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NUMERICAL APPROXIMATION OF THE INVARIANT DISTRIBUTION FOR A

CLASS OF STOCHASTIC DAMPED WAVE EQUATIONS

ZIYI LEI1, CHARLES-EDOUARD BRÉHIER2, AND SIQING GAN1

Abstract. We study a class of stochastic semilinear damped wave equations driven by additive Wiener
noise. Owing to the damping term, under appropriate conditions on the nonlinearity, the solution admits
a unique invariant distribution. We apply semi-discrete and fully-discrete methods in order to approximate
this invariant distribution, using a spectral Galerkin method and an exponential Euler integrator for spa-
tial and temporal discretization respectively. We prove that the considered numerical schemes also admit
unique invariant distributions, and we prove error estimates between the approximate and exact invariant
distributions, with identification of the orders of convergence. To the best of our knowledge this is the first
result in the literature concerning numerical approximation of invariant distributions for stochastic damped
wave equations.

1. Introduction

In the last decades, stochastic partial differential equations (SPDEs) have become the subject of intensive
research, with various possible perspectives, from modelling and applications, to theoretical analysis using
advanced stochastic and PDE analysis techniques. Due to the need of simulating efficiently the SPDE mod-
els, there has been a huge interest in the design and analysis of numerical methods, see for instance the
monograph [34]. Like for all deterministic and stochastic, finite and infinite dimensional, systems, under-
standing the long-time behavior of the solutions and of the numerical methods is a crucial and challenging
problem. In this manuscript, we provide a contribution in this direction for a class of ergodic stochastic
damped semilinear wave equations. Precisely, we apply semi-discrete and fully-discrete schemes and we
prove that the approximations preserve ergodicity of the exact system, and we obtain upper bounds with
rates for the error between the approximate and exact invariant distributions.

In this work, we study stochastic damped semilinear wave equations driven by additive Wiener noise,
which can formally be written as

(1)

$

’

&

’

%

B2

tupt, xq “ ´2γBtupt, xq ` ∆upt, xq ` fpupt, xqq ` 9WQpt, xq,
up0, xq “ u0pxq, Btup0, xq “ v0pxq, x P D,

upt, xq “ 0, x P BD,

where D is a d-dimensional domain, ∆ “ B2
x1

` . . .` B2
xd

is the Laplace operator, and homogeneous Dirichlet
boundary conditions are imposed. The positive real number γ P p0,8q is the damping parameter. In
addition, u0 : D Ñ R and v0 : D Ñ R denote the initial values of u and Btu. Finally, f : R Ñ R is a globally
Lipschitz nonlinearity, and 9WQ denotes space-time noise, which is white in time and has covariance operator
Q in space. We refer to Section 2 below for precise formulations and assumptions. In this manuscript, the
stochastic damped wave equation (1) is interpreted as a stochastic evolution system with unknowns uptq P H

and vptq P H´1

(2)

$

’

&

’

%

duptq “ vptqdt,
dvptq “ p´Λuptq ´ 2γvptqq dt ` fpuptqq dt ` dWQptq,
up0q “ u0, vp0q “ v0,

Key words and phrases. stochastic damped wave equation; invariant distribution; exponential integrator; spectral Galerkin
method; weak error estimates; infinite dimensional Kolmogorov equations.
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or as a stochastic evolution equation with unknown Xptq “ puptq, vptqq with values in H “ H ˆH´1, written
as

(3)

#

dXptq “ AγXptqdt ` F pXptqqdt ` dWQptq,
Xp0q “ x0.

See Section 2 for details on the notation. We refer to the monograph [18] for the theory of stochastic evolution
equations, and to [19] for a chapter devoted to the analysis of the stochastic wave equation. In the setting
introduced below, the stochastic evolution system (3) admits a unique global mild solution, for any initial
value.

Assuming that the Lipschitz constant of the nonlinearity f is sufficiently small (see condition (21) from
Assumption 2.1 below), the process

`

Xptq
˘

tě0
admits a unique invariant distribution denoted by µ8, see

Proposition 3.2 below, and the monograph [17] for general results on ergodicity for stochastic evolution
equations. The objective of this work is to prove that µ8 can be approximated using fully-discrete numerical
methods, and to provide rates of convergence with respect to the spatial and temporal discretization param-
eters. Precisely, the spatial discretization is performed using a spectral Galerkin method with parameter
denoted by N P N, and the temporal discretization is performed using an exponential Euler integrator with
time-step size denoted by τ P p0, 1q. We refer to Section 4 for precise notation. The fully-discrete scheme
(see Section 4.2) is written as

(4) XN
m`1

“ eτAγ

´

XN
m ` τFN pXN

m q ` PN∆W
Q
m

¯

,

where
`

etAγ
˘

tě0
is the semigroup associated with the linear damped wave equation with no forcing. We also

consider a semi-discrete scheme (see Section 4.1)

(5) dXN ptq “ AγX
Nptqdt ` FN pXNptqqdt ` PNdWQptq

where only spatial discretization is performed.
We prove that the fully-discrete scheme (4) and the semi-discrete scheme (5) admit unique invariant

distributions denoted by µ
N,τ
8 and µN

8 respectively, for any values of the spatial and temporal discretization
parameters N and τ , see Propositions 4.4 and 4.2 for precise statements. The main results of this work are
then stated in Section 4.3: for the fully-discrete scheme (4) one has weak error estimates

(6)
ˇ

ˇ

ż

ϕdµ8 ´
ż

ϕdµN,τ
8

ˇ

ˇ ď Cβpϕq
´

λ
´βθ
N ` τminp2θβ,1q

¯

,

where ϕ : H Ñ R is an arbitrary mapping of class C2 with bounded first and second order derivatives,
`

λn

˘

nPN are the eigenvalues of Λ “ ´∆ (written in non-decreasing order), and β P p0, 1s is a parameter

which describes the regularity of the noise, see (32) from Assumption 2.3. Let us mention that one has
β P p0, 1

2
q for space-time white noise (Q “ I, d “ 1) and β “ 1 for trace-class noise. Finally, θ “ 1 if

the covariance operator Q and the linear operator Λ “ ´∆ commute, and θ “ 1{2 otherwise. We refer to
Theorem 4.3 for a precise statement concerning the semi-discrete scheme (5) and to Theorem 4.4 (and to
Corollary 4.1) for a precise statement concerning the fully-discrete scheme (4).

The rates of convergence appearing in (6) are consistent with the weak rates of convergence obtained for
the stochastic wave equation for instance in [42, 26, 22] (without damping, meaning γ “ 0). To the best
of our knowledge, the weak error estimates (6) have not been obtained previously in the literature. One of
the main auxiliary tools used to prove the weak error estimates is Proposition 5.1 concerning properties of
solutions of Kolmogorov equations associated with the semi-discrete scheme (5), with estimates which are
independent of the integer N . We refer to the monograph [10] for results and methods on the analysis of
finite and infinite dimensional Kolmogorov equations.

Let us briefly review the literature related to our work. The list of references below is not exhaustive.
Strong convergence rates for spatial and temporal discretization schemes applied to stochastic wave equations
have been obtained for instance in the articles [42, 43, 3, 30, 13] for semi-discrete and fully-discrete methods
using the interpretation of SPDEs of stochastic evolution equations from [18], which is considered in this
manuscript. The works mentioned above employ exponential or trigonometric integrator for the temporal
discretization, see also [27, 28] for a presentation of exponential integrators in the context of SPDEs. The
articles [36, 14] provide strong convergence analysis using the point of view of random field solutions for
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SPDEs, developed by [41], see also [19] for a focus on the stochastic wave equation. We also refer to the
recent work [20] where higher order methods are constructed. The authors of the preprint [9] consider a
class of stochastic wave equations with nonlinear damping and prove strong convergence results. Weak
convergence rates for numerical methods applied to stochastic wave equations have been obtained in [23],
and more recently in [26, 22] and in [42]. The framework we consider below is closely related to the latter
reference, however we need to use different techniques in the analysis: the author of [42] exploits the group
property associated with the linear wave equation when there is no damping, whereas to take into account the
damping and prove error bounds which are uniform with respect to time we only use semigroup properties.

As already mentioned above, to the best of our knowledge, in this manuscript we obtain the first results
concerning the approximation of the invariant distribution for stochastic damped wave equations. However,
there have been many results for different types of finite and infinite dimensional stochastic systems. Some of
the arguments used in the analysis below are inspired by the articles cited below. For stochastic differential
equations, one of the earliest works is [39]. Writing the stochastic damped wave equation (3) as the system (2)
suggests an analogy with the works [38] and [29] devoted to stochastic Hamiltonian systems and Langevin
systems respectively. Note that the monograph [24] exploits a similar point of view for the approximation
of invariant distributions of stochastic nonlinear Schrödinger equations, see also the articles [11, 25]. For
further references and techniques for the design and analysis of numerical methods applied to approximate
invariant distributions of stochastic differential equations, we refer for instance to [1, 2, 15, 31, 32, 33, 35, 40].
Finally, in the last decade, there have been several articles devoted to the numerical approximation of
invariant distributions for parabolic semilinear stochastic partial differential equations: we refer to [5, 8, 7, 6],
to [12, 16], and to [4]. See also the recent preprint [21] concerning the analysis of long-term accuracy of
numerical methods for some SPDEs. The analysis of the stochastic damped wave equation case requires new
and different arguments compared with the parabolic case.

This paper is organized as follows. The setting (notation and assumptions) is introduced in Section 2.
Section 3 is then devoted to the presentation and analysis of the stochastic damped wave equation (3). The
semi-discrete and fully-discrete numerical methods are defined in Sections 4.1 and 4.2 respectively, and the
main results of this paper are stated in Section 4.3: see Theorem 4.3 for the spatial approximation, Theo-
rem 4.4 for the temporal approximation, and Corollary 4.1 for the fully-discrete scheme. The convergence
analysis is performed in Section 5: note that an important regularity result for the associated Kolmogorov
equation is given by Proposition 5.1 in Section 5.1. Sections 5.2 and 5.4 are devoted to the proofs of
Theorems 4.3 and 4.4 respectively.

2. Setting

2.1. Notation. Let d P N be an integer and let D Ă R
d be an open bounded domain with polygonal

boundary BD, for instance D “ p0, 1qd. Define the separable Hilbert space H “ L2pDq. The inner product
and the norm are denoted by x¨, ¨yH and }¨}H respectively. Let us denote by ´Λ the Laplace operator endowed
with homogeneous Dirichlet boundary conditions. Then Λ is a self-adjoint unbounded linear operator from
H to H , with domain DpΛq “ H2pDq X H1

0
pDq, and there exists a complete orthonormal system

`

en
˘

nPN of

H and a nondecreasing sequence
`

λn

˘

nPN of positive real numbers such that one has

Λen “ λnen.

Note that the eigenvalue λ1 is positive and that one has

λ1 “ min
nPN

λn “ inf
xPHzt0u

xΛx, xyH
}x}2H

.

In addition, there exists cd P p0,8q such that λn „ cdn
2{d when n Ñ 8.

For any nonnegative real number α P r0,`8q, introduce the subspace Hα of H defined by

Hα “ tu P H ;

8
ÿ

n“1

λα
nxu, eny2H ă `8u,
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and for all u, u1, u2 P Hα, set

xu1, u2yHα “
`8
ÿ

n“1

λα
nxu1, enyHxu2, enyH ,

}u}2Hα “ xu, uyHα “
`8
ÿ

n“1

λα
nxu, eny2H .

The space Hα, equipped with the inner product x¨, ¨yHα and the norm } ¨ }Hα , is a separable Hilbert space.
For any nonnegative real number α P r0,`8q, the space H´α is defined as the closure of the space

tu P H ;

`8
ÿ

n“1

λ´α
n xu, eny2H ă 8u,

with inner product x¨, ¨yH´α and norm } ¨ }H´α defined as follows: for all u, u1, u2 P H´α, set

xu1, u2yH´α “
`8
ÿ

n“1

λ´α
n xu1, enyHxu2, enyH ,

}u}2H´α “ xu, uyH´α “
`8
ÿ

n“1

λ´α
n xu, eny2H .

The space H´α equipped with the inner product x¨, ¨yH´α and the norm } ¨ }H´α is a separable Hilbert space.
It can be identified with the dual space of Hα.

For all α P R, let the linear operator Λα be defined as follows: for all u P Hα, set

Λα{2u “
ÿ

nPN
λα{2
n xu, enyHen.

For all α P R, introduce the space

H
α “ Hα ˆ Hα´1,

and for all x “ pu, vq, x1 “ pu1, v1q, x2 “ pu2, v2q P Hα, define

xx1, x2yHα “ xpu1, v1q, pu2, v2qyHα “ xu1, u2yHα ` xv1, v2yHα´1 ,

}x}2Hα “ }pu, vq}2Hα “ xx, xyHα “ }u}2Hα ` }v}2Hα´1 .

For all α P R, the space Hα, equipped with the inner product x¨, ¨yHα and the norm } ¨ }Hα , is a separable
Hilbert space. When α “ 0, the notation H “ H0, x¨, ¨yH “ x¨, ¨yH0 and } ¨ }H “ } ¨ }H0 is used in the sequel.

Observe that if α1 ă α2, one has Hα2 Ă Hα1 and Hα2 Ă Hα1 , with continuous embeddings: for all
u P Hα2 and all x P Hα2 , one has

(7) }u}Hα1 ď λ
´ α2´α1

2

1
}u}Hα2 , }x}Hα1 ď λ

´ α2´α1

2

1
}x}Hα2 .

In addition, one has the following interpolation inequalities: if α1 ă α2 and α P rα1, α2s, for all u P Hα2 and
x P Hα2 , one has

(8) }u}Hα ď }u}
α2´α

α2´α1

Hα1
}u}

α´α1

α2´α1

Hα2
, }x}Hα ď }x}

α2´α

α2´α1

Hα1
}x}

α´α1

α2´α1

Hα2
.

Let α P R be an arbitrary natural number. Define the projection operators Πu : H
α Ñ Hα and Πv : H

α Ñ
Hα´1 such that for all pu, vq P Hα one has

Πupu, vq “ u and Πvpu, vq “ v.

The operators Πu and Πv depend on α, however the dependence is omitted to simplify notation. Note that
for all α P R and all x “ pu, vq P Hα, one has

max
`

}Πux}Hα , }Πvx}Hα´1

˘

ď }x}Hα .

4



2.2. The damped wave equation semigroup. Let γ P p0,8q be a positive real number. We introduce
the linear operator Aγ defined as follows: for all α P R and for all x “ pu, vq P Hα`1, set

Aγx “
`

v,´Λu ´ 2γv
˘

P H
α.

The linear operator Aγ can be considered as an unbounded linear operator on H, with domain H1.
The linear operator Aγ generates a semigroup of linear operators

`

etAγ
˘

tě0
which can be defined as

follows: for all t ě 0 and all x “ pu, vq P H,

(9) etAγx “
ÿ

nPN

`

unptqen, vnptqen
˘

where for all n P N the mappings un, vn : r0,8q Ñ R are the solutions of the linear two-dimensional systems

(10)
d

dt

ˆ

unptq
vnptq

˙

“
ˆ

0 1

´λn ´2γ

˙ ˆ

unptq
vnptq

˙

“
ˆ

vnptq
´λnunptq ´ 2γvnptq

˙

, t ě 0 ;

ˆ

unp0q
vnp0q

˙

“
ˆ

xu, enyH
xv, enyH

˙

.

Let us give the expressions of the solutions of the differential equations (10) above, for all n P N.

‚ If λn ´ γ2 ą 0, then for all t ě 0 one has

(11)

$

’

’

’

&

’

’

’

%

unptq “ e´γt
´

xu, enyH cosp
a

λn ´ γ2tq `
`

γxu, enyH ` xv, enyH
˘ sinp

a

λn ´ γ2tq
a

λn ´ γ2

¯

vnptq “ e´γt
´

xv, enyH cosp
a

λn ´ γ2tq ´
`

λnxu, enyH ` γxv, enyH
˘ sinp

a

λn ´ γ2tq
a

λn ´ γ2

¯

.

‚ If λn ´ γ2 “ 0, then for all t ě 0 one has

(12)

$

’

&

’

%

unptq “ e´γt
´

xu, enyH `
`

γxu, enyH ` xv, enyH
˘

t
¯

vnptq “ e´γt
´

xv, enyH ´
`

λnxu, enyH ` γxv, enyH
˘

t
¯

.

‚ If λn ´ γ2 ă 0, then for all t ě 0 one has

(13)

$

’

’

’

&

’

’

’

%

unptq “ e´γt
´

xu, enyH coshp
a

γ2 ´ λntq `
`

γxu, enyH ` xv, enyH
˘ sinhp

a

γ2 ´ λntq
a

γ2 ´ λn

¯

vnptq “ e´γt
´

xv, enyH coshp
a

γ2 ´ λntq ´
`

λnxu, enyH ` γxv, enyH
˘ sinhp

a

γ2 ´ λntq
a

γ2 ´ λn

¯

.

The expressions above can be found using the following observation: the auxiliary mapping wn : t ÞÑ eγtunptq
is solution of the linear second-order differential equation

w2
nptq `

`

λn ´ γ2
˘

wnptq “ 0,

with initial values wnp0q “ unp0q and w1
np0q “ u1

np0q ` γunp0q.
Note that for all n P N and all t ě 0, one has

(14)
1

2

d

dt

´

|unptq|2 ` λ´1

n |vnptq|2
¯

“ ´2γλ´1

n |vnptq|2 ď 0,

which provides the following property for the semigroup
`

etAγ
˘

tě0
: for all γ P p0,8q, all t ě 0 and all x P H,

one has

(15) }etAγx}H ď }x}H.

In order to study the long time behavior of exact and approximate solutions of the stochastic damped wave
equation, the following property of the semigroup

`

etAγ
˘

tě0
is required.

Lemma 2.1. Let γ P p0,8q. There exist Mpγq P p0,8q and ρpγq P p0,8q such that for all t P r0,8q, all

α P R and all x P Hα, one has

(16) }etAγx}Hα ď Mpγqe´ρpγqt}x}Hα .
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The proof of Lemma 2.1, is postponed to the appendix, see Section A. The techniques of the proof are
similar to those used in [37, Lemma 5.1]. Note that if the condition λ1 ą γ2 is satisfied, then it suffices to
use the expression (11) of the solution punptq, vnptqq at time t ě 0 of (10) to obtain a simpler proof of (16).
The proof provided in Section A covers the general case.

Lemma 2.2. For all α P r0, 1s, there exists Cpα, γq P p0,8q such that for all t P r0, 1s and all x P Hα, one

has

(17) }etAγx ´ x}H ď Cpα, γqtα}x}Hα .

Proof. Let n P N, and let t ÞÑ punptq, vnptqq denote the solution of (10). On the one hand, the inequality

|unptq|2 ` λ´1

n |vnptq|2 ď |unp0q|2 ` λ´1

n |vnp0q|2,
which follows from the inequality (14) above, implies that for all t ě 0 one has

|unptq ´ unp0q|2 ` λ´1

n |vnptq ´ vnp0q|2 ď 4|unp0q|2 ` 4λ´1

n |vnp0q|2.
On the other hand, using the fundamental theorem of calculus and the upper bound above gives

|unptq ´ unp0q|2 “
´

ż t

0

vnpsqds
¯2

ď t2λn

`

|unp0q|2 ` λ´1

n |vnp0q|2
˘

λ´1

n |vnptq ´ vnp0q|2 “ λ´1

n

´

ż t

0

`

2γvnpsq ` λnunpsq
˘

ds
¯2

ď Cpγqt2λn

`

|unp0q|2 ` λ´1

n |vnp0q|2
˘

for some positive real number Cpγq P p0,8q.
Let α P r0, 1s, then combining the two inequalities above, for all t ě 0 and n P N one has

|unptq ´ unp0q|2 ` λ´1

n |vnptq ´ vnp0q|2 ď Cpα, γqt2αλα
n

`

|unp0q|2 ` λ´1

n |vnp0q|2
˘

,

with Cpα, γq “ 41´αCpγqα. It remains to see that for all t P r0, 1s and all x P Hα one has

}etAγx ´ x}2H “
ÿ

nPN

´

|unptq ´ unp0q|2 ` λ´1

n |vnptq ´ vnp0q|2
¯

ď Cpα, γqt2α
ÿ

nPN
λα
n

`

|unp0q|2 ` λ´1

n |vnp0q|2
˘

“ Cpα, γqt2α}x}2Hα ,

to conclude the proof. �

2.3. Nonlinearity. The nonlinearity is given by a mapping f : u P H ÞÑ fpuq P H . Given such a function
f , the mapping F : H Ñ H1 is then defined as follows: for all pu, vq P H,

(18) F pu, vq “
`

0, fpuq
˘

.

The mapping f is assumed to be globally Lipschitz continuous, with Lipschitz constant Lf defined by

Lf “ sup
u1,u2PH,u1‰u2

}fpu2q ´ fpu1q}H
}u2 ´ u1}H

P r0,8q.

Due to the definitions of the nonlinearity F and of the norms } ¨ }H and } ¨ }H1 , one then has the following
inequalities: for all x1 “ pu1, v1q, x2 “ pu2, v2q P H,

}F px2q ´ F px1q}H1 “ }fpu2q ´ fpu1q}H ď Lf }u2 ´ u1}H ď Lf }x2 ´ x1}H,(19)

}F px2q ´ F px1q}H ď λ
´ 1

2

1
}F px2q ´ F px1q}H1 ď Lf?

λ1

}x2 ´ x1}H.(20)

The inequalities (19) and (20) show that the mappings F : H Ñ H1 and F : H Ñ H are globally Lipschitz
continuous.

The analysis of the long time behavior of the exact and approximate solutions of the considered stochastic
damped wave equation is performed under the following condition which is assumed to be satisfied in the
article.
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Assumption 2.1. Let γ P p0,8q be given, then the Lipschitz constant Lf of f is assumed to satisfy the

condition

(21) MpγqLf ă ρpγq
a

λ1

where Mpγq, ρpγq P p0,8q are given by Lemma 2.1.

In order to simplify notation in the sequel, it is convenient to set

(22) ρpγ, fq “ ρpγq ´ MpγqLf?
λ1

which is a positive real number owing to Assumption 2.1.
It remains to state the regularity conditions imposed on the nonlinearity f . Similar conditions are for

instance considered in [42], and can be found in the literature. They are satisfied for Nemytskii operators.

Assumption 2.2. It is assumed that f : H Ñ H´1 is of class C2 with bounded first and second derivatives.

In addition, it is assumed that for all α P r0, 1s, there exists Cα P p0,8q such that for all u P Hα one has

(23) }fpuq}Hα ď Cα

`

1 ` }u}Hα

˘

,

and it is assumed that for all α P r0, 1{2q, there exists Cα P p0,8q such that for all u1, u2 P Hα one has

(24) }fpu2q ´ fpu1q}H´1 ď Cα

`

1 ` }u1}Hα ` }u2}Hα

˘

}u2 ´ u1}H´α .

The condition (23) is useful to prove moment bounds in the } ¨ }Hα norm (see Proposition 3.1. The
condition (24) is useful in the proof of Theorem 4.4.

Let us state some useful consequences of Assumption 2.2. First, the mapping F : H Ñ H defined by (18)
is of class C2 with bounded first and second derivatives: there exists CF P p0,8q such that for all x, h, k P H

one has

(25) }DF pxq.h}H ď CF }h}H , }D2F pxq.ph, kq}H ď CF }h}H}k}H.

Moreover, the condition (23) implies the following properties:

‚ if α P r1, 2s, for all x P Hα one has

(26) }F pxq}Hα ď Cα

`

1 ` }x}Hα{2

˘

.

‚ if α P r0, 1s, for all x P H one has

(27) }F pxq}Hα ď C0

`

1 ` }x}H
˘

.

The proof of the inequality (26) is straightforward: if x “ pu, vq P Hα, using the inequality (23) one has

}F pxq}Hα “ }fpuq}Hα´1 ď Cα

`

1 ` }u}Hα´1

˘

ď Cα

`

1 ` }x}Hα´1

˘

ď Cα

`

1 ` }x}Hα{2

˘

,

using the inequality α ´ 1 ď α{2 in the last step. In addition, to prove the inequality (27), it suffices to
observe that for all x P H one has }F pxq}Hα ď }F pxq}H1 ď }fpuq}H .

Finally, the condition (24) from Assumption 2.2 implies the following result: if β P r 1
2
, 1s, for all x P Hβ ,

one has

(28) }fpu2q ´ fpu1q}H´1 ď Cβ

`

1 ` }u1}Hβ ` }u2}Hβ

˘

}u2 ´ u1}Hβ´1 .

That result follows from applying (24) with α “ 1 ´ β, noting that β ě 1 ´ β and using the inequality (7).

2.4. The Wiener process. Let
`

Ω,F ,Pq be a probability space, where the expectation operator is denoted

by Er¨s. A filtration
`

Ft

˘

tě0
satisfying the usual conditions is considered.

The stochastic evolution equation considered in this paper is driven by a H-valued Q-Wiener process
`

WQptq
˘

tě0
, adapted to the filtration, which has the expression

(29) W
Qptq “

`

0,WQptq
˘

, @ t ě 0,

where
`

WQptq
˘

tě0
is a Q-Wiener process taking values in H´1, which can be described as follows: there

exists a sequence
`

βn

˘

nPN of independent standard real-valued Wiener processes, adapted to the filtration
7



`

Ft

˘

tě0
a sequence

`

qn
˘

nPN of nonnegative real numbers and a complete orthonormal system
`

eQn
˘

nPN of H ,

such that for all t ě 0 one has

(30) WQptq “
ÿ

nPN

?
qnβnptqeQn , @ t ě 0.

To ensure that the Wiener process
`

WQptq
˘

tě0
takes values in H´1, and therefore that the Wiener process

`

WQptq
˘

tě0
takes values in H, the condition

(31)
ÿ

nPN
qn}eQn }2H´1 ă 8

is imposed. Introduce the linear operators Q and Q1{2, defined by

Qh “
ÿ

nPN
qnxh, eQn yHeQn ,

Q1{2h “
ÿ

nPN

?
qnxh, eQn yHeQn .

The condition (31) above means that Q1{2 is an Hilbert–Schmidt linear operator from H to H´1: one has

}Q1{2}2
L2pH,H´1q “

ÿ

nPN
}Q1{2eQn }2H´1 “

ÿ

nPN
qn}eQn }2H´1 ă 8.

In the sequel the following condition, which is stronger than (31), is imposed.

Assumption 2.3. It is assumed that there exists β P p0, 1s such that

(32) }Q1{2}2
L2pH,Hβ´1q “

ÿ

nPN
}Q1{2eQn }2Hβ´1 “

ÿ

nPN
qn}eQn }2Hβ´1 ă 8.

If Assumption 2.3 holds, and if β P p0, 1s is such that the condition (32) holds, then the Wiener process
`

WQptq
˘

tě0
takes values in Hβ. In this case, for all p P r1,8q there exists Cβ,p P p0,8q such that for all

t, s ě 0 one has

(33) Er}WQptq ´ W
Qpsq}p

Hβ s “ Cβ,ppt ´ sq p
2 .

If the complete orthonormal systems
`

en
˘

nPN and
`

eQn
˘

nPN of H coincide, then the linear operator Λ and
the covariance operator Λ commute. In the sequel, this situation is referred to as the commutative noise case.
On the contrary, the expression non-commutative noise case is used if the commutativity assumption does
not hold. Many arguments in the analysis hold in both cases, however it is sometimes necessary to treat the
two cases separately. In fact, the orders of convergence obtained below are higher in the commutative noise
case. A parameter θ is introduced in the statements and proofs below: we set θ “ 1 in the commutative
noise case, and θ “ 1{2 in the non-commutative noise case.

Let us give examples of covariance operators Q and give the admissible values of β in Assumption 2.3 for
these examples. First, if Q is a trace-class linear operator from H to H , then the condition (32) is satisfied
for β “ 1 (and for all β P r0, 1s as a consequence of (7)). Second, if Q is the identity operator, the choice of
the complete orthonormal system

`

eQn
˘

nPN is arbitrariy so one can choose eQn “ en for all n P N, and one has

the commutative noise situation. In that case the condition (32) is satisfied if and only if
ř

nPN λβ´1
n ă 8.

On the one hand, if d “ 1, then one has λn „ cdn
2 and the condition (32) is satisfied if and only if β ă 1{2.

On the other hand, if d ě 2, then one has λn „ cdn
2{d and the condition (32) is not satisfied, for any β ě 0.

We refer to for instance [18, Chapter 4] for the theory of stochastic integration in Hilbert spaces.

3. The stochastic damped wave equation

In this work we consider the stochastic evolution equation

(34)

$

’

&

’

%

duptq “ vptqdt,
dvptq “ p´Λuptq ´ 2γvptqq dt ` fpuptqq dt ` dWQptq,
up0q “ u0, vp0q “ v0,

8



where the unknowns
`

uptq
˘

tě0
and

`

vptq
˘

tě0
are H and H´1-valued stochastic processes respectively. In the

sequel, we consider the equivalent formulation

(35)

#

dXptq “ AγXptqdt ` F pXptqqdt ` dWQptq,
Xp0q “ x0,

where the unknown
`

Xptq
˘

tě0
is a H-valued stochastic processes, and where Xptq “ puptq, vptqq for all t ě 0.

The linear operator Aγ , the nonlinearity F and the Wiener process WQ have been introduced in Section 2.
The initial value x0 “ pu0, v0q is a F0-measurable H-valued Gaussian random variable.

Let us recall that a H-valued stochastic process
`

Xptq
˘

tě0
(adapted to the filtration

`

Ft

˘

tě0
and with

continuous trajectories) is a mild solution of the stochastic evolution equation (35) with initial value Xp0q “
x0, if for all t ě 0 almost surely one has

(36) Xptq “ etAγx0 `
ż t

0

ept´sqAγF pXpsqq ds `
ż t

0

ept´sqAγ dWQpsq,

where the semigroup
`

etAγ
˘

tě0
is given by (9). In order to study well-posedness, regularity properties and

long-time behavior of mild solutions of (35), it is first necessary to analyze the properties of the stochastic
convolution, defined by

(37) Zptq “
ż t

0

ept´sqAγ dWQpsq, t ě 0.

One has the following result.

Lemma 3.1. Let Assumption 2.3 be satisfied. For any β P p0, 1s such that the condition (32) holds, for all

p P r1,8q, one has

(38) sup
tě0

Er}Zptq}p
Hβ s ă 8.

Proof. For any t ě 0, Zptq is a Gaussian random variable, therefore it suffices to prove the moment
bounds (38) for p “ 2. Using Itô’s isometry and the inequality (16) from Lemma 2.1, one has

Er}Zptq}2
Hβ s “

ż t

0

ÿ

nPN
qn}ept´sqAγ

`

0, eQn
˘

}2
Hβds

ď pMpγqq2
ż t

0

e´2ρpγqpt´sqds
ÿ

nPN
qn}eQn }2Hβ´1

ď pMpγqq2
2ρpγq }Q1{2}2

L2pH,Hβ´1q ă 8,

using the assumption that the condition (32) is satisfied in the last step. This concludes the proof. �

It is then straightforward to prove that for any F0-measurable H-valued initial value x0, there exists a
unique global mild solution (36) of the stochastic evolution equation (35), which can be constructed using a
standard fixed point procedure (note that the nonlinearity F from H to H is globally Lipschitz continuous,
see (20)). The details of this standard proof are omitted. In addition, Xptq takes values in Hβ for β P r0, 1s,
if x0 P Hβ and if the condition (32) is satisfied.

We now focus on proving two properties of the mild solutions of (35). We first study moment bounds
which are uniform in time, and second we show the existence and uniqueness of an invariant distribution
denoted by µ8. These two properties require Assumption 2.1 to be satisfied.

Proposition 3.1. Let Assumptions 2.1 and 2.3 be satisfied. Let p P r1,8q. Let β P r0, 1s, such that the

condition (32) is satisfied. There exists Cβ,p P p0,8q such that if the initial condition Xp0q “ x0 is a

F0-measurable random variable, which satisfies Er}x0}p
Hβ s ă 8, then one has

(39) sup
tě0

Er}Xptq}p
Hβ s ď Cβ,p

´

1 ` Er}x0}p
Hβ s

¯

.
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Proof. Introduce the auxiliary process
`

Y ptq
˘

tě0
defined by

Y ptq “ Xptq ´ Zptq,
where

`

Xptq
˘

tě0
is the mild solution of (35) and

`

Zptq
˘

tě0
is the stochastic convolution given by (37). In

order to prove (39) for β “ 0, owing to Lemma 3.1, it suffices to check that

sup
tě0

Er}Y ptq}p
H

s ď Cβ,p

´

1 ` Er}x0}p
H

s
¯

.

For all t ě 0, one has

Y ptq “ etAγx0 `
ż t

0

ept´sqAγF pY psq ` Zpsqq ds.

Using the inequality (16) from Lemma 2.1 and the Lipschitz continuity property (20) of F from H to H, one
obtains, for all t ě 0,

}Y ptq}H ď Mpγqe´ρpγqt}x0}H `
ż t

0

LfMpγq?
λ1

e´ρpγqpt´sq}Y psq}Hds `
ż t

0

Mpγqe´ρpγqpt´sq}F pZpsqq}Hds.

Using Minkowskii’s inequality and the moment bounds (38) from Lemma 3.1 for the stochastic convolution
Zptq, for any p P r1,8q there exists Cp P p0,8q such that one has for all t ě 0

`

Er}Y ptq}p
H

s
˘

1

p ď Cp

´

1 `
`

Er}x0}p
H

s
˘

1

p

¯

`
ż t

0

LfMpγq?
λ1

e´ρpγqpt´sq`

Er}Y psq}p
H

s
˘

1

p ds.

The condition (21) ensures that one has
LfMpγq?

λ1

ă ρpγq. As a consequence, applying the Gronwall inequality

to the mapping t ÞÑ eρpγqt`
Er}Y ptq}p

H
s
˘

1

p one obtains

sup
tě0

`

Er}Y ptq}p
H

s
˘

1

p ď Cp

´

1 `
`

Er}x0}p
H

s
˘

1

p

¯

,

which proves the inequality (39) for β “ 0.
Let now β P p0, 1s and assume that the condition (32) holds, and that the initial value x0 satisfies

Er}x0}p
Hβ s ă 8. Since F is globally Lipschitz continuous from H to H1, see (19), it is also globally Lipschitz

continuous from H to Hβ owing to the inequality (7). Therefore there exists Cβ P p0,8q such that, using
the mild formulation (36), for all t ě 0 one has

}Xptq}Hβ ď }x0}Hβ ` Cβ

ż t

0

e´ρpγqpt´sq`

1 ` }Xpsq}H
˘

ds ` }Zptq}Hβ .

Using Minkowskii’s inequality, the moment bounds for β “ 0 established above and the moment bounds (38)
from Lemma 3.1 for the stochastic convolution Zptq, one obtains

sup
tě0

`

Er}Xptq}p
Hβ s

˘
1

p ď Cβ,p

´

1 `
`

Er}x0}p
Hβ s

˘
1

p

¯

.

The proof of the moment bounds (39) is thus completed. �

Proposition 3.2. Let Assumptions 2.1 and 2.3 be satisfied. The H-valued Markov process
`

Xptq
˘

tě0
admits

a unique invariant probability distribution µ8, which satisfies the following properties.

‚ If x0 has distribution µ8, then for all t ě 0 Xptq has distribution µ8.

‚ For all β P r0, 1s such that the condition (32) is satisfied and all p P r1,8q, one has

(40)

ż

}x}2p
Hβdµ8pxq ă 8.

‚ There exists C P p0,8q, such that if ϕ : H Ñ R is a Lipschitz continuous mapping, for all t ě 0 one

has

(41)
ˇ

ˇErϕpXptqqs ´
ż

ϕdµ8
ˇ

ˇ ď CLippϕqe´ρpγ,fqt`1 ` Er}Xp0q}Hs
˘

,

where ρpγ, fq ą 0 is defined by (22) and Lippϕq “ sup
x1,x2PH,x1‰x2

|ϕpx2q´ϕpx1q|
}x2´x1}H .
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Proof. Let x0,1 P H and x0,2 P H be two arbitrary initial values, and denote by
`

X1ptq
˘

tě0
and

`

X2ptq
˘

tě0

the mild solutions given by (36) of the stochastic evolution equation (35), driven by the same Wiener process
`

WQptq
˘

tě0
, and with initial values X1p0q “ x0,1 and X2p0q “ x0,2 respectively.

We claim that for all t ě 0 one has

(42) }X2ptq ´ X1ptq}H ď e´ρpγ,fqt}x0,2 ´ x0,1}H
where the positive real number ρpγ, fq ą 0 is defined by (22). All the items of Proposition 3.2 can then be
obtained using standard arguments, the details are omitted.

The proof of the claim (42) is straightforward. Let rptq “ }X2ptq ´ X1ptq}H for all t ě 0. Using the mild
formulation (36), the inequality (16) from Lemma 2.1 and the Lipschitz continuity property (20) of F from
H to H, for all t ě 0 one obtains

rptq ď Mpγqe´ρpγqt}x0,2 ´ x0,1}H `
ż t

0

Mpγqe´ρpγqpt´sq}F pX2psqq ´ F pX1psqq}Hds

ď Mpγqe´ρpγqtrp0q `
ż t

0

MpγqLf?
λ1

e´ρpγqpt´sq}rpsq}Hds.

Applying the Gronwall inequality to the mapping t ÞÑ eρpγqt}rptq}H and using the condition (21) from
Assumption 2.1 then yields the claim (42).

This concludes the proof of Proposition 3.2. �

4. Numerical methods and convergence results

4.1. Spatial discretization: spectral Galerkin method. For any integer N P N, introduce the finite
dimensional spaces

(43) HN “ span te1, . . . , eNu , HN “ span tpe1, 0q, p0, e1q, . . . , peN , 0q, p0, eNqu .

Observe that one has }p0, enq}H “ }en}H´1 “ λ
´ 1

2

n , therefore pe1, 0q, p0,
?
λ1e1q, . . . , peN , 0q, p0,

?
λNeN q is

an orthonormal system of the finite dimensional space HN .
In addition, introduce the associated orthogonal projection operators denoted by PN and PN : for all

u “
ř

nPNxu, enyHen P H´1, one has

(44) PNu “
N
ÿ

n“1

xu, enyHen

and for all x “ pu, vq P H, one has
(45)

PNx “
`

PNu, PNv
˘

“
´

N
ÿ

n“1

xu, enyHen,

N
ÿ

n“1

xv, enyHen

¯

“
N
ÿ

n“1

xx, pen, 0qyHpen, 0q `
N
ÿ

n“1

λnxx, p0, enqyHp0, enq.

One has the following result: for all α P r0,8q, for all x P Hα and N P N, one has

(46) }PNx ´ x}H ď λ
´ α

2

N }x}Hα .

Note that the unbounded linear operator Aγ semigroup
`

etAγ
˘

tě0
given by (9) commute with the projec-

tion operators PN , for all N P N. In addition, the range of PN is a finite dimensional subspace of Hα for all
N P N. Finally, it is worth mentioning that for all α P R, one has

sup
NPN

sup
xPHαzt0u

}PNx}Hα

}x}Hα

“ 1.

For all N P N, the mapping FN : HN Ñ HN is defined by the expression FN pxq “ PNF pxq for all x P HN .
Define also the mapping fN : HN Ñ HN by fNpuq “ PNfpuq for all u P HN .

Using the spectral Galerkin approximation consists in approximating the mild solution
`

Xptq
˘

tě0
of (35)

by the HN -valued process
`

XNptq
˘

tě0
which is the solution of

(47) XNptq “ etAγPNx0 `
ż t

0

ept´sqAγFN pXNpsqq ds `
ż t

0

ept´sqAγPN dWQpsq.
11



Note that
şt

0
ept´sqAγPN dWQpsq “ PNZptq where the stochastic convolution Zptq is defined by (37).

Observe that (47) is the mild formulation associated with the stochastic evolution equation

(48)

#

dXN ptq “ AγX
Nptqdt ` FN pXNptqqdt ` PNdWQptq,

XNp0q “ xN
0 “ PNx0.

Define uN ptq “ ΠuX
Nptq and vN ptq “ ΠvX

N ptq for all t ě 0. Then the stochastic evolution equation (48)
can be ,

(49)

$

’

’

&

’

’

%

duN ptq “ vN ptqdt,
dvN ptq “ p´ΛuNptq ´ γvNptqq dt ` fNpuN ptqq dt ` PN dWQptq,
uN p0q “ PNu0, vN p0q “ PNv0.

It is straightforward to check that for all N P N, and for any initial value x0 P H, there exists a unique
global mild solution

`

XNptq
˘

tě0
of (48). One has the following versions of Proposition 3.2 and 3.1, where it

is worth mentioning that the constants do not depend on the spatial discretization parameter N . The proofs
are omitted since they use the same arguments as above for the exact solution.

Proposition 4.1. Let Assumptions 2.1 and 2.3 be satisfied. Let p P r1,8q. Let β P r0, 1s, such that the

condition (32) is satisfied. There exists Cβ,p P p0,8q such that if the initial condition x0 is a F0-measurable

random variable, which satisfies Er}x0}p
Hβ s ă 8, then one has

(50) sup
NPN

sup
tě0

Er}XNptq}p
Hβ s ď Cβ,p

´

1 ` Er}x0}p
Hβ s

¯

.

Proposition 4.2. Let Assumptions 2.1 and 2.3 be satisfied. For any N P N, the HN -valued Markov process
`

XNptq
˘

tě0
admits a unique invariant probability distribution µN

8, which satisfies the following properties.

‚ If xN
0 has distribution µN

8, then for all t ě 0 XNptq has distribution µN
8.

‚ For all β P r0, 1s such that the condition (32) is satisfied and all p P r1,8q, one has

(51) sup
NPN

ż

}x}2p
Hβdµ

N
8pxq ă 8.

‚ There exists C P p0,8q, such that if ϕ : H Ñ R is a Lipschitz continuous mapping, for all N P N

and all t ě 0 one has

(52)
ˇ

ˇErϕpXN ptqqs ´
ż

ϕdµN
8

ˇ

ˇ ď CLippϕqe´ρpγ,fqt`1 ` Er}XNp0q}Hs
˘

,

where ρpγ, fq ą 0 is defined by (22) and Lippϕq “ sup
x1,x2PH,x1‰x2

|ϕpx2q´ϕpx1q|
}x2´x1}H .

Using the inequality (46) and standard arguments, one has the following convergence result.

Lemma 4.1. Let T P p0,8q, β P r0, 1s such that the condition (32) from Assumption 2.3 holds, and let x0

be a F0-measurable random variable such that Er}x0}Hβ s ă 8. Then there exists CβpT q P p0,8q such that

Er}XpT q ´ XNpT q}Hs ď CβpT qλ´ β
2

N

`

1 ` Er}x0}Hβ s
˘

.

The proof is omitted.

4.2. Fully discrete scheme: exponential Euler method. The time-step size is denoted by τ , and
without loss of generality it is assumed below that τ P p0, 1q. For any nonnegative integer m ě 0, set
tm “ mτ and introduce the increments of the Wiener process, denoted by ∆WQ

m “ WQptm`1q ´ WQptmq.
For all t ě 0, set ℓptq “ tt{τ u, where t¨u denotes the integer part function: if m ě 0 and t P rtm, tm`1q, one
has ℓptq “ tm.

Applying an exponential Euler method, the following approximation of the solution pXNptqqtě0 of the
finite dimensional stochastic evolution equation (47) is obtained: set the initial value XN

0 “ XNp0q “ PNx0

and for all m ě 0, set

(53) XN
m`1 “ eτAγ

´

XN
m ` τFN pXN

m q ` PN∆W
Q
m

¯

.
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For all N P N and all m ě 0, define uN
m “ ΠuX

N
m and vNm “ ΠvX

N
m . The random variable XN

m should be
interpreted as an approximation of XN ptmq.

It is straightforward to check that the solution
`

XN
m

˘

mě0
of the numerical scheme (53) can be written as

follows: for all m ě 0 one has

(54) XN
m “ etmAγXN

0
` τ

m´1
ÿ

ℓ“0

eptm´tℓqAγFN pXN
ℓ q `

m´1
ÿ

ℓ“0

eptm´tℓqAγPN∆W
Q
ℓ .

The expression (54) above is a mild formulation for the solution of (53), which is a discrete time version of
the continuous time mild formulations (47) and (36) associated with (48) and (35) respectively.

It is convenient to introduce notation for the discrete time version of the stochastic convolution (see (37)
in the continuous time case): for all N P N and m ě 0 set

(55) Z
N
m :“

m´1
ÿ

ℓ“0

eptm´tℓqAγPN∆W
Q
ℓ “

ż tm

0

eptm´tℓpsqqAγPN dWQpsq.

One obtains the following result, using the same tools as in the proof of Lemma 3.1.

Lemma 4.2. Let Assumption 2.3 be satisfied. For any β P p0, 1s such that the condition (32) holds, for all

p P r1,8q, one has

(56) sup
NPN

sup
τPp0,1q

sup
mě0

Er}ZN
m}p

Hβ s ă 8.

Let us then state and prove moment bounds for the solution
`

XN
m

˘

mě0
of (53). It is worth mentioning

that they are uniform with respect to N P N, τ P p0, 1q and m ě 0.

Proposition 4.3. Let Assumptions 2.1 and 2.3 be satisfied. Let p P r1,8q. For any β P r0, 1s, such that the

condition (32) is satisfied, there exists Cβ,p P p0,8q such that if the initial condition x0 is a F0-measurable

random variable, which satisfies Er}x0}p
Hβ s ă 8, then one has

(57) sup
NPN

sup
τPp0,1q

sup
mě0

Er}XN
m}p

Hβ s ď Cβ,p

´

1 ` Er}x0}p
Hβ s

¯

.

Proof. Like in the proof of Proposition 3.1, let us introduce the auxiliary process pY N
m qmě0 given by

Y N
m “ XN

m ´ Z
N
m , m ě 0,

where pXN
m qmPN and pZN

m qmPN are given by (53) and (55), respectively. One then has, for all m ě 0,

Y N
m “ etmAγXN

0 ` τ

m´1
ÿ

ℓ“0

eptm´tℓqτAγFN pY N
ℓ ` Z

N
ℓ q.

Let us first treat the case β “ 0. Owing to the inequality (56) from Lemma 4.2 above, in order to prove the
inequality (57) for β “ 0, it suffices to prove that one has

sup
NPN

sup
τPp0,1q

sup
mě0

Er}Y N
m }p

H
s ď Cβ,p

´

1 ` Er}x0}p
H

s
¯

.

Using the inequality (16) from Lemma 2.1 and the Lipschitz continuity property (20) of F from H to H,
one obtains, for all m ě 0,

}Y N
m }H ď Mpγqe´ρpγqtm}x0}H ` τMpγq

m´1
ÿ

ℓ“0

e´ρpγqptm´tℓq` Lf?
λ1

}Y N
ℓ }H ` }FNpZN

ℓ q}H
˘

.

Using Minkowskii’s inequality and the moment bounds (56) from Lemma 4.2 for the discrete stochastic
convolution ZN

m , for any p P r0,8q, there exists Cp P p0,8q such that one has for all m ě 0

`

Er}Y N
m }p

H
s
˘

1

p ď Cp

´

1 `
`

Er}x0}p
H

s
˘

1

p

¯

` τ
MpγqLf?

λ1

m´1
ÿ

ℓ“0

e´ρpγqpm´ℓqτ`

Er}Y N
ℓ }p

H
s
˘

1

p .
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The condition (21) ensures that one has
LfMpγq?

λ1

ă ρpγq. As a consequence, applying the discrete Gronwall

inequality to the mapping m ÞÑ eρpγqmτ
`

Er}Y N
m }p

H
s
˘

1

p , one obtains

sup
mě0

Er}Y N
m }p

H
s ď Cp

´

1 ` Er}x0}p
H

s
¯

,

where Cp P p0,8q is independent of the discretization parameters τ P p0, 1q and N P N.
Let us now treat the case β P p0, 1s, and assume that the condition (32) holds and the initial value x0

satisfies Er}x0}p
Hβ s ă 8. Since F is globally Lipschitz continuous from H to H1, see (19), it is also globally

Lipschitz continuous from H to Hβ , owing to the inequality (7). Therefore there exists Cβ P p0,8q such
that, using the discrete mild formulation (54), for all m ě 0 one has

}XN
m}Hβ ď Mpγqe´ρpγqmτ}x0}Hβ ` Cβτ

m´1
ÿ

ℓ“0

e´ρpγqptm´tℓq`

1 ` }XN
ℓ }H

˘

` }ZN
m}Hβ .

Using Minkowskii’s inequality, the moment bounds for β “ 0 established above, and the moment bounds (38)
from Lemma 4.2 for the discrete stochastic convolution ZN

m , one obtains

sup
mě0

Er}XN
m}p

Hβ s ď Cβ,p

´

1 ` Er}x0}p
Hβ s

¯

,

where Cβ,p P p0,8q is independent of the discretization parameters τ P p0, 1q and N P N.
The proof of Proposition 4.3 is thus completed. �

We now state an existence and uniqueness result of an invariant distribution denoted by µ
N,τ
8 . Observe

that the bounds in Proposition 4.4 below are uniform with respect to the discretization parameters N P N

and τ P p0, 1q.
Proposition 4.4. Let Assumptions 2.1 and 2.3 be satisfied. For any N P N and for any τ P p0, 1q, the

HN -valued Markov chain
`

XN
m

˘

mPN admits a unique invariant probability distribution µ
N,τ
8 , which satisfies

the following properties.

‚ If xN
0 has distribution µ

N,τ
8 , then for all m P N, XN

m has distribution µ
N,τ
8 .

‚ For all β P r0, 1s such that the condition (32) is satisfied and all p P r1,8q, one has

(58) sup
NPN

sup
τPp0,1q

ż

}x}2p
Hβdµ

N,τ
8 pxq ă 8.

‚ There exists C P p0,8q, such that if ϕ : H Ñ R is a Lipschitz continuous mapping, for all N P N,

τ P p0, 1q and m ě 0 and one has

(59)
ˇ

ˇErϕpXN
m qs ´

ż

ϕdµN,τ
8

ˇ

ˇ ď CLippϕqe´ρpγ,fqmτ
`

1 ` Er}XNp0q}Hs
˘

,

where ρpγ, fq ą 0 is defined by (22) and Lippϕq “ sup
x1,x2PH,x1‰x2

|ϕpx2q´ϕpx1q|
}x2´x1}H .

4.3. Approximation of the invariant distribution. In this section, we state the main results of this
manuscript.

If ϕ : H Ñ R is a mapping of class C2, with bounded first and second order derivatives, define

(60) ~ϕ~1 “ sup
xPH

sup
hPH

|Dϕpxq.h|
}h}H

, ~ϕ~2 “ sup
xPH

sup
h,kPH

|D2ϕpxq.ph, kq|
}h}H}k}H

,

where Dϕ and D2ϕ are the first and second order derivatives of ϕ.

Theorem 4.3. Let Assumptions 2.1, 2.2 and 2.3 be satisfied.

Let β P r0, 1s such that the condition (32) holds. There exists Cβ P p0,8q such that if Er}x0}Hβ s ă 8,

then for all T P p0,8q, all N P N and any mapping ϕ : H Ñ R of class C2, with bounded first and second

order derivatives, one has

(61)
ˇ

ˇErϕpXpT qqs ´ ErϕpXN pT qqs
ˇ

ˇ ď Cβe
´ρpγ,fqT~ϕ~1Er}x0}Hs `Cβ

`

~ϕ~1 ` ~ϕ~2

˘

λ
´βθ
N

`

1` Er}x0}Hβ s
˘

,

where θ “ 1{2 in the general case and θ “ 1 in the commutative noise case.
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Moreover, for all N P N and any mapping ϕ : H Ñ R of class C2, with bounded first and second order

derivatives, one has

(62)
ˇ

ˇ

ż

ϕdµ8 ´
ż

ϕdµN
8

ˇ

ˇ ď Cβ

`

~ϕ~1 ` ~ϕ~2

˘

λ
´βθ
N .

Theorem 4.4. Let Assumptions 2.1, 2.2 and 2.3 be satisfied.

Let β P r0, 1s such that the condition (32) holds. There exists Cβ P p0,8q such that if E
“

}x0}2
Hβ

‰

ă 8,

then for all τ P p0, 1q, N P N and any mapping ϕ : H Ñ R of class C2, with bounded first and second order

derivatives, for all M ě 0 one has

(63)
ˇ

ˇErϕpXN ptM qqs ´ ErϕpXN
M qs

ˇ

ˇ ď Cβ

`

~ϕ~1 ` ~ϕ~2

˘

τminp2θβ,1q`1 ` Er}x0}2
Hβ s

˘

,

where θ “ 1{2 in the general case and θ “ 1 in the commutative noise case.

Moreover, for all τ P p0, 1q, N P N and any mapping ϕ : H Ñ R of class C2, with bounded first and second

order derivatives, one has

(64)
ˇ

ˇ

ż

ϕdµN
8 ´

ż

ϕdµN,τ
8

ˇ

ˇ ď Cβ

`

~ϕ~1 ` ~ϕ~2

˘

τminp2θβ,1q.

Combining Theorems 4.3 and 4.4, one finally obtains the following result.

Corollary 4.1. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. Let β P r0, 1s such that the condition (32)
holds. There exists Cβ,γ P p0,8q such that, for all τ P p0, 1q, N P N and any mapping ϕ : H Ñ R of class

C2, with bounded first and second order derivatives, one has

(65)
ˇ

ˇ

ż

ϕdµ8 ´
ż

ϕdµN,τ
8

ˇ

ˇ ď Cβ

`

~ϕ~1 ` ~ϕ~2

˘

´

λ
´βθ
N ` τminp2θβ,1q

¯

,

where θ “ 1{2 in the general case and θ “ 1 in the commutative noise case.

5. Convergence analysis

5.1. Auxiliary results – Kolmogorov equation. One of the key tools in the error analysis is to introduce
solutions of Kolmogorov equations. Instead of dealing with infinite dimensional Kolmogorov equation, we
consider the spectral Galerkin approximation introduced in Section 4.1 in order to justify all the computations
in a finite dimensional setting. All the regularity estimates below do not depend on the spatial discretization
parameter.

Let ϕ : H Ñ R be a mapping of class C2, with bounded first and second order derivatives. For all N P N,
introduce the mapping ϕN : HN Ñ R given by

ϕN pxq “ ϕpxq , x P HN .

For all N P N, x P HN and t ě 0, define

(66) ΦN pt, xq “ ErϕN pXN
x ptqqs

where
`

XN
x ptq

˘

tě0
denotes the solution of (48) with initial value XN

x p0q “ x. The mapping ΦN is solution

of the Kolmogorov equation

(67)

BtΦN pt, xq “ L
NΦN pt, xq

“ DΦN pt, xq. pAγx ` PNF pxqq ` 1

2

ÿ

jPN
D2ΦN pt, xq.

´

PN p0, Q1{2eQj q,PN p0, Q1{2eQj q
¯

where LN is the infinitesimal generator associated with the stochastic evolution equation (48), and DΦN pxq
and D2ΦN pxq denote the first and second order derivatives of ΦN with respect to the variable x P HN .

Proposition 5.1. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. There exists C P p0,8q such that for any

mapping ϕ : H Ñ R of class C2 with bounded first and second order derivatives one has for all t ě 0

sup
NPN

sup
xPHN

sup
hPHN

|DΦN pt, xq.h|
}h}H

ď C~ϕ~1e
´ρpγ,fqt(68)

sup
NPN

sup
xPHN

sup
h,kPHN

|D2ΦN pt, xq.ph, kq|
}h}H}k}H

ď C
`

~ϕ~1 ` ~ϕ~2

˘

e´ρpγ,fqt.(69)
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Proof. Let N P N. Owing to Assumption 2.2, the mapping FN : HN Ñ HN is twice continuously differen-
tiable. For any t ě 0, x P HN and h, k P HN , one has

DΦN pt, xq.h “ ErDϕpXN
x ptqq.ηNh ptqs,

D2ΦN pt, xq.ph, kq “ ErD2ϕpXN
x ptqq.pηNh ptq, ηNk ptqqs ` ErDϕpXN

x ptqq.ζNh,kptqs,
where the HN -valued processes

`

ηNh ptq
˘

tě0
and

`

ζNh,kptq
˘

tě0
are solutions of the first and second order vari-

ational equations

dηNh ptq
dt

“ Aγη
N
h ptq ` DFN pXN

x ptqq.ηNh ptq

dζNh,kptq
dt

“ Aγζ
N
h,kptq ` DFN pXN

x ptqq.ζNh,kptq ` D2FN pXN
x ptqq.pηNh ptq, ηNk ptqq,

with initial values ηNh p0q “ h and ζNh,kp0q “ 0. Expressing the solution ηNh of the first variational equation in
a mild formulation, for all t ě 0 one has

ηNh ptq “ etAγh `
ż t

0

ept´sqAγDFN pXN
x psqq.ηNh psqds

and using the inequality (16) from Lemma 2.1, the Lipschitz continuity property (20) of F from H to H,
one obtains for all t ě 0

}ηNh ptq}H ď Mpγqe´ρpγqt}h}H ` MpγqLf?
λ1

ż t

0

e´ρpγqpt´sq}ηNh psq}Hds.

Applying Gronwall’s lemma to the mapping t ÞÑ eρpγqt}ηNh ptq}H and using the condition ρpγ, fq “ ρpγq ´
MpγqLfλ

´1{2
1

ą 0 (see Equation (22)) yields the following inequality: for all t ě 0 one has

(70) }ηNh ptq}H ď Mpγqe´ρpγ,fqt}h}H.

Combining the inequality (70) with the expression of DΦN pt, xq.h above yields
ˇ

ˇDΦN pt, xq.h
ˇ

ˇ ď ~ϕ~1Er}ηNh ptq}Hs ď Mpγq~ϕ~1e
´ρpγ,fqt}h}H

and concludes the proof of the first inequality (68).
The proof of the second inequality (69) is performed using similar arguments. On the one hand, using

the inequality (70) above, one has for all t ě 0
ˇ

ˇErD2ϕpXN
x ptqq.pηNh ptq, ηNk ptqqs

ˇ

ˇ ď ~ϕ~2Er}ηNh ptq}H}ηNk ptq}Hs ď ~ϕ~2Mpγq2e´2ρpγ,fqt}h}H}k}H.

On the other hand, expressing the solution ζNh,k of the second variational equation in a mild formulation, for
all t ě 0 one has

ζNh,kptq “
ż t

0

ept´sqAγDFN pXN
x psqq.ζNh,kpsqds `

ż t

0

ept´sqAγD2FN pXN
x psqq.pηNh psq, ηNk psqqds

and using the inequality (16) from Lemma 2.1, the Lipschitz continuity property (20) of F from H to H

and the boundedness of the second-order derivative of F from H to H (Assumption 2.2), and finally the
inequality (70) above, one obtains for all t ě 0

}ζNh,kptq}H ď MpγqLf?
λ1

ż t

0

e´ρpγqpt´sq}ζNh,kpsq}Hds ` C

ż t

0

e´ρpγqpt´sqe´2ρpγ,fqsds}h}H}k}H,

where C P p0,8q is a positive real number (which does not depend on N).

Applying Gronwall’s lemma to the mapping t ÞÑ eρpγqt}ζNh,kptq}H and using the condition ρpλ, fq “
ρpγq ´ MpγqLfλ

´1{2
1

ą 0 (see Equation (22)), one obtains the following inequality: for all t ě 0 one has

(71) }ζNh,kptq}H ď Ce´ρpγ,fqt}h}H}k}H.

As a result, one has for all t ě 0
ˇ

ˇErDϕpXN
x ptqq.ζNh,kptqs

ˇ

ˇ ď ~ϕ~1Er}ζNh ptq}Hs ď C~ϕ~1e
´ρpγ,fqt}h}H}k}H,

and combining the results finally concludes the proof of the second inequality (69). �
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5.2. Proof of Theorem 4.3. Let ϕ : H Ñ R be a mapping of class C2, with bounded first and second order
derivatives. Without loss of generality in the sequel it is assumed that ~ϕ~1 ` ~ϕ~2 ď 1 to simplify the
computations.

The objective of this section is to prove that the following claim holds: for all β P r0, 1s such that the
condition (32) holds, there exists Cβ P p0,8q such that if Er}x0}Hβ s ă 8, then for all T P p0,8q and for all

integers N ě N one has

(72)
ˇ

ˇErϕpXN pT qqs ´ ErϕpXN pT qqs
ˇ

ˇ ď Cβe
´ρpγ,fqT

Er}x0}Hs ` Cβλ
´βθ
N

`

1 ` Er}x0}Hβ s
˘

,

where θ “ 1{2 in the general case and θ “ 1 in the commutative noise case.
Observe that the right-hand side of (72) is independent of N , therefore using Lemma 4.1 and letting

N Ñ 8 one obtains the inequality (61).
Let us now prove (72). The positive integer N is introduced in order to use the results from Section 5.1

and in particular Proposition 5.1. Using the auxiliary function ΦN given by (66) (with N “ N), the left-hand
side of (72) is written as

ErϕpXN pT qqs ´ ErϕpXN pT qs “ ErΦNpT,XNp0qqs ´ ErΦN p0, XNpT qqs
“ ErΦN pT,XNp0qqs ´ ErΦN pT,XNp0qqs ` ErΦN pT,XNp0qqs ´ ErΦN p0, XNpT qqs.

On the one hand, recall that XNp0q “ PNx0 and that XN p0q “ PNx0, therefore using the inequality (68)

from Proposition 5.1 one obtains for all N ě N

ˇ

ˇErΦN pT,XNp0qqs ´ ErΦN pT,XNp0qqs
ˇ

ˇ ď Ce´ρpγ,fqT
Er}XNp0q ´ XNp0q}Hs ď Ce´ρpγ,fqT

Er}x0}Hs.

On the other hand, using Itô’s formula, and the property that ΦN is solution of the Kolmogorov equation (67)
(with N “ N), one has

ErΦNp0, XNpT qqs ´ ErΦN pT,XNp0qqs “
ż T

0

E

”

DΦN pT ´ t,XNptqq.
´

FN pXNptqq ´ FN pXNptqq
¯ı

dt

` 1

2

ż T

0

ÿ

jPN
E

”

D2ΦN pT ´ t,XNptqq.
´

PN p0, Q1{2eQj q,PN p0, Q1{2eQj q
¯ı

dt

´ 1

2

ż T

0

ÿ

jPN
E

”

D2ΦN pT ´ t,XNptqq.
´

PN p0, Q1{2eQj q,PN p0, Q1{2eQj q
¯ı

dt

“ ǫ1
N,N

pT q ` ǫ2
N,N

pT q ` ǫ3
N,N

pT q

where

ǫ1
N,N

pT q “
ż T

0

E

”

DΦN pT ´ t,XN ptqq.
´

FN pXN ptqq ´ FN pXN ptqq
¯ı

dt

ǫ2
N,N

pT q “ 1

2

ż T

0

ÿ

jPN
E

”

D2ΦN pT ´ t,XN ptqq.
´

`

PN ´ PN

˘

p0, Q1{2eQj q,PN p0, Q1{2eQj q
¯ı

dt

ǫ3
N,N

pT q “ 1

2

ż T

0

ÿ

jPN
E

”

D2ΦN pT ´ t,XN ptqq.
´

PN p0, Q1{2eQj q,
`

PN ´ PN

˘

p0, Q1{2eQj q
¯ı

dt.

For the first error term, using the inequality (68) from Proposition 5.1 and the inequality (46), one has

|ǫ1
N,N

pT q| ď Cβλ
´β
N

ż T

0

e´ρpγ,fqpT´tq
Er}F pXNptqq}H2β sdt.

If β P r0, 1{2s, using the inequality (27) and the moment bounds (50) from Proposition 4.1, one has

sup
NPN

sup
tě0

Er}F pXNptqq}H2β s ď C
´

1 ` sup
NPN

sup
tě0

Er}XNptq}Hs
¯

ď C
`

1 ` Er}x0}Hs
˘

.
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If β P r1{2, 1s, using the inequality (26) and the moment bounds (50) from Proposition 4.1, one has

sup
NPN

sup
tě0

Er}F pXNptqq}H2β s ď Cβ

´

1 ` sup
NPN

sup
tě0

Er}XNptq}Hβ s
¯

ď C
`

1 ` Er}x0}Hβ s
˘

.

Therefore one obtains

sup
NěN

sup
Tě0

|ǫ1
N,N

pT q| ď Cβλ
´β
N

`

1 ` Er}x0}Hβ s
˘

.

For the second error term, using the inequality (69) from Proposition 5.1, and the inequality (46), one
obtains

|ǫ2
N,N

pT q| ď C

ż T

0

e´ρpγ,fqpT´tqdt
ÿ

jPN
}pI ´ PN

˘

p0, Q1{2eQj q}H}p0, Q1{2eQj q}H

ď Cβλ
´β{2
N

ÿ

jPN
}p0, Q1{2eQj q}Hβ}p0, Q1{2eQj q}H

ď Cβλ
´β{2
N

ÿ

jPN
}Q1{2eQj }2Hβ´1

ď Cβλ
´β{2
N .

In the commutative noise case (θ “ 1), higher order of convergence is achieved: one has

|ǫ2
N,N

pT q| ď C

ż T

0

e´ρpλ,fqpT´tqdt
ÿ

jPN
}pI ´ PN

˘

p0, Q1{2eQj q}H}p0, Q1{2eQj q}H

ď Cβλ
´β
N

ÿ

jPN
}p0, Q1{2eQj q}H2β }p0, Q1{2eQj q}H

ď Cβλ
´β
N

ÿ

jPN
}Q1{2eQj }H2β´1}Q1{2eQj }H´1

ď Cβλ
´β
N

ÿ

jPN
}Q1{2eQj }2Hβ´1

ď Cβλ
´β
N .

The treatment of the third error term ǫ3
N,N

pT q is similar to the treatment of the second error term ǫ2
N,N

pT q,
the details are omitted. It is worth observing that ǫ3

N,N
pT q “ 0 in the commutative noise case.

Gathering the estimates for the error terms obtained above, one obtains
ˇ

ˇErΦN p0, XNpT qqs ´ ErΦNpT,XNp0qqs
ˇ

ˇ ď Cβλ
´θβ
N

`

1 ` Er}x0}Hβ s
˘

,

where we recall that θ “ 1 in the commutative noise case and θ “ 1{2 otherwise. This concludes the proof
of the weak error estimate (61). Combining that result with Propositions 3.2 and 4.2, choosing an arbitrary
initial value x0 and letting T Ñ 8 yields (62). The proof of Theorem 4.3 is thus completed.

5.3. Properties of an auxiliary process. In order to prove Theorem 4.4, it is convenient to introduce an
auxiliary continuous time process

`

X̃Nptq
˘

tě0
, defined as follows: for all m ě 0 and all t P rtm, tm`1s, set

(73) X̃Nptq “ ept´tmqAγ
`

XN
m ` pt ´ tmqFN pXN

m q ` PN

`

W
Qptq ´ W

Qptmq
˘˘

.

Observe that for all m ě 0 one has lim
tÑtm

X̃Nptq “ XN
m “ X̃N ptmq, therefore the auxiliary process

`

X̃Nptq
˘

tě0

is continuous. In addition, this process is a mild solution of the equation

(74) dX̃N ptq “ AγX̃
Nptqdt ` ept´tℓptqqAγFN pXN

ℓptqqdt ` ept´tℓptqqAγPNdWQptq,

where we recall the notation ℓptq “ tt{τ u.

For all t ě 0, define ũNptq “ ΠuX̃
Nptq and ṽN ptq “ ΠvX̃

Nptq.
Let us state and prove some properties of the auxiliary process.
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Proposition 5.2. Let Assumptions 2.1 and 2.3 be satisfied. Let β P r0, 1s, such that the condition (32) is

satisfied. For all p P r1,8q, there exists Cβ,p P p0,8q such that if the initial value x0 is a F0-measurable

random variable, which satisfies Er}x0}2
Hβ s ă 8, then one has

(75) sup
NPN

sup
τPp0,1q

sup
tě0

E
“

}X̃Nptq}p
Hβ

‰

ď Cβ,p

`

1 ` Er}x0}p
Hβ s

˘

.

In addition, for all N P N, τ P p0, 1q and t ě 0, one has

(76)
`

Er}X̃Nptq ´ XN
ℓptq}

p
H

s
˘

1

p ď Cβ,pτ
minpβ, 1

2
q`

1 `
`

Er}x0}p
Hβ s

˘
1

p
˘

.

Finally, for all N P N, τ P p0, 1q and t ě 0, one has

(77)
`

Er}ũNptq ´ ũN ptℓptqq}p
Hβ´1 s

˘
1

p ď Cβ,pτ
`

1 `
`

Er}x0}p
Hβ s

˘
1

p
˘

.

Combining the inequalities (76) and (77) when β P r0, 1
2

s, with the interpolation inequality (8) and Hölder’s
inequality, one obtains the following result: for all N P N, τ P p0, 1q and t ě 0, one has

(78)
`

Er}ũNptq ´ ũN ptℓptqq}p
H´β s

˘
1

p ď Cβ,pτ
2β

`

1 `
`

Er}x0}p
Hβ s

˘
1

p
˘

.

Indeed, if β P r0, 1
2

s, one has ´β P rβ ´ 1, 0s.
The moment bounds (75) for X̃Nptq are straightforward consequences of the moment bounds (57) from

Proposition 4.3. The increment bounds (76) for X̃Nptq are then obtained using the inequality (17) from
Lemma 2.2.

Observe that one has a term of size τ in the right-hand side of (77). This plays an important role in the
proof of Theorem 4.4 below. Note that one needs to study the increments of t ÞÑ ũN ptq in the } ¨ }Hβ´1 norm
to obtain this result. A similar result for the exact mild solution

`

Xptq
˘

tě0
of (35): indeed owing to (34)

the increments of the mapping t ÞÑ uptq “ ΠuXptq satisfy

upt2q ´ upt1q “
ż t2

t1

vpsqds

with vpsq “ ΠvXpsq, and therefore

`

Er}upt2q ´ upt1q}p
Hβ´1 s

˘
1

p ď pt2 ´ t1qsup
sě0

`

Er}vpsq}p
Hβ´1 s

˘
1

p ď pt2 ´ t1qsup
sě0

`

Er}Xpsq}p
Hβ s

˘
1

p

ď Cβ,ppt2 ´ t1q
`

1 `
`

Er}x0}p
Hβ s

˘
1

p
˘

,

owing to the moment bounds (39) from Proposition 3.1. The proof of the increment bounds (77) is based
on a similar approach but requires to deal with some extra terms.

Proof. Using the definition (73) of X̃Nptq, the inequality (15), the Lipschitz continuity property (19) of F
from H to H1, and the inequality (7), one obtains the following inequality: for all m ě 0 and all t P rtm, tm`1s,
one has

}X̃Nptq}Hβ ď }XN
m}Hβ ` τ}F pXN

m q}H1 ` }WQptq ´ W
Qptmq}Hβ

ď }XN
m}Hβ ` Cτp1 ` }XN

m}Hq ` }WQptq ´ W
Qptmq}Hβ .

Recall that the Wiener process
`

WQptq
˘

tě0
takes values in Hβ , therefore the equality (33) holds. Then using

the condition t ´ tm ď τ , the moment bounds (57) from Proposition 4.3 and Minkowskii’s inequality, one
obtains the moment bounds (75).

Let us now prove the increment bounds (76) for t ÞÑ X̃Nptq. Using the inequality (17) from Lemma 2.2
and the Lipschitz continuity property (20) of F from H to H, for all m ě 0 and t P rtm, tm`1s, one has

}X̃Nptq ´ XN
m}H ď }pept´tmqAγ ´ IqXN

m }H ` τ}F pXN
m q}H ` }WQptq ´ W

Qptmq}H
ď Cβτ

β}XN
m}Hβ ` Cτp1 ` }XN

m}Hq ` }WQptq ´ W
Qptmq}H.

Using the equality (33), the condition t ´ tm ď τ , the moment bounds (57) from Proposition 4.3 and
Minkowskii’s inequality, one obtains the increment bounds (76).
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It remains to prove the increment bounds (77) for t ÞÑ ũNptq. The stochastic evolution equation (74) for

the auxiliary process
`

X̃Nptq
˘

tě0
is written as the following system: for all m ě 0 and t P rtm, tm`1s, one

has

(79)

#

dũN ptq “ ṽN ptqdt ` Πue
pt´tmqAγFN pXN

m qdt ` Πue
pt´tmqAγPNdWQptq,

dṽN ptq “ p´ΛũNptq ´ 2γṽNptqq dt ` Πve
pt´tmqAγFN pXN

m qdt ` Πve
pt´tmqAγPNdWQptq.

As a consequence, since uN
m “ ũN ptmq, one obtains the identities

ũN ptq ´ uN
m “

ż t

tm

ṽN psqds `
ż t

tm

Πue
ps´tmqAγFN pXN

m qds `
ż t

tm

Πue
ps´tmqAγPNdWQpsq

“
ż t

tm

ṽN psqds ` Πu

ż t

tm

`

eps´tmqAγ ´ I
˘

FN pXN
m qds ` Πu

ż t

tm

`

eps´tmqAγ ´ I
˘

PNdWQpsq,

using the properties

ΠuFN pXN
m q “ 0 ,

ż t

tm

ΠuPNdWQpsq “ 0

to obtain the second equality. Note that β ´ 1 ď 0. Using the inequality (9), (17) and (7), the Lipschitz
continuity property (20) of F from H to H, and Minkowskii’s inequality, one obtains

`

Er}ũNptq ´ uN
m}p

Hβ´1 s
˘

1

p ď
ż t

tm

`

Er}ṽNpsq}p
Hβ´1 s

˘
1

p ds ` Cτ
´

1 `
`

Er}XN
m}p

H
s
˘

1

p

¯

`
`

Er}
ż t

tm

`

eps´tmqAγ ´ I
˘

PNdWQpsq}p
Hβ´1s

˘
1

p

ď τsup
sě0

Er}X̃Npsq}p
Hβ s

˘
1

p ` Cτ
´

1 `
`

Er}XN
m}p

H
s
˘

1

p

¯

` Cτ
`

Er}WQptq ´ W
Qptmq}p

Hβ s
˘

1

p .

Using the moment bounds (75) and (57) for X̃Npsq and XN
m respectively, and the increment bounds (33) for

WQptq ´ WQptmq, one obtains (77).
The proof of Proposition 5.2 is thus completed. �

5.4. Proof of Theorem 4.4. Let ϕ : H Ñ R be a mapping of class C2, with bounded first and second order
derivatives. Without loss of generality in the sequel it is assumed that ~ϕ~1 ` ~ϕ~2 ď 1 to simplify the
computations. In this section, the value of the spatial discretization parameter N P N is fixed.

The objective of this section is to prove the inequality (63) from Theorem 4.4. Recall that the mapping

ΦN is defined by (66) (see Section 5.1) and that the auxiliary process
`

X̃Nptq
˘

tě0
is defined by (73). Since

XNp0q “ X0

N “ PNx0, the left-hand side of (63) can be written as follows: for all M ě 0 one has

(80)

ErϕpXN ptM qqs ´ ErϕpXN
M qs “ ErΦN ptM , XN

0
qs ´ ErΦNp0, XN

M qs

“
M´1
ÿ

m“0

´

ErΦN ptM ´ tm, XN
m qs ´ ErΦN ptM ´ tm`1, X

N
m`1

qs
¯

“
M´1
ÿ

m“0

´

ErΦN ptM ´ tm, X̃Nptmqqs ´ ErΦN ptM ´ tm`1, X̃
Nptm`1qs

¯

,

owing to a standard telescoping sum argument.
Let m P t0, . . . ,M ´ 1u. Recall that the mapping ΦN is solution of the Kolmogorov equation (67). On

the time interval rtm, tm`1s, t ÞÑ X̃N ptq is solution of the stochastic evolution equation (74) with tℓptq “ tm.
Applying Itô’s formula then yields the decomposition

(81) ErΦN ptM ´ tm, X̃Nptmqqs ´ ErΦN ptM ´ tm`1, X̃
N ptm`1qqs “ ε1m ` ε2m ` ε3m ` ε4m,

with error terms defined by

ε1m “
ż tm`1

tm

E

”

DΦN ptM ´ t, X̃Nptqq.
´

`

ept´tmqAγ ´ I
˘

FN pXN
m q

¯ı

dt
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ε2m “
ż tm`1

tm

E
“

DΦN ptM ´ t, X̃Nptqq.
`

FN pXN
m q ´ FN pX̃Nptqq

˘‰

dt

ε3m “ 1

2

ż tm`1

tm

E

”

ÿ

nPN
D2ΦN ptM ´ t, X̃Nptqq.

`

pept´tmqAγ ´ IqPN p0, Q1{2eQn q, ept´tmqAγPN p0, Q1{2eQn q
˘

ı

dt

ε4m “ 1

2

ż tm`1

tm

E

”

ÿ

nPN
D2ΦN ptM ´ t, X̃Nptqq.

`

PN p0, Q1{2eQn q, pept´tmqAγ ´ IqPN p0, Q1{2eQn q
˘

ı

dt.

Owing to the inequality (68) from Proposition 5.1, and to the inequality (17) from Lemma 2.2, and using
the Lipschitz continuity property (19) of F from H to H1, for the error term ǫ1m one obtains the following
upper bounds:

|ε1m| ď
ż tm`1

tm

E

”ˇ

ˇ

ˇ
DΦN ptM ´ t, X̃Nptqq.

´

`

ept´tmqAγ ´ I
˘

FN pXN
m q

¯ˇ

ˇ

ˇ

ı

dt

ď
ż tm`1

tm

e´ρpγ,fqptM´tq
E

“

}
`

ept´tmqAγ ´ I
˘

FN pXN
m q}H

‰

dt

ď Cτ

ż tm`1

tm

e´ρpγ,fqptM´tq
E

“

}FN pXN
m q}H1

‰

dt

ď Cτ

ż tm`1

tm

e´ρpγ,fqptM´tq
E

“`

1 ` }XN
m}H

˘‰

dt

Finally, using the moment bounds (57) from Proposition 4.3, one has the following upper bounds for the
error term ε1m:

(82) |ε1m| ď Cτ
`

1 ` Er}x0}Hs
˘

ż tm`1

tm

e´ρpγ,fqptM´tqdt , @m P t0, . . . ,M ´ 1u.

To treat the error term ε2m, it is crucial to recall that F pxq “ p0, fpuqq for all x “ pu, vq P H “ H ˆ H´1.
As a consequence, using the inequality (68) from Proposition 5.1, one obtains the following upper bounds:

|ε2m| ď
ż tm`1

tm

E
“
ˇ

ˇDΦN ptM ´ t, X̃Nptqq.
`

FN pXN
m q ´ FN pX̃N ptqq

˘
ˇ

ˇ

‰

dt

ď
ż tm`1

tm

e´ρpγ,fqptM´tq
E

“

}FN pXN
m q ´ FN pX̃N ptqq}H

‰

dt

ď
ż tm`1

tm

e´ρpγ,fqptM´tq
E

“

}fpuN
mq ´ fpũN ptqq}H´1

‰

dt.

It is then necessary to treat separately the cases β P r0, 1
2

s and β P r 1
2
, 1s. On the one hand, if β P r0, 1

2
s,

using the condition (24) from Assumption 2.2 (with α “ β), the inequality (78) (which follows from the
inequalities (76) and (77) from Proposition 5.2), the moment bounds (57) and (75) and Hölder’s inequality,
one obtains for all t P rtm, tm`1s

E
“

}fpuN
mq ´ fpũN ptqq}H´1

‰

ď Cβ

`

1 ` Er}uN
m}2

Hβ s ` Er}ũptq}2
Hβ

˘
1

2

`

Er}uN
m ´ ũN ptq}2

H´β s
˘

1

2

ď Cβτ
2β

`

1 ` Er}x0}2
Hβ s

˘

.

On the other hand, if β P r 1
2
, 1s, using the inequality (28) (which follows from the condition (24) from

Assumption 2.2), the inequality (77) from Proposition 5.2, the moment bounds (57) and (75) and Hölder’s
inequality, one obtains for all t P rtm, tm`1s

E
“

}fpuN
mq ´ fpũN ptqq}H´1

‰

ď Cβ

`

1 ` Er}uN
m}2

Hβ s ` Er}ũptq}2
Hβ

˘
1

2

`

Er}uN
m ´ ũN ptq}2

Hβ´1s
˘

1

2

ď Cβτ
`

1 ` Er}x0}2
Hβ s

˘

.

Finally, one has the following upper bounds for the error term ε2m:

(83) |ε2m| ď Cβτ
minp2β,1q`

1 ` Er}x0}2
Hβ s

˘

ż tm`1

tm

e´ρpγ,fqptM´tqdt , @m P t0, . . . ,M ´ 1u.
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The error terms ǫ3m and ǫ4m are treated with the same arguments. Using the inequality (69) from Propo-
sition 5.1 and the inequality (16) from Lemma 2.1, one obtains

|ǫ3m| ` |ǫ4m| ď C

ż tm`1

tm

e´ρpγ,fqptM´tq
ÿ

nPN
}p0, Q1{2eQn q}H}pept´tmqAγ ´ Iqp0, Q1{2eQn q}Hdt.

Using the inequality (17) from Lemma 2.2, one then obtains

|ǫ3m| ` |ǫ4m| ď Cβτ
β

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}p0, Q1{2eQn q}H}p0, Q1{2eQn q}Hβ

ď Cβτ
β

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}Q1{2eQn }H´1}Q1{2eQn }Hβ´1

ď Cβτ
β

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}Q1{2eQn }2Hβ´1

ď Cβτ
β

ż tm`1

tm

e´ρpγ,fqptM´tqdt,

assuming that β satisfies the condition (32).
Let us now get a higher rate of convergence in the commutative noise case. If β P r0, 1

2
s, one has

|ǫ3m| ` |ǫ4m| ď Cβτ
2β

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}p0, Q1{2eQn q}H}p0, Q1{2eQn q}H2β

ď Cβτ
2β

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}Q1{2eQn }H´1}Q1{2eQn }H2β´1

ď Cβτ
2β

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}Q1{2eQn }2Hβ´1

ď Cβτ
2β

ż tm`1

tm

e´ρpγ,fqptM´tqdt,

while if β P r 1
2
, 1s, one has

|ǫ3m| ` |ǫ4m| ď Cτ

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}p0, Q1{2eQn q}H}p0, Q1{2eQn q}H1

ď Cτ

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}Q1{2eQn }H´1}Q1{2eQn }H

ď Cτ

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}Q1{2eQn }2

H
´ 1

2

ď Cτ

ż tm`1

tm

e´ρpγ,fqptM´tqdt
ÿ

nPN
}Q1{2eQn }2Hβ´1

ď Cβτ

ż tm`1

tm

e´ρpγ,fqptM´tqdt,

using the inequality ´ 1

2
ď β ´ 1.

Recall that the definition of the parameter θ: θ “ 1

2
in the general case and θ “ 1 in the commutative

noise case. Finally, one obtains the following error bounds for the error terms ε3m and ε4m:

(84) |ε3m| ` |ε4m| ď Cβτ
minp2θβ,1q

ż tm`1

tm

e´ρpγ,fqptM´tqdt , @m P t0, . . . ,M ´ 1u.
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It remains to gather the bounds (82), (83) and (84) for the error terms appearing in the right-hand side
of the decomposition of the local weak error (81). Note that for all M ě 0 one has

ż tM

0

e´ρpγ,fqptM´tqdt ď
ż 8

0

e´ρpγ,fqtdt “ ρpγ, fq´1.

Using the decomposition (80) of the global weak error, one obtains
ˇ

ˇErϕpXN ptM qqs ´ ErϕpXN
M qs

ˇ

ˇ ď Cβτ
minp2θβ,1q`1 ` Er}x0}2

Hβ s
˘

,

which concludes the proof of the error estimate (63). Combining that result with Propositions 4.4 and 4.2,
choosing an arbitrary initial value x0 and letting M Ñ 8 yields (64). The proof of Theorem 4.4 is thus
completed.

Appendix A. Proof of Lemma 2.1

The techniques of the proof are similar to those used in [37, Lemma 5.1].

Proof. Let γ P p0,8q. Owing to the expression (9) of etAγx, it is sufficient to prove that for all n P N the
solution t ÞÑ punptq, vnptqq of (10) satisfies the following inequality: for all n P N and all t ě 0 one has

(85) |unptq|2 ` λ´1

n |vnptq|2 ď pMpγqq2e´2ρpγqt`|unp0q|2 ` λ´1

n |vnp0q|2
˘

.

In the sequel, the value of n P N is fixed. Introduce the auxiliary parameters

θn,γ “ minpλn, γ
2q

2γ
, Θn,γ “ θ2n,γ ´ 2γθn,γ ` λn,

and the auxiliary functions, defined by

w̃n,γptq “ eθn,γtunptq, @ t ě 0.

Straightforward computations show that w̃n,γ is solution of the linear second-order differential equation

(86) w̃2
n,γptq ` 2

`

γ ´ θn,γ
˘

w̃1
n,γptq ` Θn,γw̃n,γptq “ 0,

with initial values w̃n,γp0q “ unp0q and w̃1
n,γp0q “ vnp0q ` θn,γunp0q.

We claim that the following equalities hold: for all t ě 0 one has

(87) |w̃1
n,γptq|2 ` Θn,γ |w̃n,γptq|2 ` 4

`

γ ´ θn,γ
˘

ż t

0

|w̃1
n,γpsq|2ds ď |w̃1

n,γp0q|2 ` Θn,γ |w̃n,γp0q|2

and

(88)
|w̃1

n,γptq ` 2pγ ´ θn,γqw̃n,γptq|2 ` Θn,γ

´

|w̃n,γptq|2 ` 4pγ ´ Θn,γq
ż t

0

|w̃n,γpsq|2ds
¯

“ |w̃1
n,γp0q ` 2pγ ´ θn,γqw̃n,γp0q|2 ` Θn,γ|w̃n,γp0q|2.

To prove (87), it suffices to multiply the left-hand side of (86) by w̃1
n,γptq to obtain the identity

1

2

d|w̃1
n,γptq|2
dt

` 2
`

γ ´ θn,γ
˘

|w̃1
n,γptq|2 ` Θn,γ

2

d|w̃n,γptq|2
dt

“ 0

and to integrate from 0 to t. To prove (88), it suffices to check the identity

1

2

d|w̃1
n,γptq ` 2pγ ´ θn,γqw̃n,γptq|2

dt
“

´

w̃2
n,γptq ` 2pγ ´ θn,γqw̃1

n,γptq
¯´

w̃1
n,γptq ` 2pγ ´ θn,γqw̃n,γptq

¯

“ ´Θn,γw̃n,γptq
´

w̃1
n,γptq ` 2pγ ´ θn,γqw̃n,γptq

¯

“ ´Θn,γ

´1

2

d|w̃n,γptq|2
dt

` 2pγ ´ θn,γq|w̃n,γptq|2
¯

and to integrate from 0 to t.
We are now in position to proceed with the proof of the inequality (85). Two cases need to be treated

separately.
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First, assume that the condition γ2 ď λn is satisfied. In that case one has

θn,γ “ γ ´ θn,γ “ γ

2
ą 0,

Θn,γ “ θ2n,γ ´ 2γθn,γ ` λn “ λn ´ 3γ2

4
ě λn

4
ą 0.

Owing to the lower bounds above and to the inequality (87), for all t ě 0 one has

|w̃1
n,γptq|2 ď |w̃1

n,γp0q|2 `
`

λn ´ 3γ2

4

˘

|w̃n,γp0q|2

ď Cpγq
´

|vnp0q|2 ` λn|unp0q|2
¯

,

where Cpγq P p0,8q is a positive real number (independent of n P N and t ě 0). In addition, owing to the
lower bounds above and to the inequality (88), for all t ě 0, one has

λn

4
|w̃n,γptq|2 ď Θn,γ |w̃n,γptq|2

ď |w̃1
n,γp0q ` 2pγ ´ θn,γqw̃n,γp0q|2 ` Θn,γ |w̃n,γp0q|2

ď Cpγq
´

|vnp0q|2 ` λn|unp0q|2
¯

.

By the definition w̃n,γptq “ eθn,γtunptq “ eγt{2unptq of the auxiliary function w̃n,γ , one obtains the identities

unptq “ e´γt{2w̃n,γptq

vnptq “ u1
nptq “ e´γt{2

´

w̃1
n,γptq ´ γ

2
w̃n,γptq

¯

.

Finally using the inequalities above yields the inequality (85) when the condition γ2 ď λn is satisfied.
Second, assume that the condition λn ď γ2 is satisfied. In that case one has

θn,γ “ λn

2γ

γ ´ θn,γ “ γp1 ´ λn

2γ2
q ě γ

2
P r0, γ

2
s

Θn,γ “ θ2n,γ ´ 2γθn,γ ` λn “ θ2n,γ “ λ2
n

4γ2
P r0, λn

4
s.

Owing to the lower bounds above and to the inequality (87), for all t ě 0 one has

|w̃1
n,γptq|2 ď |w̃1

n,γp0q|2 ` λ2
n|w̃n,γp0q|2

4γ2
ď |w̃1

n,γp0q|2 ` λn|w̃n,γp0q|2
4

.

In addition, using the bounds above and owing to the inequality (88), for all t ě 0, one has

γ2|w̃n,γptq|2 ď 4pγ ´ θn,γq2|w̃n,γptq|2

ď 2|w̃1
n,γptq ` 2pγ ´ θn,γqw̃n,γptq|2 ` 2|w̃1

n,γptq|2

ď 2|w̃1
n,γp0q ` 2pγ ´ θn,γqw̃n,γp0q|2 ` λ2

n

2γ2
|w̃n,γp0q|2 ` 2|w̃1

n,γp0q|2 ` λ2
n|w̃n,γp0q|2

2γ2

ď Cpγq
´

|w̃1
n,γp0q|2 ` |w̃n,γp0q|2

¯

,

where Cpγq P p0,8q is a positive real number (independent of n P N and t ě 0).

By the definition w̃n,γptq “ eθn,γtunptq “ e
λnt
2γ unptq of the auxiliary function w̃n,γ , one obtains the

identities

unptq “ e´ λnt
2γ w̃n,γptq

vnptq “ u1
nptq “ e´ λnt

2γ

´

w̃1
n,γptq ´ λn

2γ
w̃n,γptq

¯

,
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and using the inequalities λ1 ď λn ď γ2 in the considered case, using the inequalities above yields the
inequality (85) when the condition λn ď γ2 is satisfied.

Finally the inequality (85) is proved in all situations (where the positive real numbers Mpγq and ρpγq are
independent of n P N and t ě 0). The proof of Lemma 2.1 is thus completed. �
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