× 10−3 [6.371× 10−3, 6.451× 10−3] 4.242× 10−7 2.061× 10−7

32 1.634× 10−4 1.645× 10−4 [1.614× 10−4, 1.655× 10−4] 1.063× 10−9 2.358× 10−10

64 1.800× 10−7 1.782× 10−7 [1.740× 10−7, 1.860× 10−7] 9.360× 10−15 4.935× 10−16

128 3.045× 10−13 3.011× 10−13 [2.426× 10−13, 3.664× 10−13] 9.986× 10−25 2.614× 10−27
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TABLE II. Ornstein-Uhlenbeck, T = 8. Comparison of the new and the vanilla splitting algorithms. nrep = 102, M = 104.

a p̂new p̂std p (1t = 0) σ̂ 2
new σ̂ 2

std
−p2 log(p)

nrep
r̂

2.8 3.792× 10−5 3.714× 10−5 3.751× 10−5 1.696× 10−9 2.435× 10−9 1.434× 10−10 0.54
2.9 2.036× 10−5 2.071× 10−5 2.055× 10−5 5.439× 10−10 8.289× 10−10 4.557× 10−11 0.51
3.0 1.103× 10−5 1.128× 10−5 1.104× 10−5 1.843× 10−10 2.745× 10−10 1.392× 10−11 0.49
3.1 5.915× 10−6 5.968× 10−6 5.824× 10−6 5.599× 10−11 8.457× 10−11 4.089× 10−12 0.47
3.2 2.978× 10−6 3.022× 10−6 3.013× 10−6 1.639× 10−11 2.368× 10−11 1.154× 10−12 0.43

2. Ornstein-Uhlenbeck

We consider here an example taken from Ref. 49. Let d = 1 and
consider the di�usion process given by

dX(t) = −X(t)dt + dW(t), X(0) = 0.

The dynamics is discretized using the explicit Euler-Maruyama
method, with time step size1t = 10−3

Xn+1 = Xn −1tXn +
√
1tζn,

with X0 = X(0) = 0, where
(

ζn
)

0≤n≤N are independent standard

Gaussian random variables.
In the numerical experiment reported in Table II, the goal is to

estimate the probability

p = P
(

XN > a
)

for di�erent values of a. This corresponds to the choice 8(x) = x.
The value of T is set to T = 8. The number of replicas is set equal
to nrep = 102, and the empirical average is computed over M = 104

independent realizations of the algorithm. The estimator p̂new of p
and the empirical variance σ̂ 2

new are obtained using the score func-
tion ξ = ξnew. The estimator p̂std and the empirical variance σ̂ 2

std

are obtained using the vanilla splitting strategy, with reaction coor-
dinate ξ = ξstd. The value of the probability p for the continuous

time process, and the optimal variance
−p2 log(p)

nrep
are also reported for

comparison.
The quantity

r̂ = 1

M

M
∑

m=1
1p̂m>0

is also reported, when the vanilla score function is used. This is the
proportion of the independent realizations of the algorithm, which
contribute in the empirical average. This proportion depends on
the conditional probability q [see (16)]: it may happen that the nrep
replicas obtained at the �nal iteration all satisfy XN ≤ 1, even if by
construction they all satisfy max

0≤n≤N
Xn > 1. However, by construction

(except if the extinction of the system of replicas happens, which has
not been observed in this experiment), if the new score function is
used, r̂ is identically equal to 1. Observe that, when T tends to in�n-
ity, by ergodicity of the process, pmax → 1 [see (17) for the de�nition
of pmax], whereas q and p converge to a non-trivial probability. Thus,
when T tends to in�nity, it is expected that r̂ will be equal to 0 if
M is too small, when using the vanilla strategy with ξ = ξstd. The
conditional probability q is also estimated: q̂ = 0.01 (Table II).

To conclude this section, note that on this example, the AMS
algorithms applied with the vanilla and the new score functions have
a similar quantitative behavior in terms of asymptotic variance. How-
ever, their qualitative properties are di�erent. When the conditional
probability q is small, the advantage of the new score function is the
fact that the output p̂ is always positive, so that even with a few real-
izations, one gets a rough but informative approximation of the target
probability.

B. Drifted Brownian motion

We here consider numerical examples taken from Refs. 10
and 40. Let d = 1 and consider the di�usion process given by

dXt = −αdt +
√

2β−1dW(t), X(0) = 0.

The dynamics is discretized using the explicit Euler-Maruyama
method, with time step size 1t = 10−2 (which gives again the exact
solution in this simple case)

Xn+1 = Xn − α1t +
√

2β−11tζn,

with X0 = X(0) = 0, where
(

ζn
)

0≤n≤N are independent standard

Gaussian random variables.
The goal is to estimate the probability

p = P
(

XN > 1
)

,

thus 8(x) = x, a = 1. One considers the �nal time T = 1, so that
N = T/1t = 102. The value of α is set equal to α = 4. As in the pre-
vious example, the value of p is easy to obtain using the fact that XN

is Gaussian.
As explained in Sec. IVA, if the initial condition satis�esX(0) >

1, the AMS algorithm with the vanilla score function is equivalent
to a crude Monte Carlo algorithm to estimate the probability p, and
thus it becomes ine�ective in the limit p→ 0 (namely, in this model,
α and/or T become large). The new score function is in this case
mandatory to obtain reliable estimates. From now on, we focus on
the case X(0) = 0.

In this numerical experiment, see Table III, three choices of
score functions are considered. The number of replicas is nrep = 103.
First, the estimator p̂new and the empirical variance σ̂ 2

new are obtained
using ξ = ξnew, with a sample sizeM = 4 · 104. Second, the estimator
p̂new,a and the empirical variance σ̂ 2

new,a are obtained using ξ = ξ anew
with a(t) =

(

at
T

)

, with a sample sizeM = 4 · 105. Finally, the estima-
tor p̂std and the empirical variance σ̂ 2

std are obtained using ξ = ξstd,
with a sample size M = 4 · 104. The sample sizes are chosen such
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TABLE III. Drifted Brownian Motion, β ∈ {1, 2, 3, 4}. Comparison of two versions of the new splitting algorithm and of the vanilla splitting algorithm.

β p̂new p̂new,a p̂std p σ̂ 2
new σ̂ 2

new,a σ̂ 2
std

−p2 log(p)
nrep

r̂

1 2.037× 10−4 2.036× 10−4 2.033× 10−4 2.035× 10−4 1.572× 10−9 5.734× 10−9 3.525× 10−9 3.519× 10−10 0.99
2 2.843× 10−7 2.870× 10−7 2.878× 10−7 2.867× 10−7 4.714× 10−14 2.348× 10−12 9.527× 10−14 1.238× 10−15 0.69
3 4.613× 10−10 4.325× 10−10 4.705× 10−10 4.571× 10−10 1.817× 10−18 2.197× 10−17 3.084× 10−18 4.493× 10−21 0.11
4 7.620× 10−13 6.975× 10−13 7.582× 10−13 7.687× 10−13 5.034× 10−23 4.388× 10−22 8.343× 10−23 1.648× 10−26 0.01

that the total computational cost is of the same order for the three
methods.

Since the sample size is not the same for the three examples of
score functions in Table III, the values of the empirical variances σ̂ 2

should be taken with care when comparing the methods. One would

rather compare the values of σ̂ 2

M
. Then, one concludes that the best

performance is obtained when using ξ = ξ anew. The vanilla strategy,
with ξ = ξstd, seems to behave quantitatively the same as when ξ =
ξnew. However, the values of the proportion r̂ of realizations such that
p̂m 6= 0 is not zero are also reported, when ξ = ξstd (by construction,
r̂ = 1 for the �rst two cases). This means that if M was decreased
(for instance, M of the order 102 for β = 4), then the output of the
experiment would be p̂std = 0.

As a consequence, the new algorithm clearly overcomes the
limitation of the vanilla strategy when ξ = ξstd. However, the score
functions are far from being optimal, as revealed by the comparison
with the optimal variance.

C. Temporal averages for an Ornstein-Uhlenbeck

process

In this section, we consider an example taken fromRef. 24. Con-
sider the one-dimensional Ornstein-Uhlenbeck process X, which is
the solution of the SDE

dX(t) = −X(t)dt +
√

2β−1dW(t), X(0) = 0

and de�ne the temporal average

Y(T) = 1

T

∫ T

0

X(s)ds.

More generally, set Y(t) = 1
t

∫ t

0
X(s)ds, for t ∈ (0,T] and Y(0) = 0.

The discretization is performed using the explicit Euler-
Maruyama method, with time step size 1t = 5 · 10−3: for n ∈
{0, . . . ,N} with N1t = T,

Xn+1 = (1−1t)Xn +
√

2β−11tζn, Yn =
1

n

n
∑

m=1
Xm,

with X0 = Y0 = 0. Note that Y satis�es a recursion formula Yn+1
=

[

1−
(

1
n+1

)]

Yn +
(

1
n+1

)

Xn+1.

The number of replicas is set equal to nrep = 103 and the sample
size to compute empirical averages isM = 102.

In this section, the probability that is estimated is

p(T, a) = P(YN > a).

The associated estimator is denoted by p̂(T, a) and the empirical
variance by σ̂ 2(T, a).

In the large time limit T →∞, since the law of Y(T) converges
to a centeredGaussianwith variance 1,Y(T) satis�es a large deviation
principle, with rate function I de�ned by: for all a > 0

lim
T→∞
− 1

T
log

{

P
[

Y(T) > a
]

}

= I(a) = a2

4
.

In the numerical experiment, we illustrate the potential of the AMS
algorithm to estimate the large deviations rate function on this exam-
ple. Note that in the large T limit, the probability is extremely small
and in practice cannot be estimated by the vanilla splitting strategy
(for the same number of replicas, and a number of independent real-
izations chosen such that the computational cost is the same as for the
new score function, the vanilla strategy returns 0 as an estimator of

the probability). The estimate of the rate function Î(a) is obtained by
a regression procedure (we checked that we are indeed in the regime

where log
{

P
[

Y(T) > a
]

}

is linear in T). In addition to statistical

error, two sources of numerical error are identi�ed: values of T may
not be su�ciently large, and the discretization of the dynamics and of
the computation of temporal averages introduces a bias. The results,
reported in Table IV, show the interest of this approach to estimate
large deviations rate functionals.

D. Lorenz model

Weconsider the following stochastic version of the 3-dimensional
Lorenz system, see Refs. 5 and 32 for similar numerical experiments











dX
β

1 (t) = σ
[

X2(t)− X1(t)
]

dt +
√

2β−1dW(t),

dX
β

2 (t) =
[

rX1(t)− X2(t)− X1(t)X3(t)
]

dt,

dX
β

3 (t) = X1(t)X2(t)− bX3(t),

which depends onparametersσ , r, b, andβ . The parameters are given
the following values in this section: σ = 3, r = 26, and b = 1.

Consider �rst the deterministic case, i.e., β = ∞. Then, the
system admits three unstable equilibria, and one of them is

x? =
[

√

b(r − 1),
√

b(r − 1), r − 1
]

= (5, 5, 25).

Let the initial condition be given by X∞(0) = x? + 1
2
(1, 1, 1). Then,

one has the following stability result:5 for all t ≥ 0, 8
[

X∞(t)
]

≤ 1,
where

8(x) = x21

(r + σ)2 b
σ

+ x22
(r + σ)2b +

[

x3 − (r + σ)
]2

(r + σ)2 .

When noise is introduced in the system, i.e., β <∞, we are inter-
ested in the estimation of the probability

P
{

8[Xβ(T)] > 1
}
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TABLE IV. Temporal averages for an Ornstein-Uhlenbeck process. nrep = 103 and M = 102.

a p̂(T = 25, a) p̂(T = 50, a) p̂(T = 100, a) p̂(T = 200, a) Î(a) a2

4

σ̂ 2(T = 25, a) σ̂ 2(T = 50, a) σ̂ 2(T = 100, a) σ̂ 2(T = 200, a)

0.4 7.28× 10−2 2.12× 10−2 2.22× 10−3 2.75× 10−5 0.045 0.040
. . . 2.02× 10−5 3.25× 10−6 1.27× 10−7 3.85× 10−11 . . . . . .

0.6 1.45× 10−2 1.16× 10−3 1.16× 10−5 7.28× 10−10 0.096 0.090
. . . 1.36× 10−6 5.85× 10−8 2.21× 10−10 6.44× 10−19 . . . . . .

0.8 1.76× 10−3 2.57× 10−5 6.12× 10−9 2.73× 10−16 0.169 0.160
. . . 8.01× 10−8 3.32× 10−10 1.44× 10−16 1.98× 10−31 . . . . . .

1.0 1.37× 10−4 1.67× 10−7 3.06× 10−13 1.71× 10−24 0.261 0.250
. . . 1.47× 10−9 2.07× 10−14 1.16× 10−25 9.32× 10−48 . . . . . .

1.2 6.21× 10−6 4.83× 10−10 2.71× 10−18 2.88× 10−34 0.373 0.360
. . . 1.40× 10−11 6.69× 10−19 3.49× 10−35 5.21× 10−67 . . . . . .

with threshold a = 1.
In the numerical experiments reported in Table V,

√

2β−1 =
3, and the discretization is performed using the explicit Euler-
Maruyama method, with time step size 1t = 10−2. The sample size
isM = 104, and the number of replicas is nrep = 103.

This numerical experiment thus illustrates the potential of the
adaptive multilevel splitting algorithms introduced in this article, for
applications to complex, nonlinear, stochastic models (Table V).

E. Driven periodic diffusion

We �nally consider an example taken from Ref. 24. In this
section, we consider the SDE on the unit circle, i.e., on the torus T,

dX(t) =
{

−V ′[X(t)]+ γ
}

dt +
√
2dW(t),

where the potential energy function V(x) = cos(2πx) is periodic,
and γ ∈ R. If γ 6= 0, this is called a non-equilibrium process since
the drift term−V ′(x)+ γ is not the derivative of a function de�ned
on the torus T. In the remainder of this section, let γ = 1, and let
the initial condition in the simulation be X0 = 0. The discretization
is performed using the Euler-Maruyama method, with time step size
1t = 10−2.

We are interested in the behavior of XT
T
, when T →∞, more

precisely we apply the AMS algorithm to estimate

p(T, a) = P
[

X(T) > aT
]

= P

[

X(T)

T
> a

]

.

Following the same approach as for the temporal averages of the
Ornstein-Uhlenbeck process, a large deviations rate function

I(a) = lim
T→∞
− 1

T
log

[

p(T, a)
]

is estimated, based on estimators of the probability p(T, a) for several
values of T.

In this numerical experiment, we compare two ways of applying
the AMS algorithm, with the new score function ξnew but with dif-
ferent processes: considering either the process

[

X(t)
]

0≤t≤T with the

threshold aT, or the process
[

Y(t) = X(t)
t

]

0<t≤T , with the threshold a.

Numerical values for di�erent choices of a, T and nrep, of the associ-
ated estimators p̂X(T, a) and p̂Y(T, a), and of the empirical variances
σ̂ 2,X(T, a) and σ̂ 2,Y(T, a) are reported in Table VI.

It is observed that σ̂ 2,Y(T, a) < σ̂ 2,X(T, a), but a fair comparison
requires to take into account the (average) computational cost. Thus,
the relative e�ciency E�(Y|X) of using the process Y instead of X is
computed as the ratio

E�(Y|X) = σ̂ 2,Xcomp. time(X)

σ̂ 2,Ycomp. time(Y)
,

where comp. time(X)

comp. time(Y)
is the ratio of the total computational times for the

experiments using X and Y , respectively. The values of E�(Y|X) in
this numerical experiment are reported in Table VI. We observe that
E�(Y|X) > 1 which means that the algorithm is more e�cient using
the process Y than the process X. To have a comparison with the
committor score function, since the value of p(T, a) is not known,
an approximation of the optimal variance is computed using the
estimator p̂Y(T, a).

TABLE V. Lorenz model. nrep = 103 and M = 104.

T p̂ Con�dence interval σ̂ 2 −p̂2 log(p̂)
nrep

5 1.413× 10−5 [1.388× 10−5, 1.438× 10−5] 1.648× 10−10 2.230× 10−12

10 2.607× 10−5 [2.534× 10−5, 2.681× 10−5] 1.409× 10−9 7.174× 10−12

15 2.709× 10−5 [2.609× 10−5, 2.809× 10−5] 2.592× 10−9 7.718× 10−12

20 2.594× 10−5 [2.484× 10−5, 2.704× 10−5] 3.158× 10−9 7.106× 10−12
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TABLE VI. Estimates of P(XT > aT) and of I(a) for the Periodic driven diffusion. The sample size is M = 102.

a T nrep p̂X(T, a) p̂Y(T, a) σ̂ 2,X(T, a) σ̂ 2,Y(T, a)
−[p̂Y (T,a)]2 log[p̂Y (T,a)]

nrep
E�(Y|X) Î(a)

0.8 100 102 8.483× 10−2 8.489× 10−2 7.136× 10−4 2.487× 10−4 1.777× 10−4 1.0
. . . 200 . . . 2.647× 10−2 2.776× 10−2 1.832× 10−4 3.519× 10−5 2.762× 10−5 1.7 0.0112
1 50 103 1.529× 10−2 1.505× 10−2 7.046× 10−6 1.513× 10−6 9.504× 10−7 3.0
. . . 100 . . . 1.026× 10−3 1.085× 10−3 2.586× 10−7 3.879× 10−8 8.036× 10−9 2.8 0.0526
1.25 50 103 1.374× 10−4 1.311× 10−4 1.227× 10−8 1.355× 10−9 1.537× 10−10 4.9
. . . 100 . . . 8.941× 10−7 1.017× 10−7 1.048× 10−13 1.585× 10−15 1.665× 10−16 35 0.189

Concerning the e�ciency of the vanilla score function on this
example, let us consider the parameters T = 100 and a = 1.25. We
observe that one realization of AMSwith the new score function cor-
responds approximately to 30 realizations of AMS with the vanilla
score function, in terms of computational cost. However, over 104

realizations of AMS with the vanilla score function, we typically
observed only realizations returning a 0 value. On the contrary, with
only 102 realizations of AMS with the new score function yields
a reliable estimate (with a good con�dence interval). This clearly
demonstrates the superiority of the new score function in this case.

Estimators Î(a) of the large deviations rate function I(a) are
estimated by a regression procedure (with respect toT) using the esti-
mators p̂Y(T, a), for several values of a. The numerical values are in
excellent agreement with the numerical experiments in Ref. 24. The
AMS algorithm introduced in this article can thus be an e�cient tool
to estimate large deviations rate functions.
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