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Weak error estimates of fully-discrete schemes for the stochastic

Cahn–Hilliard equation

Charles-Edouard Bréhier, Jianbo Cui, and Xiaojie Wang

Abstract. We study a class of fully-discrete schemes for the numerical approximation of solutions
of stochastic Cahn–Hilliard equations with cubic nonlinearity and driven by additive noise. The
spatial (resp. temporal) discretization is performed with a spectral Galerkin method (resp. a tamed
exponential Euler method). We consider two situations: space-time white noise in dimension d “ 1

and trace-class noise in dimensions d “ 1, 2, 3. In both situations, we prove weak error estimates,
where the weak order of convergence is twice the strong order of convergence with respect to
the spatial and temporal discretization parameters. To prove these results, we show appropriate
regularity estimates for solutions of the Kolmogorov equation associated with the stochastic Cahn–
Hilliard equation, which have not been established previously and may be of interest in other
contexts.

1. Introduction

Over the last decades, a large number of research works have been devoted to the numerical study
of stochastic partial differential equations (SPDEs). The classical convergence theory of numerical
approximations often requires nonlinearities of SPDEs to be globally Lipschitz continuous (see, e.g.,
[43]). However, nonlinearities of many practical SPDE models are only locally Lipschitz continuous
and the classical convergence results for standard explicit numerical schemes fail to hold (see, e.g.
[34, 2, 18]). Prominent examples of SPDEs with non-globally Lipschitz continuous nonlinearities
include stochastic phase-field models such as the stochastic Allen–Cahn equation and the stochastic
Cahn–Hilliard equation. In the last decade, numerical analysis of such stochastic phase-field models
has been a very active field of research, see, e.g., [38, 44, 25, 37, 16, 27, 9, 4, 26] and references
therein. Progress on the convergence aspects of numerical approximations for stochastic phase-field
model has been made recently, including strong and weak convergence rate analysis for the stochastic
Allen-Cahn equation (see, e.g., [3, 7, 19, 46, 10, 41, 42, 48, 13, 22, 6]) and the strong convergence
rate analysis for the stochastic Cahn–Hilliard equation (see, e.g., [47, 20, 1, 21, 31, 14, 45]).

In this paper, we consider the stochastic Cahn—Hilliard equation driven by additive noise and
with homogeneous Neumann boundary conditions

(1)

$
’’’’’&
’’’’’%

du ´ ∆wdt “ dWQptq, pt, xq P p0, T s ˆ D,

w “ ´∆u ` u3 ´ u, pt, xq P p0, T s ˆ D,

Bu
Bn “ Bw

Bn “ 0, pt, xq P p0, T s ˆ BD,

up0, xq “ u0pxq, x P D,

where D “ p0, 1qd, with d P t1, 2, 3u and
`
WQptq

˘
tě0

is a suitable Q-Wiener process. We consider

two situations: space-time white noise in dimension d “ 1 and trace-class noise in dimensions
1
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d “ 1, 2, 3. In the sequel, the SPDE (1) is interpreted in the sense of stochastic evolution equations,
see [23], with values in H “ L2pDq:
(2) dXptq ` A

`
AXptq ` F pXptqq

˘
dt “ dWQptq, Xp0q “ x0,

where the linear operator ´A is the Laplace operator on the bounded domain D equipped with
homogeneous Neumann boundary condition. The nonlinearity F puq “ u3 ´ u corresponds to
the double-well potential. The driving Wiener process WQ can be used to describe impurities
in the alloy, effects of external fields, or thermal fluctuations. As a stochastic phase-field model for
studying the spinodal decomposition [17, 40], the stochastic Cahn-Hilliard equation (also called
Cahn–Hilliard–Cook equation) shows a better agreement with experimental data in the presence of
noise [28].

The objective of this manuscript is to give weak error estimates for numerical schemes applied
to (2). Recall that in contrast with strong error estimates, which mainly deal with mean-square
convergence of the numerical schemes, weak error estimates are associated with the convergence in
distribution, and that in many situations the weak order of convergence is twice the strong order
of convergence for such SPDE systems. This result has been established recently for the stochastic
Allen–Cahn equation, see [19, 10, 13, 22, 6] (and previously for parabolic semilinear SPDEs with
globally Lipschitz continuous nonlinearities). We intend to fill a gap in the existing literature and
prove that the result also holds for the stochastic Cahn–Hilliard equation. Since the strong order
of convergence of the numerical scheme has been studied in previous works, we focus on the weak
error estimates. The problem is more challenging than in the stochastic Allen–Cahn case since the
nonlinearity does not satisfy a monotony or one-sided Lipschitz continuity property in H “ L2pDq.
Note that it is relevant to study carefully the weak convergence rate, since owing to [39] it has an
influence on the required number of samples in multilevel Monte Carlo schemes [29].

In order to describe the main results of this work, let us first describe the considered numerical
method. We propose and analyze an explicit fully discrete scheme which combines the spectral
Galerkin method and a tamed exponential Euler scheme, which reads

(3) XN,k`1 “ e´∆tA2

XN,k ` pA2q´1pI ´ e´∆tA2q ´APNF pXN,kq
1 ` ∆t}PNF pXN,kq} ` e´∆tA2

PN∆W
Q
k .

with initial value XN,0 “ PNx0 “ XN p0q and Wiener increments

∆W
Q
k “ WQptk`1q ´ WQptkq.

In the numerical scheme, N P N is the parameter of the spectral Galerkin method, PN are the
associated orthogonal projections, ∆t “ T {K is the time step size, T P p0,8q, K P N and tk “ k∆t

for k P t0, . . . ,K ´ 1u.
The main result of this article is the following weak error estimate: for any function ϕ : H Ñ R

of class C2 with bounded first and second order derivatives and all γ P r0,Γq, one has

(4)
ˇ̌
ErϕpXN,Kqs ´ ErϕpXpT qqs

ˇ̌
ď Cpγ, T, x0, φqp∆t

γ
2 ` λ

´γ
N q,

where the value of the parameter Γ depends on the regularity of the noise: Γ “ 3{2 in the space-
time white noise case (d “ 1) and Γ “ 2 in the trace-class noise case (d P t1, 2, 3u). We refer
to Theorems 3.1 and 3.3 below for precise statements. As mentioned above, we thus prove that
for the considered scheme (3), the weak order of convergence is twice the strong order (see the
discussion below). We refer to the recent preprint [14] for the strong error estimates satisfied by
the scheme (3) considered in this article. We would like to mention that the recent preprint [12]
gives preliminary weak error estimates for implicit fully discrete schemes applied to stochastic Cahn–
Hilliard equation (2), however the authors of that preprint employ different techniques and they have
not been able to prove that the weak order is twice the strong order. Our work thus substantially
improves [12].
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Let us review other recent relevant works on numerical approximations for the stochastic Cahn–
Hilliard equation. The articles [27, 38] obtain the strong convergence and the semi-strong error
estimates (in a large subsample space) of the finite element method and its implicit discretization
for equation (2) driven by a spatial regular noise. The manuscript [33] studies both the exponential
integrability and the strong convergence rate of the spectral Galerkin method for (2) driven by
trace class noise. By exploiting the equivalence of the original problem and a system consisting of a
random PDE and stochastic convolution, the article [47] presents the strong convergence rate of the
finite element method and a fully discrete scheme in the trace class noise case, and the article [21]
obtains strong error estimates with higher order for an accelerated implicit full discretization in
the space-time white noise case. Finally, the article [20] provides a strong convergence analysis
of numerical schemes for the stochastic Cahn–Hilliard equation driven by multiplicative noise with
unbounded diffusion coefficient.

Let us also explain why it is relevant to consider the tamed numerical scheme (3). It is known
that applying standard explicit schemes (e.g., Euler-Maruyama) to stochastic differential equations
(SDEs) with non-globally Lipschitz continuous coefficients may lead to divergence approximations
due to the lack of moment bounds, see for instance [34]. Using a tamed Euler method [35] is one
of the many possible strategies to overcome this issue, and avoid implicit schemes (that would be
admissible but may lead to higher computational costs), see the monograph [32] and references
therein for further examples. Recently, tamed and truncated Euler schemes have been extended
to treat SPDEs with non-globally Lipschitz continuous coefficients, see for instance [30, 36, 48,

14, 13, 3, 14]. Most of the references are concerned with strong and weak convergence rates of
explicit time-stepping schemes for Allen–Cahn type SPDEs. The tamed exponential explicit Euler
scheme (3) has been introduced and studied for (2) in the recent preprint [14], where only the
strong convergence is studied and the Q-Wiener process is chosen to ensure mass preservation of
the solution. Instead the present work considers a general Q-Wiener process and for completeness
we thus give a detailed proof of the required moment bounds property, see Theorem 3.2 below, for
the scheme (3). In addition, the proof proposed in Section 7 is slightly different from the proof
of [14, Corollary 3.6].

In order to prove the weak error estimates (4) (see Theorem 3.1 and 3.3), one needs to prove
some auxiliary regularity properties for solutions of the (infinite dimensional) Kolmogorov equations
associated with (2). We refer to Theorem 4.1 below for a precise statement. Such results have been
obtained for parabolic semilinear equations, such as the stochastic Allen–Cahn equation, however
it seems that Theorem 4.1 is the first result of this type for the stochastic Cahn–Hilliard equation.
One of the major difficulty we need to deal with is the fact that the nonlinearity AF in (2) does
not satisfy a monotonicity property in H (whereas the nonlinearity F in the Allen–Cahn case is
one-sided Lipschitz continuous). To overcome this issue, we study energy estimates in L2 and H´1

norms, which are similar to the tools used in [14, 45] for instance to prove strong error estimates.
The proofs of Theorem 3.1 and 3.3 are then based on standard arguments which need to combine
carefully the moment bounds on the numerical scheme and the regularity results on the Kolmogorov
equation to obtain the expected result, that the weak order is twice the strong order. Note that
the proof does not require Malliavin calculus techniques, due to the choice of a scheme based on an
exponential integrator. Theorem 4.1 gives regularity results on the Kolmogorov equation associated
with (2) which may be useful in other contexts.

In future works, it may be interesting to study weak error estimates for variants of the scheme (3).
Instead of using a spectral Galerkin method, the spatial approximation can be performed using a
finite element method (see for instance [38] and the strong error estimates in [47]). For the temporal
discretization, one may use implicit methods for both the linear and the nonlinear parts. In addition,
it may be interesting to study the long time behavior of the scheme and of the weak error estimates
and the issue of approximation of invariant distributions.
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The article is organized as follows. Section 2 is devoted to giving the notation, the assumptions
in order to be able to handle the stochastic evolution equation (2). In Section 3, we then provide
a detailed presentation of the numerical scheme (3), and separate the analysis of the spatial and
temporal discretization errors. We state the main results of this article: Theorem 3.1 and 3.3. Sec-
tion 4 is concerned with the statement and the proof of the regularity properties of the Kolmogorov
equation. The proof of Theorem 3.1 on the spatial discretization error is given in Section 5 whereas
the proof of Theorem 3.3 on the temporal discretization error is given in Section 6. Section 7 gives
the proof of the moment bounds stated in Theorem 3.2.

2. Setting

2.1. Notation. The set of integers is denoted by N “ t1, . . . , u, and N0 “ t0u Y N. In the
sequel, we often use the notation j ě 1 (resp. j ě 0) instead of j P N (resp. j P N0).

Let d P t1, 2, 3u and let D “ p0, 1qd Ă R
d be the standard d-dimensional unit cube. For all

p P r1,8s, let Lp denote the standard Banach space LppDq of the p-fold integrable real-valued
mappings defined on D, with the norm denoted by } ¨ }Lp . In this article, we denote the space of
square-integrable real-valued mappings defined on D (p “ 2) by H “ L2 “ L2pDq. Note that H is an
Hilbert space, with norm and inner product denoted by } ¨ } and x¨, ¨y respectively. For all x, y P H,
one has xx, yy “

ş
D
xpξqypξqdξ, and for all p P p1,8q one also use the notation xx, yy “

ş
D
xpξqypξqdξ

for all x P LppDq and y P L
p

p´1 pDq. If L : H Ñ H is a linear operator, its trace (when it is finite) is
denoted by TrpLq. The set of bounded linear operators from H to H is denoted by LpHq, and the
set of Hilbert–Schmidt linear operators from H to H is denoted by L2pHq, with associated norm
denoted by } ¨ }L2pHq.

For all s P r0, 2s, let W s,2pDq denote the standard fractional Sobolev spaces, with norm denoted
by } ¨ }W s,2 , see for instance [49, Section 1.11].

If ϕ : H Ñ R is a mapping of class C2 with bounded first and second order derivatives, set

(5) ~ϕ~2 “ sup
xPH

sup
hPHzt0u

Dϕpxq.h
|h| ` sup

xPH
sup

h1,h2PHzt0u

D2ϕpxq.ph1, h2q
|h1||h2| .

In the sequel, the values of constants C P p0,8q appearing in the statements and proofs of the
moment bounds and of the error estimates may change from line to line. Similarly, the value of the
integer q P N may also change from line to line.

2.2. Assumptions.

2.2.1. Linear operator. In this article, ´A is the Laplace operator ∆ considered with homoge-
neous Neumann boundary conditions on BD. This means that the linear operator A is unbounded
and self-adjoint, with domain DpAq “ tv P W 2,2pDq; Bv

Bn “ 0 on BDu Ă H. Moreover, there exists a

complete orthonormal system
`
ej

˘
j“0,1,...

of the Hilbert space H and a non-decreasing sequence of

nonnegative real numbers
`
λj

˘
jě0

, such that for all j P N0 one has

Aej “ λjej .

One has e0p¨q “ 1 and λ0 “ 0. In addition, one has λj ě λ1 ą 0 for all j P N, and there exists

cd P p0,8q such that λj „ cdj
2{d when j Ñ 8.

Introduce the Hilbert space H Ă H defined by

(6) H “ spantej ; j ě 1u
and let P be the associated orthogonal projection operator: for all x P H, one has

(7) Px “
ÿ

jě1

xx, ejyej “ x ´ xx, e0ye0.
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For all α P R
` and all x P H, set

(8) |x|2α “
8ÿ

j“1

λα
j xx, ejy2 P r0,8s,

and for all α P R
` introduce the space

(9) H
α “ tx P H; |x|α ă 8u.

The space H
α may be considered both as a dense subspace of the Hilbert space H, and as an Hilbert

space with norm | ¨ |α. Note that one obtains H “ H
0 when α “ 0, and in that case the notation

| ¨ | “ | ¨ |0 is used in the sequel.

For any α P R`, the linear unbounded self-adjoint, operator A
α
2 is then defined with the domain

DpAα
2 q “ H

α and such that for all x P H
α one has

(10) A
α
2 x “

ÿ

jě1

λ
α
2

j xx, ejyej.

Finally, for all α P R
` set

(11) Hα “ tx P H; Px P H
αu,

and for all x P Hα set

(12) }x}2α “ |Px|2α ` xx, e0y2.
For any α P R

`, one defines the bounded self-adjoint linear operator A´α
2 on H as follows: for all

x P H, set

(13) A´α
2 x “

ÿ

jě1

λ
´α

2

j xx, ejyej.

For all N P N, define the finite dimensional subspace

(14) HN “ spante0, . . . , eNu
of H. In addition, define the orthogonal projection operator PN as follows: for all x P H, set

(15) PNx “
Nÿ

j“0

xx, ejyej P HN .

Let also HN “ spante1, . . . , eNu. Note that HN Ă Hα and HN Ă H
α for all α ě 0 and N P N.

It remains to introduce the semigroup
`
e´tA2˘

tě0
of bounded linear operators defined on H.

For all t ě 0 and all x P H, set

(16) e´tA2

x “
ÿ

jě0

e´tλ2
j xx, ejy.

Note that e´tA2

e0 “ e0 for all t ě 0, and that for all x P H and t ě 0, one has e´tA2

x P H. For all

t ě 0, e´tA2

is a bounded linear operator from H to H, and one has

(17)
}e´tA2

x} ď }x},
}e´tA2

Px} ď e´tλ2
1}Px},

for all t ě 0 and x P H.
The following smoothing property is employed frequently in this article: for all α P r0, 4s, there

exists Cα P p0,8q such that for all t P p0,8q and all x P H, one has e´tA2

x P Hα with

(18) }e´tA2

x}α ď Cαp1 ` t´α
4 q}x}.
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In fact, more precisely one has e´tA2

Px P H
α and the inequality

(19) |e´tA2

Px|α ď Cαt
´α

4 |Px|.
In addition, the following regularity property holds: for all α P r0, 4s, there exists Cα P p0,8q such
that for all t ě 0 and all x P Hα, one has

(20) }
`
e´tA2 ´ I

˘
x} ď Cαt

α
4 }x}α.

In fact, more precisely, one has the equality xe´tA2

x, e0y “ xx, e0y and the inequality

(21) }
`
e´tA2 ´ I

˘
Px} ď Cαt

α
4 |Px|α.

2.2.2. Nonlinearity. Let f : R Ñ R be the polynomial function defined by fpzq “ z3 ´ z for all
z P R. For all p P r1,8s, the mapping F : L3p Ñ Lp is defined by the equality

(22) F pxq “ fpxp¨qq “ x3 ´ x,

for all x P L3p.
Observe that for all y P L4, one has F pyq P L

4

3 , therefore the expression xF pyq, yy is well-defined.
In addition, for all arbitrarily small ǫ P p0, 1q, there exists Cǫ P p0,8q such that for all y P L4, one
has

(23) ´ xF pyq, yy “ ´}y}4L4 ` }y}2L2 ď ´p1 ´ ǫq}y}4L4 ` Cǫ

and for all y, z P L4, one has

(24) |xF py ` zq ´ F pyq, yy| ď ǫ}y}4L4 ` Cǫ

`
1 ` }z}4L4

˘
.

2.2.3. Wiener process. Let
`
βj

˘
jě0

be a sequence of independent standard real-valued Wiener

processes, defined on a probability space
`
Ω,F ,P

˘
, equipped with a filtration

`
Ft

˘
tě0

which satisfies
the usual conditions.

The cylindrical Wiener process is defined formally by

(25) W ptq “
ÿ

jě0

βjptqej ,

where we recall that
`
ej

˘
jPN0

is the complete orthonormal system of H associated with the linear

operator A. Note that

Er}A´α
2 W ptq}2s “

ÿ

jě1

λ´α
j ă 8

if and only if α ą d{2 (since one has λj „ cdj
2{d when j Ñ 8), where we recall that p´Aq´α

2 is
defined by (13). In particular, W ptq does not take values in H.

Two cases are treated in this article. On the one hand, we consider the stochastic Cahn–
Hilliard equation driven by space-time white noise in dimension d “ 1: in this case, set Q “ I the
identity operator, and WQptq “ W ptq. On the other hand, we consider the stochastic Cahn–Hilliard
equation driven by trace-class noise in dimension d P t1, 2, 3u: in this case, let Q be a self-adjoint,

nonnegative, trace-class linear operator on H, and set WQptq “ Q
1

2W ptq, where Q
1

2 is the square-
root of Q. Precisely, there exists a sequence of nonnegative real numbers

`
qj

˘
jPN0

, and a complete

orthonormal system
`
e
Q
j

˘
jPN0

of H, such that one has
ř

jě0 qj ă 8, and for all x P H one has

Qx “
ÿ

jě0

qjxx, eQj yeQj .
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The operator Q
1

2 is defined such that for all x P H one has

Q
1

2x “
ÿ

jě0

?
qjxx, eQj yeQj .

The operator Q is trace-class by assumption, which implies that Q
1

2 is an Hilbert–Schmidt operator:

TrpQq “
ÿ

jě0

xQej , ejy “
ÿ

jě0

xQe
Q
j , e

Q
j y “

ÿ

jě0

qj ă 8

}Q 1

2 }2
L2pHq “

ÿ

jě0

}Q 1

2 ej}2 “
ÿ

jě0

}Q 1

2 e
Q
j }2 “

ÿ

jě0

qj ă 8.

The Q-Wiener process
`
WQptq

˘
tě0

can be expressed as

(26) WQptq “
ÿ

jě0

?
q
j
β
Q
j ptqeQj ,

where
`
β
Q
j ptq

˘
jPN0

is a sequence of independent standard real-valued Wiener processes. In the

sequel, we only use the expression

(27) WQptq “
ÿ

jě0

βjptqQ
1

2 ej “ Q
1

2W ptq,

where W ptq is given by (25), which is well-defined in H: for all t ě 0 one has Er}WQptq}2s “
t

ř
jě0 qj “ tTrpQq ă 8. The two formulations (26) and (27) for WQptq are equivalent.
Note that if the range of Q is included in H, meaning that Qx P H for all x P H, or equivalently

that xQx, e0y “ 0 for all x P H, then the Q-Wiener process WQ takes values in H: WQptq P H for
all t ě 0. The condition above also implies the mass conservation for solutions of (1) (see [27, 21]
for instance).

Let us mention that it is not necessary to assume that the linear operators A and Q commute.

2.3. Auxiliary inequalities. Owing to the Cauchy–Schwarz inequality, for all x P H1, one
has

(28) }x}2 ď |A´ 1

2Px| |A 1

2Px| ` xx, e0y2 “ }A´ 1

2Px}}Px}1 ` xx, e0y2.
Let us recall the following result concerning the spaces Hα “ DpAα

2 q and the associated norms
} ¨ }α for α P r0, 2s, see for instance [49, Theorem 16.9]. On the one hand, for all α P r0, 3

2
q, one has

Hα “ Wα,2pDq.
On the other hand, for all α P p3

2
, 2s, one has

Hα “ W
α,2
N pDq “ tv P Wα,2pDq; Bv

Bn “ 0 on BDu Ă Wα,2pDq.

In addition, for all α P r0, 2szt3
2

u, the norms } ¨ }α and } ¨ }Wα,2 are equivalent on Hα: there exists
Cα P r1,8q such that for all x P Hα one has

(29) C´1
α }x}Wα,2 ď }x}α ď Cα}x}Wα,2 .

Recall the following Sobolev embedding property: for all α ą d{2, one has Wα,2pDq Ă L8pDq, and
there exists Cα,d P p0,8q such that

(30) }x}L8 ď Cα,d}x}Wα,2 .

As a consequence of (29) and (30), for all α P pd{2, 2szt3{2u, there exists Cα P p0,8q such that one
has the inequality

(31) }x}L8 ď Cα}x}α
7



for all x P Hα. In addition, for all α P pd{2, 2szt3{2u, the space Hα is an algebra: there exists
Cα P p0,8q such that for all x, y P Hα, one has xy P Hα and the inequality

(32) }xy}α ď Cα}x}α}y}α.
Note also that for all x P H and y P Hα with α P pd{2, 2szt3{2u, one has

(33) }xy} ď Cα}x}}y}α.
A duality argument implies the following additional inequality: for all α P pd{2, 2szt3{2u and x P L1,
one has

(34) }A´α
2 Px} ď Cα}x}L1 .

Note that H1 is an algebra only when d “ 1, whereas H2 is an algebra for all values of d P t1, 2, 3u.
In order to prove the moment bounds for the exact and numerical solutions stated below, the

cases d “ 1 and d P t2, 3u are treated using different techniques. On the one hand, when d “ 1,

one has the Sobolev embedding H
1

3 “ W
1

3
,2pDq Ă L6pDq (see for instance [24, Theorem 6.7]), and

there exists C P p0,8q such that for all x P H
1

3 one has

(35) }x}L6 ď C}x}
W

1
3
,2 ď C}x} 1

3

ď C
`
|A 1

6Px| ` |xx, e0y
ˇ̌
q.

Moreover, when d “ 1, one also has the following Gagliardo–Nirenberg inequality, see, e.g., [11,
Theorem 1]: there exists C P p0,8q such that for all x P H2 one has

(36) }x}L6 ď C}x}
1

6

W 2,2}x} 5

6 ď C}x}
1

6

2 }x} 5

6 ď C
`
|APx| ` |xx, e0y

ˇ̌
q 1

6 }x} 5

6 .

On the other hand, when d P t2, 3u, we introduce the energy functional J defined as follows: for all
x P H1 X L4 set

(37) Jpxq “ 1

2
}x}2H1 ` 1

4
}x}4L4 ´ 1

2
}x}2L2 .

In addition, for all d P t1, 2, 3u, one has the Sobolev embedding properties H
d
4 Ă L4 and

H1 Ă L6 (see for instance [24, Theorem 6.7]), and there exists Cd P p0,8q such that for all x P H
d
4

one has

}x}L4 ď C}x}
W

d
4
,2

ď C}x} d
4

,(38)

}x}L6 ď C}x}W 1,2 ď C}x}1.(39)

The properties of the spaces Hα discussed above are now applied to state a few additional
properties of the nonlinearity F . For all d P t1, 2, 3u and γ P pd{2, 2szt3{2u, there exists Cγ P p0,8q
such that for all x P Hγ one has F pxq P Hγ and

(40) }F pxq}γ ď Cγ

`
1 ` }x}3γ

˘
.

The inequality (40) is a straightforward consequence of the algebra property (32) for Hγ . In addition,
for all γ P pd{2, 2szt3{2u, there exists Cγ P p0,8q such that for all y P L4 and z P Hγ one has

(41) }F py ` zq ´ F pyq} ď
`
3}yz2} ` 3}zy2} ` }z3}

˘
ď Cγ

`
1 ` }y}2L4

˘`
1 ` }z}3γ

˘
.

Finally, for all γ P pd{2, 2szt3{2u, there exists Cγ P p0,8q such that for all x P Hγ and all h, k P H,
one has

(42)
}F 1pxq.h} “ }f 1pxp¨qqhp¨q}L2 ď C

`
1 ` }x}2γ

˘
}h}

}F 2pxq.ph, kq}L1 “ }f2pxp¨qqhp¨qkp¨q}L1 ď C
`
1 ` }x}γ

˘
}h}}k}.

The inequalities (42) are straightforward consequences of the algebra property (32) for Hγ .
8



2.4. Well-posedness and moment bounds. Let us introduce the stochastic convolution
process

`
Zptq

˘
tě0

defined by

(43) Zptq “
ż t

0

e´pt´sqA2

dWQpsq,

which is understood as the unique mild solution of the stochastic evolution equation

dZptq ` A2Zptqdt “ dWQptq
with initial value Zp0q “ 0.

Recall that the Wiener process
`
WQptq

˘
tě0

is defined by (27), where two cases are considered

for the covariance operator Q. In order to study the properties of the stochastic convolution process
defined by (43), it is convenient to introduce the parameters Γ and Γ0 defined as follows.

Assumption 1. Let one of the conditions be satisfied.

piq Let d “ 1 and Q “ I. In that case, set Γ “ 3
2

and Γ0 “ 1.
piiq Let d P t1, 2, 3u and let Q be a self-adjoint, nonnegative, trace-class linear operator on H.

In that case, set Γ “ 2 and Γ0 “ 1 ` d
4
.

Note that in both cases the condition γ P pΓ0,Γq implies γ P pd{2, 2szt3{2u. Imposing the
condition γ P pΓ0,Γq is necessary in the proofs, however assuming that γ ą Γ0 is not restrictive
since the orders of convergence are obtained when choosing γ arbitrarily close to Γ.

One has the following result concerning the stochastic convolution (see, e.g., [21, Section 2]
and [45, Lemma 3.2]).

Lemma 2.1. Let Assumptions 1 be satisfied. For all T P p0,8q, m P N and all γ P r0,Γq, one
has

(44) Er sup
0ďtďT

}Zptq}mL8s ` Er sup
0ďtďT

}Zptq}mγ s ă 8.

The moment bounds in the L8 norm (first term in the left-hand side of (44)) are a straight-
forward consequence of the moment bounds in the norm } ¨ }γ (second term in the left-hand side
of (44)) and of the Sobolev inequality (31).

We are now in position to state a well-posedness result for mild solutions of the stochastic
evolution equation

(45) dXptq ` A
`
AXptq ` F pXptqq

˘
dt “ dWQptq

with initial value Xp0q “ x0. To indicate that the initial value of Xp0q is equal to x0, the notation
Ex0

r¨s is used in the sequel.

Proposition 2.2. Let Assumption 1 be satisfied and assume that x0 P HΓ. Then the stochastic
evolution equation (45) admits a unique global mild solution with initial value Xp0q “ x0, namely a
H-valued continuous stochastic process

`
Xptq

˘
tě0

such that for all t ě 0 one has

(46) Xptq “ e´tA2

x0 ´
ż t

0

e´pt´sqA2

AF pXpsqqds `
ż t

0

e´pt´sqA2

dWQpsq.

Moreover, there exists q P N such that for all T P p0,8q, m P N and all γ P pΓ0,Γq, one has the
moment bound

(47) sup
x0PHγ

`
Ex0

r sup
0ďtďT

}Xptq}mγ s
˘ 1

m

p1 ` }x0}qγq ă 8
9



and the increment bound

(48) sup
x0PHγ

sup
0ďt1ăt2ďT

`
Ex0

r}Xpt2q ´ Xpt1q}ms
˘ 1

m

|t2 ´ t1|γ4 p1 ` }x0}qγq
ă 8.

The proof of Proposition 2.2 is omitted. Under Assumption 1-piq (space-time white noise case
in dimension d “ 1), the strong moment bounds (47) follow from [21, Proposition 1] for instance.
Under Assumption 1-piiq (trace-class noise case in dimensions d “ 1, 2, 3), the strong moment
bounds (47) follow from [45, Theorem 3.7] and (44) for instance. The increment bounds (48) are
then obtained by standard techniques. Observe that the Kolmogorov regularity criterion ensures
that almost surely the trajectories t P r0, T s ÞÑ Xptq P H are γ

4
-Hölder continuous for all γ P r0,Γq.

3. Numerical methods and convergence results

In this section, we first describe in Section 3.1 the method employed for the spatial discretization:
a spectral Galerkin approximation method is introduced. Our first main result is Theorem 3.1, which
gives a weak order of convergence Γ in terms of λN when the approximation parameter N goes to
8 – whereas the strong order of convergence is known to be equal to Γ{2, see for instance [21, 45]
and (52) below. We then describe in Section 3.2 the fully discrete method: a tamed exponential
Euler scheme is employed for the temporal discretization. Our second main result is Theorem 3.3,
which gives a weak order of convergence Γ{2 in terms of the time-step size ∆t – whereas the strong
order of convergence is known to be equal to Γ{4, see for instance [14]), see also [21] for a similar
result for an implicit scheme. When an accelerated exponential Euler scheme is used, there is no
approximation error for the contribution of the stochastic convolution and the temporal strong order
of convergence may be improved, see [21].

3.1. Spatial discretization. Let N P N be an integer. Introduce the HN -valued process`
XN ptq

˘
tě0

which is the solution of the stochastic evolution equation

(49) dXN ptq ` A
`
AXN ptq ` PNF pXN ptqq

˘
dt “ PNdWQptq

with initial value XN p0q “ PNx0. The process XN is an approximation of X using the spectral
Galerkin method. Note that the noise in the stochastic evolution equation (49) is a Wiener process
with covariance operator PNQPN . If the covariance operator Q and the linear operator A commute

(which is not assumed to the case in general), then one has PNdWQptq “
řN

j“0

?
qjβjptqej .

Before stating Theorem 3.1, it is worth mentioning two auxiliary results. First, the results
of Proposition 2.2 hold for XN , uniformly with respect to N P N. Precisely, for all N P N, the
stochastic evolution equation (49) admits a unique mild solution with values in HN , defined for all
times. Moreover, for all T P p0,8q, m P N and γ P pΓ0,Γq, there exists Cγ,mpT q P p0,8q such that
for all x0 P Hγ one has the moment bounds

(50) sup
NPN

`
EPNx0

r sup
0ďtďT

}XN ptq}mγ s
˘ 1

m ď Cγ,mpT qp1 ` }x0}qγq,

where the integer q P N is given by Proposition 2.2 (in particular, it does not depend on the spatial
approximation parameter N P N). Similarly, for all x0 P Hγ and 0 ď t1 ď t2 ď T , one has the
increment bounds

(51) sup
NPN

`
EPNx0

r}XN pt2q ´ XN pt1q}ms
˘ 1

m ď Cγ,mpT q|t2 ´ t1|γ4 p1 ` }x0}qγq.

Second, the strong error between XN pT q and XpT q converges to 0 when N Ñ 8, with order Γ{2
with respect to λN , in the following sense, see [21, Theorem 1] and [14, Theorem 3.1]: there exists
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q P N such that, for all T P p0,8q, m P N and γ P pΓ0,Γq, there exists Cγ,mpT q P p0,8q such that
for all x0 P Hγ and all N P N one has the strong error estimate

(52)
`
Er}XN pT q ´ XpT q}ms

˘ 1

m ď Cγ,mpT qp1 ` }x0}qγqλ´ γ
2

N ,

with initial values Xp0q “ x0 and XN p0q “ PNx0.
We are now in position to state our first main result. Recall that ~ϕ~2 is given by (5).

Theorem 3.1. Let Assumption 1 be satisfied. There exists q P N such that the following holds.
For all T P p0,8q and γ P pΓ0,Γq, there exists CγpT q P p0,8q such that for all functions ϕ : H Ñ R

of class C2 with bounded first and second order derivatives, x0 P Hγ and N P N, one has the weak
error estimate

(53)
ˇ̌
ErϕpXN pT qqs ´ ErϕpXpT qqs

ˇ̌
ď CγpT qp1 ` }x0}qγq~ϕ~2λ

´γ
N ,

with initial values Xp0q “ x0 and XN p0q “ PNx0.

The proof of Theorem 3.1 is postponed to Section 5, however let us describe the most impor-
tant arguments. Since the function ϕ is globally Lipschitz continuous, owing to the strong error
estimate (52), one has

ˇ̌
ErϕpXN pT qqs ´ ErϕpXpT qqs

ˇ̌
“ lim

MÑ8

ˇ̌
ErϕpXN pT qqs ´ ErϕpXM pT qqs

ˇ̌
,

therefore it suffices to prove the following weak error estimate:

(54) sup
MěN

ˇ̌
ErϕpXN pT qqs ´ ErϕpXM pT qqs

ˇ̌
ď CγpT qp1 ` }x0}qγq~ϕ~2λ

´γ
N ,

The weak error appearing in the left-hand side of the inequality (54) can be written as

(55) ErϕpXN pT qqs ´ ErϕpXM pT qqs “ EruM p0,XN pT qqs ´ EruM pT,XM p0qqs,
where M ě N , and the function uM is defined by

(56) uM pt, xq “ ExrϕpXM ptqqs
for all t ě 0 and x P HM , see equation (64). Section 4 below is devoted to the analysis of the
regularity properties of the function uM , which is the solution of a Kolmogorov equation associated
with the stochastic evolution equation (49) with N “ M . The delicate point of the analysis is to
obtain suitable estimates on the first and second order derivatives of uM with respect to the variable
x which are uniform with respect to M P N: we refer to Theorem 4.1 and Section 4 below for such
results. The use of Itô’s formula and of the Kolmogorov equation and the application of the suitable
regularity estimates for uM then provide the weak error estimate (54), see the details in Section 5.
The strategy is standard in the literature, however one needs to perform the analysis in Section 4
which is the main novelty in this work on numerical methods for the stochastic Cahn–Hilliard
equation.

3.2. Full discretization. Let us now introduce the full discretization which is performed us-
ing a tamed exponential Euler scheme, combined with the spectral Galerkin method described in
Section 3.1 (with discretization parameter still denoted by N P N). Let ∆t denote the time-step
size. Without loss of generality, assume that ∆t “ T {K where T P p0,8q is a fixed positive real
number, and K P N is an integer. For all k P t0, . . . ,Ku, set tk “ k∆t. The tamed exponential
Euler fully discrete scheme we consider is defined as follows: for all k “ 0, . . . ,K ´ 1, set

(57) XN,k`1 “ e´∆tA2

XN,k ` pA2q´1pI ´ e´∆tA2q ´APNF pXN,kq
1 ` ∆t}PNF pXN,kq} ` e´∆tA2

PN∆W
Q
k ,

with initial value XN,0 “ PNx0 “ XN p0q, and where

∆W
Q
k “ WQptk`1q ´ WQptkq.
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The taming procedure consists in introducing the factor 1
1`∆t}PNF pXN,kq} in the right-hand side

of (57). To understand the construction of the scheme, note that one has

pA2q´1pI ´ e´∆tA2q “
ż tk`1

tk

e´ptk`1´tqA2

dt.

Before stating Theorem 3.3, it is worth mentioning two auxiliary results. First, one has moment
bounds for XN,k, which are uniform with respect to N and ∆t. Note that the scheme (57) is explicit,
therefore the taming procedure plays a crucial role. Indeed, the moment bounds are not expected
to hold if one employs a standard exponential Euler scheme.

Theorem 3.2. Let Assumption 1 be satisfied. For all T P p0,8q, m P t1, . . .u and γ P pΓ0,Γq,
there exists q P N and Cγ,mpT q P p0,8q such that for all x0 P Hγ, all N P N and all ∆t “ T {K
with K P N, one has

(58)
`
EPNx0

r sup
0ďkďK

}XN,k}mγ s
˘ 1

m ď Cγ,mpT qp1 ` }x0}qγq.

The proof of Theorem 3.2 is postponed to Section 7. A similar result has been obtained in a
recent preprint [14, Corollary 3.6], where a special class of Q-Wiener process is chosen to ensure
mass preservation of the solution. However, the present work considers a general Q-Wiener process
and a detailed and slightly different proof is given below for completeness.

Second, the strong error between XN,K and XN pT q “ XN pK∆tq converges to 0 when ∆t Ñ 0

(K Ñ 8), with order Γ{4, uniformly with respect to λN , in the following sense, see [14, Theo-
rem 3.8]: there exists q P N such that, for all T P p0,8q, m P N and γ P pΓ0,Γq, there exists
Cγ,mpT q P p0,8q such that for all x0 P Hγ , K P N and all N P N one has the strong error estimate

(59)
`
Er}XN,K ´ XN pT q}ms

˘ 1

m ď Cγ,mpT qp1 ` }x0}qγq∆t
γ
4 .

We are now in position to state the second main result of this article.

Theorem 3.3. Let Assumption 1 be satisfied. For all T P p0,8q, γ P pΓ0,Γq and x0 P Hγ,
there exists CγpT, }x0}γq P p0,8q such that for all N P N

`, all ∆t “ T {K with K P N
`, and all

functions ϕ : H Ñ R of class C2 with bounded first and second order derivatives, one has the weak
error estimate below for the tamed exponential Euler scheme (57) (∆t Ñ 0 with fixed N P N):

(60)
ˇ̌
ˇErϕpXN,Kqs ´ ErϕpXN pT qqs

ˇ̌
ˇ ď Cpγ, T, }x0}γq~ϕ~2∆t

γ
2 .

Furthermore, one obtains the following weak error estimate for the fully discrete scheme (∆t Ñ 0

and N Ñ 8): under the same assumptions, one has
ˇ̌
ˇErϕpXN,Kqs ´ ErϕpXpT qqs

ˇ̌
ˇ ď Cpγ, T, }x0}γq~ϕ~2p∆t

γ
2 ` λ

´γ
N q.(61)

Note that the weak error estimate (61) for the fully discrete scheme is a straightforward con-
sequence of (53) and (60). The proof of Theorem 3.3 is postponed to Section 6, however let us
describe the most important arguments. The weak error is written as

(62) ErϕpXN,Kqs ´ ErϕpXN pT qqs “ EruN p0,XN,Kqs ´ EruN pT,XN,0qs,
where uN is the auxiliary function defined by (56). For any N P N and ∆t, let us introduce a

continuous-time process
`
X̃∆t

N ptq
˘
0ďtďT

, such that X̃∆t
N ptkq “ XN,k for all k P t0, . . . ,Ku. The

process is defined as follows: for all t P rtk, tk`1s, set
(63)

X̃∆t
N ptq “ e´pt´tkqA2

XN,k `
ż t

tk

e´pt´sqA2 ´APNF pXN,kq
1 ` ∆t}PNF pXN,kq}ds ` e´pt´tkqA2

PN pWQptq ´ WQptkqq.
12



Using a telescoping sum argument and the auxiliary process, one then has

ErϕpXN,Kqs ´ ErϕpXN pT qqs “
K´1ÿ

k“0

`
EruN pT ´ tk`1,XN,k`1qs ´ EruN pT ´ tk,XN,kqs

˘

“
K´1ÿ

k“0

`
EruN pT ´ tk`1, X̃

∆t
N ptk`1qqs ´ EruN pT ´ tk,X

∆t
N ptkqqs

˘
.

Like for the proof of Theorem 3.1, the use of Itô’s formula and of the Kolmogorov equation and the
application of the suitable regularity estimates for uN then provide the weak error estimate (60),
see the details in Section 6. The strategy of the proof described above is standard in the literature,
the main novelty in this work is the application of the results on the Kolmogorov equation from
Section 4.

Remark 3.4. If the cubic nonlinearity F is replaced by a globally Lipschitz continuous mapping
of class C2, with bounded derivatives, one can prove variants of Theorems 3.1 and 3.3 using similar
arguments, and obtain again that the weak order is twice the strong order. In addition, considering
the case F “ 0 would show that the strong and weak orders of convergence are optimal. In fact,
in the globally Lipschitz case the proof of the moment bounds (Theorem 3.2) and of the regularity
properties for solutions of Kolmorogov equations (Theorem 4.1) would be substantially simplified.
Even if, to the best of our knowledge, this situation has not been treated in the literature, the details
are omitted and we only consider the cubic nonlinearity case.

4. Regularity results for solutions of Kolmogorov equations

Let ϕ : H Ñ R be a function of class C2, with bounded first and second order derivatives.
As explained in Sections 3.1 and 3.2, the mappings uM defined by (56), which are solutions of
Kolmogorov equations, play an important role in the proof of weak error estimates studied in this
article. The objective of this section is to study the regularity properties of uM and to prove bounds
which are uniform with respect to M P N. To the best of our knowledge, such results have not
been obtained yet for stochastic Cahn–Hilliard equations, and are one of the main novelties of this
article.

For all M P N, define the function uM : r0,8q ˆ H Ñ R such that

(64) uM pt, xq “ ExrϕpXM ptqqs
for all t ě 0 and x P HM , where

`
XM ptq

˘
tě0

is the solution of the stochastic evolution equation (49)

with initial value XM p0q “ x and N “ M . We recall that the notation Exr¨s means that XM p0q “ x.
For all M P N and all t ě 0, the mapping uM pt, ¨q is of class C2 on HM , and for all x, h, h1, h2 P HM ,
one has

(65)

#
DuM pt, xq.h “ ExrDϕpXM ptqq.ηhM ptqs

D2uM pt, xq.ph1, h2q “ ExrDϕpXM ptqq.ζh1,h2

M ptqs ` ExrD2ϕpXM ptqq.pηh1

M ptq, ηh2

M ptqqs,

where the processes
`
ηhM ptq

˘
tě0

and
`
ζ
h1,h2

M ptq
˘
tě0

are the solutions of the first variational equation

(66)
dηhM ptq

dt
“ ´A2ηhM ptq ´ APM

`
F 1pXM ptqqηhM ptq

˘
,

with initial value ηhM p0q “ h, and of the second variational equation

(67)
dζ

h1,h2

M ptq
dt

“ ´A2ζ
h1,h2

M ptq ´ APM

`
F 1pXM ptqqζh1,h2

M ptq
˘

´ APM

`
F 2pXM ptqqηh1

M ptqηh2

M ptq
˘
,
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with initial value ζ
h,k
M p0q “ 0, respectively. Note that ηhM ptq and ζ

h1,h2

M ptq also depend on the initial
value x “ XM p0q, however this dependence is omitted to simplify the notation. Since the noise is

additive in (49), ηhM p¨q and ζ
h1,h2

M p¨q are solutions of evolution equations which are not driven by a
Wiener process.

For all M P N, the mapping uM : r0, T s ˆ HM Ñ R is the solution of the Kolmogorov equation
(see for instance the monograph [15])

(68)

#
BtuM pt, xq “ LMuM pt, xq, pt, xq P r0, T s ˆ HM ,

uM p0, xq “ ϕpxq, x P HM ,

where the infinitesimal generator LM associated with the stochastic evolution equation (49) (with
N “ M) on HM is given by

(69) LMφpxq “ Dφpxq.
`
´A2x ´ APMF pxq

˘
` 1

2

ÿ

jě0

D2φpxq.
`
PMQ

1

2 ej , PMQ
1

2 ej
˘

for all x P HM , if φ : HM Ñ R is of class C2.

4.1. Statement of the regularity estimates. The main challenge is to prove estimates on
DuM pt, xq.h and D2uM pt, xq.ph1, h2q, with upper bounds independent of M P N, and which are
suitable to obtain the weak error estimates in Theorems 3.1 and 3.3. The main result of this section
is Theorem 4.1 below.

Theorem 4.1. Let Assumption 1 be satisfied. There exists q P N such that the following holds.
For all α P r0, 2q and all α1, α2 P r0, 2q such that α1`α2 ă 2, all γ P pΓ0,Γq and all T P p0,8q, there
exist positive real numbers Cα,γpT q P p0,8q and Cα1,α2,γpT q P p0,8q such that for all functions ϕ :

H Ñ R of class C2 with bounded first and second order derivatives, all M P N, all x, h, h1, h2 P HM

and all t P p0, T s, one has

(70)

|DuM pt, xq.h|`
1 ` }x}qγ

˘
~ϕ~2

ď Cα,γpT qt´α
2 p|A´α

Ph| ` |xh, e0y|q

|D2uM pt, xq.ph1, h2q|`
1 ` }x}qγ

˘
~ϕ~2

ď Cα1,α2,γpT qt´
α1`α2

2 p|A´α1Ph1| ` |xh1, e0y|qp|A´α2Ph2| ` |xh2, e0y|q.

Let us emphasize that the real numbers Cα,γpT q and Cα1,α2,γpT q appearing in the right-hand
side of (70) do not depend on M P N. Taking α “ α1 “ α2 “ 0 in Theorem 4.1 justifies that
uM pt, ¨q is of class C2 for all t ě 0, and gives bounds on the first and second order derivatives which
are uniform with respect to M P N. However, for the proof of weak error estimates in Theorems 3.1
and 3.3, one requires the inequalities (70) with α ą 0 and α1`α2 ą 0, more precisely α and α1 need
to be chosen arbitrarily close to 2 (with α2 “ 0) to obtain a weak order of convergence which is twice
the strong order. The upper bounds are not uniform with respect to t P r0, T s since the initial value
uM p0, ¨q “ ϕpPM ¨q is not assumed to satisfy this type of regularity estimate. The inequalities (70)
thus exhibit a regularization effect, which is due to the smoothing property (18). The condition
γ P pΓ0,Γq implies the condition γ P pd

2
,Γqzt3

2
u, which is required due to the application of the

properties from Section 2.3, and ensures the validity of moment bounds (50).
Theorem 4.1 is a variant of results previously obtained for solutions of Kolmogorov associated

with parabolic semilinear stochastic evolution equations: see [5] (additive noise) and [8] (multi-
plicative noise) in the case of globally Lipschitz nonlinearities, and [9, 22] (Allen–Cahn equation)
and [19, 6] (dissipative polynomial nonlinearities). In the references above, the spatial approxima-
tion parameter M P N is sometimes omitted even if an auxiliary spectral Galerkin approximation
is applied. We use arguments similar to those employed in the aforementioned references in order
first to prove Theorem 4.1 and second to apply this result to prove weak error estimates. To the
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best of our knowledge, Theorem 4.1 is the first result in the literature giving regularity results for
solutions of Kolmogorov equations associated with stochastic Cahn–Hilliard type equations driven
by additive noise. Note that the case of globally Lipschitz nonlinearities F has not been treated
in the literature, however one can obtain a version of Theorem 4.1 using similar arguments with
substantial technical simplifications. Compared with the parabolic semilinear case, note that the
power in the singularity t´α

2 is related to the smoothing inequality (18), and is thus different from
the singularity appearing in the parabolic case.

Before proceeding with the proof of Theorem 4.1, let us mention that the expression of the
inequalities (70) requires to write h “ Ph ` xh, e0y and to treat differently the two contributions.
Indeed, since ´A is the Laplace operator with Neumann boundary conditions, one has Ae0 “ 0,
whereas if Dirichlet boundary conditions were considered all the eigenvalues of A would be bounded
positive and bounded away from 0. In the setting considered in this article, A´α for α ą 0 is defined
only on the subspace H “ PpHq, which results in more complicated expressions in the right-hand
sides of (70).

To understand the dependence in the right-hand sides of the inequalities (70) with respect to
α,α1, α2, it is relevant to consider the case F “ 0, and to assume that Q and A commute. Instead
of uM , consider the mappings vM defined by

vM pt, xq “ Erϕpe´tA2

PMx ` PMZptqqs,
for all t ě 0 and x P HM , where we recall that

`
Zptq

˘
tě0

is the stochastic convolution defined

by (43). It is then straightforward to check that for all M P N, x, h, h1, h2 P HM and t P r0, T s, one
has

DvM pt, xq.h “ ErDϕpe´tA2

PMx ` PMZptqq.e´tA2

hs
D2vM pt, xq.ph1, h2q “ ErD2ϕpe´tA2

PMx ` PMZptqq.pe´tA2

h1, e
´tA2

h2qs.
As a consequence, one obtains the inequalities

|DvM pt, xq.h| ď ~ϕ~2}e´tA2

h}
ď Cα~ϕ~2t

´α
2 p|A´α

Ph| ` |xh, e0y|q
|D2vM pt, xq.ph1, h2q| ď ~ϕ~2}e´tA2

h1}}e´tA2

h2}

ď Cα1,α2
~ϕ~2t

´
α1`α2

2 p|A´α1Ph1| ` |xh1, e0y|qp|A´α2Ph2| ` |xh2, e0y|q
as straightforward applications of the smoothing inequality (18) associated with the semigroup`
e´tA2˘

tě0
. Note that in the inequalities for DvMpt, xq.h and D2vM pt, xq.ph1, h2q one may choose

arbitrary α,α1, α2 ě 0. The study above explains the meaning of the inequalities (70) from The-
orem 4.1 and why they may be seen as optimal in the treatment of the parameters α,α1, α2. The
conditions α ă 2 and α1`α2 ă 2 appear due to the presence of a nonlinearity F , and the expression
1 ` }x}qγ appears due to the fact that F has polynomial growth.

4.2. Auxiliary results. In order to prove Theorem 4.1, it is convenient to introduce the family`
ΠM pt, sq

˘
těsě0

of random linear operators on HM , which is defined as follows. For all M P N,

s ě 0 and h P HM , t P rs,8q ÞÑ ΠM pt, sqh P HM “ ηhM pt, sq is the solution of the linear random
evolution equation

(71)
dηhM pt, sq

dt
“ ´A2ηhM pt, sq ´ APM

`
F 1pXM ptqqηhM pt, sq

˘
,

for t ě s, with initial value ηhM ps, sq “ h. The linear operators ΠM pt, sq also depend on the initial
value x P HM of XM . This dependence is omitted to simplify the notation. These two parameter
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family of linear operators have already been used in [8, 10, 19] in order to obtain regularity
properties of solutions of Kolmorov equations for parabolic semilinear SPDEs.

First, note that the processes
`
ηhM ptq

˘
tě0

and
`
ζh1,h2ptq

˘
tě0

which are solutions of (66) and (67)

respectively can be expressed using the linear operators ΠM pt, sq.
Lemma 4.2. For all M P N, x, h, h1, h2 P HM and t ě 0, one has

$
’&
’%

ηhM ptq “ ΠM pt, 0qh

ζ
h1,h2

M ptq “ ´
ż t

0

ΠM pt, sqAPM

`
F 2pXM psqqpΠM ps, 0qh1,ΠM ps, 0qh2q

˘
ds.

Proof of Lemma 4.2. The identity ηhM ptq “ ΠM pt, 0qh is a straightforward application of the
definition (71) of the linear operators

`
ΠM pt, 0q

˘
tě0

(with s “ 0).
To check that the second identity holds, it suffices to write the evolution equation satisfied by

the right-hand side in terms of t ě 0: it is also solution of (67) (using the first identity) and vanishes

when t “ 0, therefore it is equal to ζ
h1,h2

M ptq at all times t ě 0.
The proof of Lemma 4.2 is completed. �

The main technical result in this section, which is instrumental in the proof of Theorem 4.1, is
Lemma 4.3.

Lemma 4.3. For all α P r0, 2q, γ P pΓ0,Γq and all T P p0,8q, there exists a real number
Cα,γpT q P p0,8q such that for all M P N, all x, h P HM , all 0 ď s ă t ď T , one has almost surely

(72) }ΠM pt, sqh} ď Cα,γpT q
`
1 ` sup

rPrs,T s
}XM prq}5γ

˘
pt ´ sq´α

2 p|A´α
Ph| ` |xh, e0y|q.

Note that the real numbers Cα,γpT q appearing in the statement of Lemma 4.3 are deterministic.

Observe that if F “ 0, one has ΠM pt, 0q “ e´tA2

PM for all t ě 0, therefore the inequality (72) may
be interpreted as a variant of the smoothing inequality, this is consistent with the discussion above
concerning the interpretation of Theorem 4.1.

The proof of Lemma 4.3 is the most delicate contribution of this section. The proof requires
two steps: the inequality (72) is proved first for α P r0, 1s, and then for α P p1, 2q. A key argument
of the proof is to set

(73) η̃hM pt, sq “ ηhM pt, sq ´ e´pt´sqA2

h

for all M P N, x, h P HM and t ě s ě 0. Observe that pI ´ Pqη̃hM pt, sq “ 0 for all t ě s, and that

η̃hM ps, sq “ 0. In addition, for all t ě s one has

(74)
dη̃hM pt, sq

dt
` A2η̃hM pt, sq ` APM

`
F 1pXM ptqqη̃hM pt, sq

˘
“ ´APM

`
F 1pXM ptqqpe´pt´sqA2

hq
˘
.

A variant of Lemma 4.2 yields the following identity: for all t ě s, one has

(75) η̃hM pt, sq “ ´
ż t

s

ΠM pr, sq
´
APM

`
F 1pXM prqqpe´pr´sqA2

hq
˘¯

dr.

Since for all t ě s one has

ΠM pt, sqh “ ηhM pt, sq “ e´pt´sqA2

h ` η̃hM pt, sq,
owing to the smoothing inequality (18) it suffices to prove upper bounds for η̃hM pt, sq. When α P r0, 1s
(first step), the proof of these upper bounds requires to exploit two energy estimates, in the }A´ 1

2 ¨ }
and }¨} norms, using the evolution equation (74). When α P p1, 2q (second step), the inequality (72)
is obtained by combining the identity (75) and the inequality obtained when α “ 1 (first step).
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Proof of Lemma 4.3. In this proof, the value of s ě 0 is fixed. Let M P N, and let x, h P HM

also be fixed.
Let us first prove the inequality (72) when α P r0, 1s. Recall that η̃hM pt, sq P H for all t ě s. Due

to (74), one obtains two energy estimates (76) and (77) in the }A´ 1

2 ¨ } and } ¨ } norms respectively:
for all t ě s, one has

(76)

1

2

d}A´ 1

2 η̃hM pt, sq}2
dt

` }A 1

2 η̃hM pt, sq}2 ` xF 1pXM ptqqη̃hM pt, sq, η̃hM pt, sqy

“ ´xF 1pXM ptqqpe´pt´sqA2

hq, η̃hM pt, sqy

and

(77)

1

2

d}η̃hM pt, sq}2
dt

` }Aη̃hM pt, sq}2 ` xApF 1pXM ptqqη̃hM pt, sqq, η̃hM pt, sqy

“ ´xA
`
F 1pXM ptqqpe´pt´sqA2

hq
˘
, η̃hM pt, sqy.

To exploit the first energy estimate (76), observe that for all t ě s, one has

xF 1pXM ptqqη̃hM pt, sq, η̃hM pt, sqy “ 3xXM ptq2η̃hM pt, sq, η̃hM pt, sqy ´ xη̃hM pt, sq, η̃hM pt, sqy
“ 3}XM ptqη̃hM pt, sq}2 ´ xη̃hM pt, sq, η̃hM pt, sqy.

As a consequence, for all t ě s, one obtains

1

2

d}A´ 1

2 η̃hM pt, sq}2
dt

` }A 1

2 η̃hM pt, sq}2 ` 3}XM ptqη̃hM pt, sq}2

ď }η̃hM pt, sq}2 ` }η̃hM pt, sq}}F 1pXM ptqqpe´pt´sqA2

hq}

ď 3

2
}η̃hM pt, sq}2 ` C}F 1pXM ptqqpe´pt´sqA2

hq}2

using the Cauchy–Schwarz and Young inequalities, and the inequality (33) in the last step. Using
the inequality (28) and the property η̃hM pt, sq P H for all t ě s, one obtains

}η̃hM pt, sq}2 ď }A´ 1

2 η̃hM pt, sq}}A 1

2 η̃hM pt, sq} ď 1

2
}A´ 1

2 η̃hM pt, sq}2 ` 1

2
}A 1

2 η̃hM pt, sq}2.

Applying Gronwall’s lemma, one obtains the following inequality: for all T P p0,8q, there exists a
deterministic real number CpT q P p0,8q such that for all 0 ď s ď t ď T one has

(78)

}A´ 1

2 η̃hM pt, sq}2 `
ż t

s

}A 1

2 η̃hM pr, sq}2dr `
ż t

s

}XM prqη̃hM pr, sq}2dr

ď CpT q
ż t

s

}F 1pXM prqqpe´pr´sqA2

hq}2dr.

The second energy estimate (77) is treated as follows: using the facts that A is self-adjoint and that
Ae0 “ 0 and the Cauchy–Schwarz and Young inequalities, for all t ě s, one has

´xA
`
F 1pXM ptqqη̃hM pt, sq

˘
, η̃hM pt, sqy “ ´xF 1pXM ptqqη̃hM pt, sq, Aη̃hM pt, sqy
“ ´3xXM ptq2η̃hM pt, sq, Aη̃hM pt, sqy ` xη̃hM pt, sq, Aη̃hM pt, sqy
ď 3}XM ptq2η̃hM pt, sq}}Aη̃hM pt, sq} ` }A 1

2 η̃hM pt, sq}2

ď 9

2
}XM ptq2η̃hM pt, sq}2 ` 1

2
}Aη̃hM pt, sq}2 ` }A 1

2 η̃hM pt, sq}2.
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In addition, one has

´xA
`
F 1pXM ptqqpe´pt´sqA2

hq
˘
, η̃hM pt, sqy “ ´x

`
F 1pXM ptqqpe´pt´sqA2

hq
˘
, Aη̃hM pt, sqy

ď }Aη̃hM pt, sq}}F 1pXM ptqqpe´pt´sqA2

hq}

ď 1

2
}Aη̃hM pt, sq}2 ` C}F 1pXM ptqqpe´pt´sqA2

hq}2.

Using the Sobolev inequality (31) under the condition γ P pd
2
,Γqzt3

2
u, one obtains

}XM ptq2η̃hM pt, sq}2 ď }XM ptq}2L8}XM ptqη̃hM pt, sq}2 ď Cγ}XM ptq}2γ}XM ptqη̃hM pt, sq}2.

Therefore, one obtains for all t ě s

1

2

d}η̃hM pt, sq}2
dt

ď Cγ}XM ptq}2γ}XM ptqη̃hM pt, sq}2 ` }A 1

2 η̃hM pt, sq}2

` C}F 1pXM ptqqpe´pt´sqA2

hq}2.

Applying Gronwall’s lemma, one obtains the following inequality: for all T P p0,8q and γ P pΓ0,Γq,
there exists a deterministic real number CγpT q P p0,8q such that for all 0 ď s ď t ď T , one has

(79)

}η̃hM pt, sq}2 ď CγpT q
´

sup
rPrs,T s

}XM prq}2γ
ż t

s

}XM prqη̃hM pr, sq}2dr `
ż t

s

}A 1

2 η̃hM pr, sq}2dr
¯

` CγpT q
ż t

s

}F 1pXM prqqpe´pr´sqA2

hq}2dr.

Using the smoothing inequality (18) and the Sobolev inequality (31), one obtains the upper bound

ż t

s

}F 1pXM prqqpe´pr´sqA2

hq}2dr ď Cγ

`
1 ` sup

rPrs,T s
}XM prq}4γ

˘ ż t

s

}e´pr´sqA2

h}2dr

ď Cγ

`
1 ` sup

rPrs,T s
}XM prq}4γ

˘
p}A´1

Ph}2 ` xh, e0y2q

ď Cγ

`
1 ` sup

rPrs,T s
}XM prq}4γ

˘
p}A´α

Ph}2 ` xh, e0y2q,

using the condition α P r0, 1s in the last step. Therefore, combining the inequalities (78) and (79)
with the upper bound above, one obtains the following inequality: for all T P p0,8q, α P r0, 1s and
γ P pΓ0,Γq, there exists a deterministic real number CγpT q P p0,8q such that for all 0 ď s ď t ď T

one has

(80) }η̃hM pt, sq}2 ď CγpT q
`
1 ` sup

rPrs,T s
}XM prq}6γ

˘`
}A´α

Ph}2 ` xh, e0y2
˘
.

Since ηhM pt, sq “ η̃hM pt, sq ` e´pt´sqA2

h, combining the inequality (80) and the smoothing inequal-
ity (18) then provides the inequality (72) when α P r0, 1s (with a power 3 instead of 5 for }XM prq}γ
in the right-hand side): for all T P p0,8q, α P p0, 1s and γ P pΓ0,Γq, there exists a deterministic
real number Cα,γpT q P p0,8q such that for all 0 ď s ă t ď T one has

(81) }ηhM pt, sq} ď CγpT qpt ´ sq´α
2

`
1 ` sup

rPrs,T s
}XM prq}3γ

˘`
}A´α

Ph} ` |xh, e0y|
˘
.

It remains to deal with the case α P p1, 2q. Using the fact that η̃hM pt, sq defined by (73) is
solution of (74) and the definition (71) of the random linear operators ΠM pt, sq, one obtains the
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expression (75) for η̃hM pt, sq. Using the inequality (81) with α “ 1, one then obtains for all t ě s

}η̃hM pt, sq} ď C1,γpT q
`
1 ` sup

rPrs,T s
}XM prq}3γ

˘ ż t

s

pt ´ sq´ 1

2 }
`
F 1pXM prqqe´pr´sqA2

h
˘
}dr

ď C1,γpT q
`
1 ` sup

rPrs,T s
}XM prq}5γ

˘ ż t

s

pt ´ sq´ 1

2 }e´pr´sqA2

h}dr.

Using the smoothing inequality (18) and the condition α P p1, 2q, one obtains the inequalities
ż t

s

pt ´ sq´ 1

2 }e´pr´sqA2

h}dr ď
ż t

s

pt ´ sq´ 1

2 pr ´ sq´α
2 drp}A´α

Ph} ` xh, e0yq

ď CαpT q
`
}A´α

Ph} ` |xh, e0y|
˘
.

As a consequence, using the identity ηhM pt, sq “ η̃hM pt, sq ` e´pt´sqA2

h, the inequality above and
the smoothing inequality, one obtains the inequality (72) when α P p1, 2q: for all T P p0,8q,
α P p1, 2q and γ P pΓ0,Γq, there exists a deterministic real number Cα,γpT q P p0,8q such that for
all 0 ď s ă t ď T one has

(82) }ηhM pt, sq} ď CγpT qpt ´ sq´α
2

`
1 ` sup

rPrs,T s
}XM prq}5γ

˘`
}A´α

Ph} ` |xh, e0y|
˘
.

Gathering the inequalities (81) (first step, α P r0, 1s) and (82) (second step, α P p1, 2s) then concludes
the proof of Lemma 4.3. �

4.3. Proof of Theorem 4.1. The proof of Theorem 4.1 is a straightforward consequence of
Lemmas 4.2 and 4.3. The value of the integer q appearing in the regularity estimates (70) is not
important to obtain the main results of this article: it may be possible to identify values of q

depending on the right-hand side of the moment bounds on the solution and of the inequality (72)
from Lemma 4.3, however this is omitted to simplify the notation.

Proof of Theorem 4.1. Let us first prove the upper bound for DuM pt, xq.h. Using the first
equality in (65) and the first identity of Lemma 4.2, one obtains the following inequality: for all
M P N, x, h P HM and t P r0, T s, one has

ˇ̌
DuM pt, xq.h

ˇ̌
“

ˇ̌
ExrDϕpXM ptqq.ηhM ptqs

ˇ̌

“
ˇ̌
ExrDϕpXM ptqq.ΠM pt, 0qhs

ˇ̌

ď ~ϕ~2Exr}ΠM pt, 0qh}s.
Using the inequality (72) from Lemma 4.3 and the moment bounds (50), one then obtains the
following inequalities: for all T P p0,8q, α P r0, 2q and γ P pΓ0,Γq, there exists a real number
Cα,γpT q P p0,8q such that for all t P p0, T s one has

ˇ̌
DuM pt, xq.h

ˇ̌

p}A´αPh} ` |xh, e0y|q ď Cα,γpT q~ϕ~2t
´α

2

`
1 ` Exr sup

rPr0,T s
}XM prq}5γs

˘

ď Cα,γpT q~ϕ~2t
´α

2

`
1 ` }x}5qγ

˘
.

This yields the first inequality in (70). It remains to prove the second inequality. Recall that
D2uM pt, xq.ph1, h2q is written as the sum of two terms, owing to the second equality in (65). On
the one hand, using the first identity of Lemma 4.2, one obtains the following inequality: for all
M P N, x, h1, h2 P HM and t P r0, T s, one has

ˇ̌
ExrD2ϕpXM ptqq.pηh1

M ptq, ηh2

M ptqqs
ˇ̌

“
ˇ̌
ExrD2ϕpXM ptqq.pΠM pt, 0qh1,ΠM pt, 0qh2qs

ˇ̌

ď ~ϕ~2

`
Exr}ΠM pt, 0qh1}2s

˘ 1

2

`
Exr}ΠM pt, 0qh2}2s

˘ 1

2 ,
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using the Cauchy–Schwarz inequality. Using the inequality (72) from Lemma 4.3 and the moment
bounds (50), one then obtains the following inequalities: for all T P p0,8q, α1, α2 P r0, 2q, with
α1 ` α2 ă 2 and γ P pΓ0,Γq, there exists a real number Cα1,α2,γpT q P p0,8q such that for all
t P p0, T s one has

ˇ̌
ExrD2ϕpXM ptqq.pηh1

M ptq, ηh2

M ptqqs
ˇ̌

p}A´α1Ph1} ` |xh1, e0y|qp}A´α2Ph2} ` |xh2, e0y|q ď Cα1,α2,γpT qt´
α1`α2

2 ~ϕ~2

`
1 ` }x}10qγ

˘
.

On the other hand, using the second identity of Lemma 4.2, one obtains the following inequality:
for all M P N, x, h1, h2 P HM and t P r0, T s, one has

ˇ̌
ExrDϕpXM ptqq.ζh1,h2

M ptqs
ˇ̌

ď ~ϕ~2Exr}ζh1,h2

M ptq}s

ď ~ϕ~2

ż t

0

Exr}ΠM pt, sqAPM

`
F 2pXM psqqpΠM ps, 0qh1,ΠM ps, 0qh2q

˘
}sds.

Recall that γ P pd
2
,Γqzt3

2
u. Using the inequality (72) from Lemma 4.3 with α “ 1 ` γ

2
, one obtains

ˇ̌
ExrDϕpXM ptqq.ζh1,h2

M ptqs
ˇ̌

ď CγpT q~ϕ~2

ż t

0

pt ´ sq´ γ
4

´ 1

2Exr
`
1 ` }XM psq}5γq}

˘
}A´ γ

2P
`
F 2pXM psqqpΠM ps, 0qh1,ΠM ps, 0qh2q

˘
}sds

ď CγpT q~ϕ~2

ż t

0

pt ´ sq´ γ
4

´ 1

2Exr
`
1 ` }XM psq}5γq}

˘
}
`
F 2pXM psqqpΠM ps, 0qh1,ΠM ps, 0qh2q

˘
}L1sds

ď CγpT q~ϕ~2

ż t

0

pt ´ sq´ γ
4

´ 1

2Exr
`
1 ` }XM psq}6γq

˘
}ΠM ps, 0qh1}}ΠM ps, 0qh2}L1sds.

Using the inequality (72) from Lemma 4.3 (with α1, α2 P r0, 2q, and the condition α1 ` α2 ă 2 to
ensure integrability), the moment bounds (50) and Hölder’s inequality, one obtains the following
inequalities: for all T P p0,8q, α1, α2 P r0, 2q, with α1 ` α2 ă 2 and γ P pΓ0,Γq, there exists a real
number Cα1,α2,γpT q P p0,8q such that for all t P p0, T s one has

ˇ̌
ExrDϕpXM ptqq.ζh1,h2

M ptqs
ˇ̌

p}A´α1Ph1} ` |xh1, e0y|qp}A´α2Ph2} ` |xh2, e0y|q

ď Cα1,α2,γpT q~ϕ~2

ż t

0

pt ´ sq´ γ
4

´ 1

2 s´
α1`α2

2 ds
`
1 ` }x}16qγ

˘

ď Cα1,α2,γpT q~ϕ~2t
´ γ

4
` 1

2
´

α1`α2

2

`
1 ` }x}16qγ

˘

ď Cα1,α2,γpT q~ϕ~2t
´

α1`α2

2

`
1 ` }x}16qγ

˘
,

using the condition γ ă Γ ď 2 in the last step.
Gathering the estimates for the two expressions appearing in the right-hand side of the second

identity of (65) then yields the second inequality in (70). This concludes the proof of Theorem (70).
�

5. Weak error estimates for the spatial Galerkin method

The objective of this section is to prove Theorem 3.1. The proof is based on a standard approach
described in Section 3.1 the weak error is written as (55) using the solutions uM of Kolmogorov
equations (68), and relevant error terms are identified using Itô’s formula (see below). Finally,
upper bounds for the error terms are obtained applying the regularity estimates from Theorem 4.1.
Recall that two cases are considered, see Assumption 1: space-time white noise (d “ 1, Γ “ 3{2)
and trace-class noise (d P t1, 2, 3u, Γ “ 2). The general strategy of the proof is the same in the two
cases, however the upper bounds are proved using different arguments.
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Proof of Theorem 3.1. Owing to the discussion in Section 3.1, in order to prove the weak
error estimate (53), it suffices to prove the upper bound (54).

Recall that the condition γ P pΓ0,Γq is satisfied. Let T P p0,8q and x0 P Hγ . In addition,
let ϕ : H Ñ R be a function of class C2 with bounded first and second order derivatives. Recall
that

`
XN ptq

˘
tě0

is defined by (49) for all N P N. Moreover, for all M P N, recall that the function

uM : r0,8q ˆ HM Ñ R is defined by (64). Owing to (55), for all M ě N , one has

ErϕpXN pT qqs ´ ErϕpXM pT qqs “ EruM p0,XN pT qqs ´ EruM pT,XM p0qqs
“ uM pT, PNx0q ´ uM pT, PMx0q
` EruM p0,XN pT qqs ´ EruM pT,XN p0qqs.

Using Itô’s formula, the fact that uM is solution of the Kolmogorov equation (68) and the defini-
tion (69) of the infinitesimal generator LN associated with (49), one obtains

EruM p0,XN pT qqs ´ EruM pT,XN p0qqs “
ż T

0

Er
`
LN ´ Bt

˘
uM pT ´ t,XN ptqqsdt

“
ż T

0

Er
`
LN ´ LM

˘
uM pT ´ t,XN ptqqsdt

“
ż T

0

E
“
DuMpT ´ t,XN ptqq.

`
ApPM ´ PN qF pXN ptqq

˘‰
dt

` 1

2

ż T

0

Er
“ÿ

jě0

D2uM pT ´ t,XN ptqq.
`
pPN ´ PM qQ 1

2 ej , pPN ` PM qQ 1

2 ej
˘‰
dt.

As a consequence, for all M ě N , one has the decomposition

(83) ErϕpXN pT qqs ´ ErϕpXM pT qqs “ eN,M,0 ` eN,M,1 ` eN,M,2,

where the error terms are given by

eN,M,0 “ uM pT, PNx0q ´ uM pT, PMx0q

eN,M,1 “
ż T

0

E
“
DuM pT ´ t,XN ptqq.

`
ApPM ´ PN qF pXN ptqq

˘‰
dt

eN,M,2 “ 1

2

ż T

0

Er
“ÿ

jě0

D2uM pT ´ t,XN ptqq.
`
pPN ´ PM qQ 1

2 ej , pPN ` PM qQ 1

2 ej
˘‰
dt.

Let us prove upper bounds for these three error terms. Using the first inequality of (70) from
Theorem 4.1 with α “ 0, one obtains for all M ě N the inequality

(84) |eN,M,0| ď CγpT q
`
1 ` }x0}qγ

˘
|pPN ´ PM qx0| ď CγpT q

`
1 ` }x0}qγ

˘
λ

´γ
N }x0}γ .

Let us now obtain an upper bound for the error term eN,M,1. Observe that one has xApPM ´
PN qF pXN ptqq, e0y “ 0 for all t P r0, T s and all M ě N . Using the first inequality of (68) from
Theorem 4.1 with α P r0, 2q, one obtains the following inequality: for all M ě N , one has

|eN,M,1| ď Cα,γpT q
ż T

0

pT ´ tq´α
2 E

”`
1 ` }XN ptq}qγ

˘
}A1´αpPM ´ PN qF pXN ptqq}

ı
dt.
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On the one hand, in the space-time white noise case (Assumption 1-piq, d “ 1, Γ “ 3{2), choosing
α “ 1

2
` γ, one has 1 ´ α “ 1

2
´ γ and one obtains

|eN,M,1| ď CγpT qλ´γ
N

ż T

0

pT ´ tq´ 1

4
´ γ

2E

”`
1 ` }XN ptq}qγ

˘
}A 1

2F pXN ptqq}
ı
dt

ď CγpT qλ´γ
N

ż T

0

pT ´ tq´ 1

4
´ γ

2E

”`
1 ` }XN ptq}qγ

˘`
1 ` }XN ptq}31

˘ı
dt,

using the algebra property (32) for H1 (1 ą d{2 “ 1{2). Using the moment bounds (50), for all
γ P pΓ0,Γq “ p1, 3

2
q, one obtains

(85) |eN,M,1| ď CγpT qλ´γ
N

`
1 ` }x0}qγ

˘
.

On the other hand, in the trace-class noise case (Assumption 1-piiq, d P t1, 2, 3u, Γ “ 2), choosing
α “ 1 ` γ

2
and noting pPN ´ PM qF pXN ptqq P H, one obtains

|eN,M,1| ď CγpT q
ż T

0

pT ´ tq´ 1

2
´ γ

4E

”`
1 ` }XN ptq}qγ

˘
}A´ γ

2 pPN ´ PM qF pXN ptqq}
ı
dt

ď CγpT qλ´γ
N

ż T

0

pT ´ tq´ 1

2
´ γ

4E

”`
1 ` }XN ptq}qγ

˘
}F pXN ptqq}γ

ı
dt

ď CγpT qλ´γ
N

ż T

0

pT ´ tq´ 1

2
´ γ

4E

”`
1 ` }XN ptq}qγ

˘
p1 ` }XN ptqq}3γ

˘ı
dt,

since in this case Hγ is an algebra (owing to the condition γ P pd
2
,Γqzt3

2
u). Using the moment

bounds (50), for all γ P pΓ0,Γq, one obtains

(86) |eN,M,1| ď CγpT qλ´γ
N

`
1 ` }x0}qγ

˘
.

It remains to deal with the error term eN,M,2. Observe that one has xpPN ´ PM qQ 1

2 ej , e0y “ 0 and

}pPM ` PN qQ 1

2 ej} ď 2}Q 1

2 ej} for all j P N and M ě N . Using the second inequality of (70) from
Theorem 4.1 with α1 “ α P r0, 2q and α2 “ 0, one obtains the following inequality: for all M ě N ,
one has

|eN,M,2| ď Cα,γpT q
ż T

0

pT ´ tq´α
2 E

“
1 ` }XN ptq}qγ

‰
dt

ÿ

jě0

}A´αpPM ´ PN qQ 1

2 ej}}Q 1

2 ej}.

On the one hand, in the space-time white noise case (Assumption 1-piq, d “ 1, Γ “ 3{2), one has

Q
1

2 ej “ ej , and choosing α “ 1
2

` γ`Γ
2

, one obtains

ÿ

jě0

}A´αpPM ´ PN qQ 1

2 ej}}Q 1

2 ej} “
Mÿ

j“N`1

λ´α
j

“
Mÿ

j“N`1

λ
´ 1

2
´Γ´γ

2
´γ

j

ď λ
´γ
N

ÿ

jě1

λ
´ 1

2
´Γ´γ

2

j .

Using the moment bounds (50), for all γ P p1
2
,Γq “ p1

2
, 3
2
q, one obtains

(87) |eN,M,2| ď CγpT qλ´γ
N

`
1 ` }x0}qγ

˘
.

22



On the other hand, in the trace-class noise case (Assumption 1-piiq, d P t1, 2, 3u, Γ “ 2), choosing
α “ γ, one obtains

ÿ

jě0

}A´αpPM ´ PN qQ 1

2 ej}}Q 1

2 ej} ď λ
´γ
N

ÿ

jě0

}Q 1

2 ej}2 “ λ
´γ
N TrpQq.

Using the moment bounds (50), for all γ P pΓ0,Γq, one obtains

(88) |eN,M,2| ď CγpT qλ´γ
N

`
1 ` }x0}qγ

˘
.

We are now in position to conclude the proof of the inequality (54): using (83), it suffices to
gather (84), (85) and (87) in the space-time white noise case, and (84), (86) and (88) in the trace-class
noise case. Using the arguments explained above, the proof of Theorem 3.1 is thus completed. �

6. Weak error estimates for the tamed exponential Euler scheme

The objective of this section is to prove Theorem 3.3. Before proceeding with the analysis of
the weak error, let us give some auxiliary results.

6.1. Auxiliary results. Recall that the continuous-time process
`
X̃∆t

N ptq
˘
0ďtďT

is defined

by (63) (see Section 3.2), and satisfies X̃∆t
N ptkq “ XN,k for all k P t0, . . . ,Ku.

For all k P t0, . . . ,Ku and t P rtk, tk`1q, set ℓptq “ k and tℓptq “ tk. The first auxiliary result

considered in this section provides some moment bounds for the process X̃∆t
N .

Theorem 6.1. Let Assumption 1 be satisfied. For all T P p0,8q, m P t1, . . .u and γ P pΓ0,Γq,
there exists q P N and Cγ,mpT q P p0,8q such that for all x0 P Hγ, all N P N and all ∆t “ T {K
with K P N, one has

(89)
`
Ex0

r sup
0ďtďT

}X̃∆t
N ptq}mγ s

˘ 1

m ď Cγ,mpT qp1 ` }x0}qγq.

Note that Theorem 3.2 (see Section 3.2) giving moment bounds for the tamed exponential Euler
scheme is a straightforward corollary of Theorem 6.1. The proof of Theorem 6.1 is postponed to
Section 7.

An immediate corollary of Theorem 6.1 is Lemma 6.2 below.

Lemma 6.2. For all T P p0,8q, m P t1, . . .u and γ P pΓ0,Γq, there exists q P N and Cγ,mpT q P
p0,8q such that for all x0 P Hγ , all N P N and all ∆t “ T {K with K P N, one has

(90) sup
0ďkďK´1

sup
tPrtk ,tk`1s

`
Er}X̃∆t

N ptq ´ XN,k}ms
˘ 1

m ď Cγ,mpT qp1 ` }x0}qγq∆t
γ
4 .

Proof. For all k P t0, . . . ,K ´ 1u and t P rtk, tk`1s, one has

X̃∆t
N ptq ´ XN,k “ pe´pt´tkqA2 ´ IqXN,k

`
ż t

tk

e´pt´sqA2 ´APNF pXN,kq
1 ` ∆t}PNF pXN,kq}ds

` e´pt´tkqA2

PN pWQptq ´ WQptkqq.

First, using the inequality (20) and Theorem 6.1, one has

`
Er}pe´pt´tkqA2 ´ IqXN,k}ms

˘ 1

m ď Cγ∆t
γ
4

`
Er}XN,k}mγ s

˘ 1

m ď Cγ,mpT qp1 ` }x0}qγq∆t
γ
4 .
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Second, using the smoothing inequality (18), the inequality (40) and Theorem 6.1, one has

`
Er}

ż t

tk

e´pt´sqA2 ´APNF pXN,kq
1 ` ∆t}PNF pXN,kq}ds}ms

˘ 1

m ď Cγ

ż t

tk

pt ´ sq´ 1

2
` γ

4 ds
`
Er}F pXN,kq}mγ s

˘ 1

m

ď Cγ∆t
1

2
` γ

4

`
Er}F pXN,kq}mγ s

˘ 1

m

ď Cγ∆t
γ
4

`
Erp1 ` }XN,k}3mγ s

˘ 1

m

ď Cγ,mpT q∆t
γ
4 p1 ` }x0}3qγ q.

It remains to deal with the third term. One needs different arguments to treat the two situations
for the noise. On the one hand, under Assumption 1-piq (d “ 1, Q “ I and Γ “ 3

2
), with γ P pΓ0,Γq,

one obtains
`
Er}e´pt´tkqA2

PN pWQptq ´ WQptkqq}ms
˘ 1

m ď Cm

`
Er}e´pt´tkqA2

PN pWQptq ´ WQptkqq}2s
˘ 1

2

ď Cm

´ÿ

jPN

pt ´ tkqe´2pt´tkqλ2
j

¯ 1

2

ď Cmpt ´ tkq 1

2
´ 2´γ

4

´ÿ

jPN

λ
´2`γ
j

¯ 1

2

ď Cγ,m∆t
γ
4 .

On the other hand, under Assumption 1-piiq (d P t1, 2, 3u, TrpQq ă 8 and Γ “ 2), with γ P pΓ0,Γq,
one obtains

`
Er}e´pt´tkqA2

PN pWQptq ´ WQptkqq}ms
˘ 1

m ď Cm

`
Er}e´pt´tkqA2

PN pWQptq ´ WQptkqq}2s
˘ 1

2

ď Cm∆t
1

2 pTrpQqq 1

2

ď Cγ,m∆t
γ
4 .

Gathering the estimates concludes the proof of Lemma 6.2. �

Let us also state and prove the following result concerning the nonlinearity F .

Lemma 6.3. For all γ P pd
2
,Γqzt3

2
u, there exists Cγ P p0,8q such that for all x P Hγ and y P H,

one has

(91) }A´ γ
2PpF 1pxq.yq} ď Cγp1 ` }x}2γqp}A´ γ

2Py} ` |xy, e0y|q.

Proof. Recall that, for γ P pd
2
,Γq{t3

2
u, the space Hγ , equipped with the norm } ¨ }γ “ }A γ

2 ¨ }
is an algebra, see (32) in Section 2.3. Let x P Hγ and y P H. For all z P H, one has

xA´ γ
2PpF 1pxq.yq,Pzy “ xF 1pxq.y, A´ γ

2Pzy
“ xy, F 1pxq.

`
A´ γ

2Pz
˘
y

ď }A´ γ
2Py}}F 1pxq.

`
A´ γ

2Pz
˘
}γ ` |xy, e0y|xe0, F 1pxq.

`
A´ γ

2Pzy|
ď }A´ γ

2Py}p1 ` }x}2γq}A´ γ
2Pz}γ ` |xy, e0y|}F 1pxq.

`
A´ γ

2Pz
˘
}L1

ď p}A´ γ
2Py} ` |xy, e0y|qp1 ` }x}2γq}Pz}.

Using the identity

}A´ γ
2 pPF 1pxq.yq} “ sup

zPHzt0u

xA´ γ
2F 1pxq.y,Pzy

}Pz}
then concludes the proof of Lemma 6.3. �

24



6.2. Proof of Theorem 3.3.

Proof of Theorem 3.3. Recall that the mapping uN is defined by (68), and satisfies the
regularity estimates stated in Theorem 4.1 (uniformly with respect to the spatial discretization
parameter N), see Section 4. As explained in Section 3.2, it suffices to prove the weak error
estimate (60). Recall that the condition γ P pΓ0,Γq is satisfied. Let T P p0,8q and x0 P Hγ . Recall

that using a telescoping sum argument and the auxiliary process X̃∆t
N defined by (63), the weak

error is written as

ErϕpXN,Kqs ´ ErϕpXN pT qqs “ EruN p0,XN,Kqs ´ EruN ptK ,XN,0qs

“
K´1ÿ

k“0

`
EruN pT ´ tk`1,XN,k`1qs ´ EruN pT ´ tk,XN,kqs

˘

“
K´1ÿ

k“0

`
EruN pT ´ tk`1, X̃

∆t
N ptk`1qqs ´ EruN pT ´ tk, X̃

∆t
N ptkqqs

˘
,

using the equalities T “ K∆t, tk “ k∆t, uN p0, ¨q “ ϕ, and XN,k “ X̃∆t
N ptkq for all k P t0, . . . ,Ku.

For all k P rtk, tk`1s, the auxiliary process
`
X̃∆t

N ptq
˘
tPrtk ,tk`1s

is solution of the auxiliary stochastic

evolution equation

dX̃∆t
N ptq “ ´A2X̃∆t

N ptqdt ´ 1

1 ` ∆t}PNF pXN,kq}APNF pXN,kqdt ` e´pt´tkqA2

dWQptq.

Using Itô’s formula, the fact that uN is solution of the Kolmogorov equation (68), one obtains the
decomposition

(92) ErϕpXN,Kqs ´ ErϕpXN pT qqs “
K´1ÿ

k“0

`
e1k ` e2k

˘
,

where, for all k P t0, . . . ,K ´ 1u, the error terms are given by

e1k “
ż tk`1

tk

E
“
xDuN pT ´ t, X̃∆t

N ptqq, APNF pXN,kq
1 ` ∆t}PNF pXN,kq} ´ APNF pX̃∆t

N ptqqy
‰
dt

e2k “ 1

2

ż tk`1

tk

E
“
Tr

´
D2uN pT ´ t, X̃∆t

N ptqq
`
e´pt´tkqA2

PNQPNe´pt´tkqA2 ´ PNQPN

¯‰
dt.

The two error terms e1k and e2k are decomposed as follows: for all k P t0, . . . ,K ´ 1u
e1k “ e

1,1
k ` e

1,2
k

e2k “ e
2,1
k ` e

2,2
k

where

e
1,1
k “

ż tk`1

tk

E
“
xDuN pT ´ t, X̃∆t

N ptqq, APNF pXN,kq ´ APNF pX̃∆t
N ptqqy

‰
dt

e
1,2
k “ ´∆t

ż tk`1

tk

E
“
xDuN pT ´ t, X̃∆t

N ptqq, }PNF pXN,kq}
1 ` ∆t}PNF pXN,kq}APNF pXN,kqy

‰
dt

and

e
2,1
k “ 1

2

ż tk`1

tk

E
“
Tr

´
D2uN pT ´ t, X̃∆t

N ptqq
`
e´pt´tkqA2

PNQPN pe´pt´tkqA2 ´ Iq
¯‰

dt

e
2,2
k “ 1

2

ż tk`1

tk

E
“
Tr

´
D2uN pT ´ t, X̃∆t

N ptqq
`
pe´pt´tkqA2 ´ IqPNQPN

¯‰
dt.
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The weak error estimate (60) is a straightforward consequence of the decomposition (92) and of
the following claims: for all γ P pΓ0,Γq and T P p0,8q, there exists CγpT q P p0,8q such that for all
k P t0, . . . ,K ´ 1u one has

|e1,1k | ď CγpT q~ϕ~2p1 ` }x0}qγq∆t
γ
2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4 dt,(93)

|e1,2k | ď CγpT q~ϕ~2p1 ` }x0}qγq∆t
γ
2

ż tk`1

tk

pT ´ tq´ 1

2 dt,(94)

|e2,1k | ď CγpT q~ϕ~2p1 ` }x0}qγq∆t
γ
2

ż tk`1

tk

pT ´ tq´α
2 dt,(95)

|e2,2k | ď CγpT q~ϕ~2p1 ` }x0}qγq∆t
γ
2

ż tk`1

tk

pT ´ tq´α
2 dt,(96)

where the value of the parameter α P p0, 2s depends on the assumptions on the covariance Q:

α “ 1
2

` γ`Γ
2

under Assumption 1-piq and α “ γ under Assumption 1-piiq. The most difficult part
of the proof is to establish (93).

‚ Proof of the inequality (94).
Using Taylor’s formula, one has

e
1,1
k “

ż tk`1

tk

E
“
xDuN pT ´ t, X̃∆t

N ptqq, APNF 1pXN,kq.
`
XN,k ´ X̃∆t

N ptq
˘
y
‰
dt

´
ż tk`1

tk

E
“
xDuN pT ´ t, X̃∆t

N ptqq,
ż 1

0

p1 ´ ξqAPNF 2p̺N,k,tpξqq.
`
X̃∆t

N ptq ´ XN,k, X̃
∆t
N ptq ´ XN,k

˘
dξy

‰
dt,

where ̺N,k,tpξq “ XN,k ` ξpX̃∆t
N ptq ´ XN,kq.

Writing DuN pT ´ t, X̃∆t
N ptqq “ DuN pT ´ t,XN,kq ` DuN pT ´ t, X̃∆t

N ptqq ´ DuN pT ´ t,XN,kq
and using a conditional expectation argument to get

E
“
xDuN pT ´ t,XN,kq, APNF 1pXN,kq.

`
e´pt´tkqA2pWQptq ´ WQptkqq

˘
y
‰

“ 0,

the error term e
1,1
k is decomposed as

e
1,1
k “ e

1,1,1
k ` e

1,1,2
k ` e

1,1,3
k ` e

1,1,4
k ,

where

e
1,1,1
k “ ´

ż tk`1

tk

E
“
xDuN pT ´ t,XN,kq, APNF 1pXN,kq.

`
pe´pt´tkqA2 ´ IqXN,k

˘
y
‰
dt

e
1,1,2
k “

ż tk`1

tk

E
“
xDuN pT ´ t,XN,kq, APNF 1pXN,kq.

ż t

tk

e´pt´sqA2 APNF pXN,kq
1 ` ∆t}PNF pXN,kq}dsy

‰
dt

e
1,1,3
k “

ż tk`1

tk

E
“
xDuN pT ´ t, X̃∆t

N ptqq ´ DuN pT ´ t,XN,kq, APNF 1pXN,kq.
`
XN,k ´ X̃∆t

N ptq
˘
y
‰
dt

e
1,1,4
k “ ´

ż tk`1

tk

E
“
xDuN pT ´ t, X̃∆t

N ptqq,
ż 1

0

p1 ´ ξqAPNF 2p̺N,k,tpξqq.
`
X̃∆t

N ptq ´ XN,k, X̃
∆t
N ptq ´ XN,k

˘
dξy

‰
dt.
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For the error term e
1,1,1
k , using the regularity estimate on DuN pT ´ t,XN,kq from Theorem 4.1

(with α “ 1 ` γ
2

ă 2), Lemma 6.3 and the inequality (20), one obtains

|e1,1,1k | ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4Erp1 ` }XN,k}qγq}A´ γ
2PF 1pXN,kq.

`
pe´pt´tkqA2 ´ IqXN,k

˘
}sdt

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4Erp1 ` }XN,k}q`2
γ q}A´ γ

2

`
pe´pt´tkqA2 ´ IqXN,k

˘
}sdt

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4 dtErp1 ` }XN,k}q`3
γ qs∆t

γ
2

ď CγpT q~ϕ~2p1 ` }x0}qpq`3q
γ q

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4 dt∆t
γ
2 ,

using the moment bounds from Theorem 3.2 in the last step.
For the error term e

1,1,2
k , using the regularity estimate on DuN pT ´ t,XN,kq from Theorem 4.1

(with α “ 1 ` γ
2

ă 2) and Lemma 6.3, one obtains

|e1,1,2k |

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4Erp1 ` }XN,k}qγq}A´ γ
2PF 1pXN,kq.

ż t

tk

e´pt´sqA2 APNF pXN,kq
1 ` ∆t}PNF pXN,kq}ds}sdt

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4Erp1 ` }XN,k}q`2
γ q}A´ γ

2P

ż t

tk

e´pt´sqA2

AF pXN,kqds}sdt

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4Erp1 ` }XN,k}q`2
γ q

ż t

tk

}A 2´γ
2 PF pXN,kq}sdsdt

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4 dtErp1 ` }XN,k}q`5
γ q∆t

ď CγpT q~ϕ~2p1 ` }x0}qpq`5q
γ q

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4 dt∆t,

using the fact that γ can be chosen such that γ ą 1 since γ ą Γ0, and the moment bounds from
Theorem 3.2 in the last step.

For the error term e
1,1,3
k , using the regularity estimate on D2uN pT ´ t,XN,kq from Theorem 4.1

(with α1 “ 0 and α2 “ 1), one obtains

|e1,1,3k |

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2Erp1 ` }XN,k}qγ ` }X̃∆t
N ptq}qγq}X̃∆t

N ´ XN,k}}F 1pXN,kq.pX̃∆t
N ´ XN,kq}sdt

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2Erp1 ` }XN,k}q`2
γ ` }X̃∆t

N ptq}q`2
γ q}X̃∆t

N ´ XN,k}2sdt

ď CγpT q~ϕ~2p1 ` }x0}qpq`3q
γ q

ż tk`1

tk

pT ´ tq´ 1

2dt∆t
γ
2 ,

using the moment bounds from Theorem 6.1, the bounds on the increments from Lemma 6.2, and
Hölder’s inequality in the last step.
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For the error term e
1,1,4
k , using the regularity estimate on D2uN pT ´ t,XN,kq from Theorem 4.1

(with α “ 1 ` γ
2
), one obtains

|e1,1,4k |

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4Erp1 ` }XN,k}qγq}
ż 1

0

p1 ´ ξq

}A´ γ
2PF 2p̺N,k,tpξq.

`
X̃∆t

N ptq ´ XN,k, X̃
∆t
N ptq ´ XN,k

˘
}sdξdt

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4Erp1 ` }XN,k}q`1
γ ` }X̃∆t

N ptq}q`1
γ q}X̃∆t

N ptq ´ XN,k}2sdt

ď CγpT q~ϕ~2p1 ` }x0}qpq`3q
γ q

ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4 dt∆t
γ
2 ,

using the moment bounds from Theorem 6.1, the inequality (34), the bounds on the increments
from the Lemma 6.2, and Hölder’s inequality in the last step.

Gathering the estimates on the error terms e
1,1,1
k , e

1,1,2
k , e

1,1,3
k , e

1,1,4
k , one obtains

|e1,1k | ď CγpT q~ϕ~2p1 ` }x0}qγq
ż tk`1

tk

pT ´ tq´ 1

2
´ γ

4 dt∆t
γ
2 .

This provides the inequality (93).
‚ Proof of the inequality (94).
Owing to the regularity property of DuN pT ´ t, ¨q from Theorem 4.1 (with α “ 1) and to the

moment bounds on the auxiliary process X̃∆t
N from Theorem 6.1, for all k P t0, . . . ,K ´ 1u, one

obtains the error estimate

|e1,2k | ď CpT q~ϕ~2∆t

ż tk`1

tk

pT ´ tq´ 1

2E
“
p1 ` }X̃∆t

N ptq}qγq}PNF pXN,kq}2
‰
dt

ď CγpT q~ϕ~2∆t
`
1 ` }x0}q`6

γ

˘ ż tk`1

tk

pT ´ tq´ 1

2dt,

using the inequality (40) and the moment bounds from Theorem 6.1. This provides the inequal-
ity (94).

‚ Proof of the inequality (95).
Owing to the regularity property of D2uN pT ´ t, ¨q from Theorem 4.1 (with α1 “ 0 and α2 “ α)

and to the moment bounds on the auxiliary process X̃∆t
N from Theorem 6.1, for all k P t0, . . . ,K´1u,

one obtains the upper bounds

|e2,1k | ď 1

2

ż tk`1

tk

ˇ̌
ˇ

ÿ

jě1

D2uN pT ´ t, X̃∆t
N ptqq.

`
e´pt´tkqA2

PNQ
1

2 ej , pe´pt´tkqA2 ´ IqPNQ
1

2 ej
˘ˇ̌
ˇdt

ď CγpT q~ϕ~2

ż tk`1

tk

pT ´ tq´α
2 Erp1 ` }X̃∆t

N ptq}qγqs
ÿ

jě1

}Q 1

2 ej}}A´αpe´pt´tkqA2 ´ IqPNQ
1

2 ej}dt

ď CγpT q~ϕ~2p1 ` }x0}q2γ q
ż tk`1

tk

pT ´ tq´α
2

ÿ

jě1

}Q 1

2 ej}}A´αpe´pt´tkqA2 ´ IqPNQ
1

2 ej}dt.
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On the one hand, in the space-time white noise case (Assumption 1-piq, d “ 1, Q “ I and

Γ “ 3
2
), choosing α “ 1

2
` γ`Γ

2
, using the inequality (20), one obtains

|e2,1k | ď CγpT q~ϕ~2p1 ` }x0}q2γ q
ż tk`1

tk

pT ´ tq´α
2

ÿ

jě1

λ
´ 1

2
´Γ´γ

2

j pt ´ tkq
γ
2 dt

ď CγpT q~ϕ~2p1 ` }x0}q2γ q
ż tk`1

tk

pT ´ tq´α
2 dt∆t

γ
2 .

On the other hand, in the trace-class noise case (Assumption 1-piiq, d P t1, 2, 3u, TrpQq ă 8
and Γ “ 2), choosing α “ γ, using the inequality (20), one obtains

|e2,1k | ď CγpT q~ϕ~2p1 ` }x0}q2γ q
ż tk`1

tk

pT ´ tq´α
2

ÿ

jPN

}Q 1

2 ej}2pt ´ tkqγ
2 dt

ď CγpT q~ϕ~2p1 ` }x0}q2γ q
ż tk`1

tk

pT ´ tq´ γ
2 dt∆t

γ
2 .

This provides the inequality (95).

‚ Estimate for e
2,2
k .

Writing

|e2,2k | ď 1

2

ż tk`1

tk

ˇ̌
ˇ

ÿ

jPN

D2uN pT ´ t, X̃∆t
N ptqq.

`
pe´pt´tkqA2 ´ IqPNQ

1

2 ej , PNQ
1

2 ej
˘ˇ̌
ˇdt

it is straightforward to obtain (96) using the same arguments as in the proof of (95) above. The
details are omitted.

We are now in position to conclude: as explained above, it suffices to combine the error esti-
mates (93), (94), (95) and (96) with the decomposition (92) to obtain (60). The proof of Theorem 3.3
is thus completed. �

7. Proof of Theorem 3.2

The objective of this section is to provide the proof of Theorem 3.2, giving moment bounds for
XN,k with 0 ď tk ď T . In fact, one proves the stronger version of the result, see Theorem 6.1, giving

moment bounds for X̃∆t
N ptq with 0 ď t ď T (recall that X̃∆t

N ptkq “ XN,k).
The proof requires several steps and the introduction of auxiliary processes. First, introduce

Gaussian auxiliary processes Z̃∆t
N defined as follows: for all N P N, ∆t “ T {K, k P t0, . . . ,K ´ 1u

and t P rtk, tk`1s, set

(97)
ZN,k`1 “ e´∆tA2`

ZN,k ` PN∆W
Q
k

˘
,

Z̃∆t
N ptq “ e´pt´tkqA2`

ZN,k ` PN pWQptq ´ WQptkqq
˘
,

with initial values ZN,0 “ Z̃∆t
N p0q “ 0. One has the following auxiliary result.

Lemma 7.1. For all T P p0,8q, m P t1, . . .u and γ P r0,Γq, there exists q P N and Cγ,mpT q P
p0,8q such that for all N P N and all ∆t “ T {K with K P N, one has

(98)
`
Er sup

0ďtďT

}Z̃∆t
N ptq}mγ s

˘ 1

m ď Cγ,mpT q.

Proof. The moment bound is a consequence of the following auxiliary bounds on the incre-
ments of the process Z̃∆t

N , using the fact that this process is Gaussian and the Kolmogorov regularity
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criterion: for all γ P r0,Γq, there exists CγpT q P p0,8q such that for all N P N and all ∆t “ T {K
with K P N, one has

(99) sup
0ďsătďT

Er}Z̃∆t
N ptq ´ Z̃∆t

N psq}2γs
|t ´ s|Γ´γ

4

ď CγpT q.

In the sequel, the objective is to prove the inequality (99). Note that Z̃∆t
N is the solution of the

stochastic evolution equation

dZ̃∆t
N ptq “ ´A2Z̃∆t

N ptqdt ` e´pt´tℓptqqA2

dWQptq,
where we recall that ℓptq “ k if t P rtk, tk`1q. Therefore for all t P r0, T s one has

Z̃∆t
N ptq “

ż t

0

e´pt´tℓprqqA2

PNdWQprq,

and for all 0 ď s ă t ď T , one has

Z̃∆t
N ptq ´ Z̃∆t

N psq “ pe´pt´sqA2 ´ IqZ̃∆t
N psq `

ż t

s

e´pt´tℓprqqA2

PNdWQprq.

We claim that the following auxiliary moment bound holds: there exists CγpT q P p0,8q such that
for all N P N and ∆t “ T {K one has

(100) sup
0ďsďT

Er}Z̃∆t
N psq}2γs ď CγpT q.

Let us prove (100). Applying Itô’s isometry formula, one obtains for all s P r0, T s

Er}Z̃∆t
N psq}2γs “

ż s

0

}A
γ
2 e´ps´tℓprqqA2

PNQ
1

2 }2
L2pHqdr.

On the one hand, in the space-time white noise case (Assumption 1-piq, d “ 1, Q “ I and Γ “ 3
2
),

for all s P r0, T s, one has

Er}Z̃∆t
N psq}2γs “

ż s

0

ÿ

jPN

λ
γ
j e

´2ps´tℓprqqλ2
j dr

ď
ż s

0

ÿ

jPN

λ
´ 1

2
´Γ´γ

2

j λ
1

2
` γ`Γ

2

j e´2ps´rqλ2
jdr

ď Cγ

ż s

0

ps ´ rq´ 1

4
´ γ`Γ

4 dr

ď CγpT q.

On the other hand, in the trace-class noise case (Assumption 1-piiq, d P t1, 2, 3u, TrpQq ă 8 and
Γ “ 2), for all s P r0, T s, one has

Er|Z̃∆t
N psq|2γs ď

ż s

0

}A
γ
2 e´ps´tℓprqqA2

PN }2
LpHq}Q

1

2 }2
L2pHqdr

ď Cγ

ż s

0

ps ´ rq´ γ
2 dsTrpQq

ď CγpT q,

using the smoothing inequality (18). This concludes the proof of the auxiliary moment bound (100).
We are now in position to prove the claim.
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For all 0 ď s ă t ď T , applying Itô’s isometry formula, one has

Er}Z̃∆t
N ptq ´ Z̃∆t

N psq}2γs “ Er}pe´pt´sqA2 ´ IqZ̃∆t
N psq}2γs

` Er}
ż t

s

e´pt´tℓprqqA2

PNdWQprq}2γs

ď Er}pe´pt´sqA2 ´ IqZ̃∆t
N psq}2γs

`
ż t

s

}A γ
2 e´pt´tℓprqqA2

PNQ
1

2 }2
L2pHqdr.

On the one hand, using the inequality (20) and applying the auxiliary moment bound (100)
gives

Er}pe´pt´sqA2 ´ IqZ̃∆t
N psq}2γs ď CγpT q|t2 ´ t1|Γ´γ

4 Er}Z̃∆t
N psq}2γ`Γ

2

s ď CγpT q|t2 ´ t1|Γ´γ
4 .

On the other hand, like in the proof of the inequality (100), two cases need to be considered. First, in
the space-time white noise case (Assumption 1-piq, d “ 1, Γ “ 3

2
), applying Itô’s isometry formula,

one has for all 0 ď s ă t ď T ,

Er}
ż t

s

e´pt´tℓprqqA2

PNdWQprq}2γs “
ż t

s

}A γ
2 e´pt´tℓprqqA2

PNQ
1

2 }2
L2pHqdr

“
ż s

0

ÿ

jPN

λ
γ
j e

´2ps´tℓprqqλ2
jdr

ď
ż t

s

ÿ

jPN

λ
´ 1

2
´Γ´γ

2

j λ
1

2
` γ`Γ

2

j e´2pt´tℓprqqλ2
j dr

ď Cγ

ż t

s

pt ´ rq´ 1

4
´ γ`Γ

2 dr

ď CγpT qpt ´ sqΓ´γ
4 ,

using the identity 3
4

´ γ`Γ
4

“ 3
8

´ γ
4

“ Γ´γ
4

since Γ “ 3
2
.

Second, in the trace-class noise case (Assumption 1-piiq, d P t1, 2, 3u, Γ “ 2), applying Itô’s
isometry formula, one has for all 0 ď s ă t ď T ,

Er}
ż t

s

e´pt´tℓprqqA2

PNdWQprq}2γs “
ż t

s

}A γ
2 e´pt´tℓprqqA2

PNQ
1

2 }2
L2pHqdr

ď
ż t

s

}A γ
2 e´pt´tℓprqqA2

PN }2
LpHq}Q

1

2 }2
L2pHqdr

ď Cγ

ż t

s

pt ´ rq´ γ
2 dsTrpQq

ď CγpT q|t ´ s|Γ´γ
2 ,

using the identity 1 ´ γ
2

“ Γ´γ
2

since Γ “ 2.
The proof of the inequality (99) is thus completed. Applying the Kolmogorov regularity criterion

then concludes the proof of Lemma 7.1. �
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Recall that X̃∆t
N p0q “ XN,0 “ PNx0. Let us now define additional auxiliary processes as follows.

For all t ě 0, define

Z̃
∆t;x0

N ptq “ e´tA2

PNx0 ` Z̃∆t
N ptq

Ỹ ∆t
N ptq “ X̃∆t

N ptq ´ Z̃
∆t;x0

N ptq.

Using the definition (63) of X̃∆t
N and the definition (97) of Z̃∆t

N , observe that for all t P r0, T s, one
has

(101) Ỹ ∆t
N ptq “

ż t

0

e´pt´sqA2 ´APNF pXℓpsqq
1 ` ∆t}PNF pXℓpsqq}ds.

Finally, define the auxiliary processes R̃∆t
N and r̃∆t

N as follows: for all t P r0, T s, set

(102)
R̃∆t

N ptq “ ´
ż t

0

e´pt´sqA2

APNF
`
Ỹ ∆t
N psq ` Z̃

∆t;x0

N ptℓpsqq
˘
ds

r̃∆t
N ptq “ Ỹ ∆t

N ptq ´ R̃∆t
N ptq.

The strategy of the proof of Theorem 6.1 is straightforward. First, one proves Lemma 7.2
and Lemma 7.3 below to obtain some moment bounds for the auxiliary processes r̃∆t

N and R̃∆t
N .

Combining these results gives moment bounds for Ỹ ∆t
N , and using Lemma 7.1 one obtains moment

bounds for X̃∆t
N . However, one cannot directly prove the moment bounds, and first one needs to

prove moment bounds on some well-chosen events Ω∆t
k defined below. The proof of Theorem 6.1

below shows how to remove the indicator functions of those events. The arguments above are
standard in the proof of moment bounds for tamed Euler schemes applied to SDEs and SPDEs.
The arguments which are specific to the Cahn–Hilliard equation are given in the proof of Lemma 7.3,
which is the most technical part of the analysis. Note that the techniques used to prove Lemma 7.3
are similar to those needed to prove the moment bounds (50) for XN ptq (see Section 3.1).

Let γ P pΓ0,Γq be given. Recall that this ensures that the conditions γ P pd
2
,Γqzt3

2
u and γ ě 1` d

4

if Γ “ 2 are satisfied. Let θ P p0, 1q be a sufficiently small auxiliary parameter, upper bounds on θ

are given below in the analysis. For all k P t0, . . . ,Ku, define the event

Ω∆t
N,k “ t sup

0ďℓďk

}XN,ℓ} ď ∆t´θu,

and define the associated indicator functions

χ∆t
N,k “ 1Ω∆t

N,k
.

By convention, set Ω∆t
N,´1 “ Ω. Let us now state the auxiliary moment bounds for r̃∆t

N and R̃∆t
N .

Lemma 7.2. For all γ P pΓ0,Γq, there exists a sufficiently small θ P p0, 1q such that

(103) sup
0ďkďK

`
Erχ∆t

N,k´1 sup
0ďtďtk

}r̃∆t
N ptq}mγ s

˘ 1

m ď CmpT qp1 ` }x0}qγq.

Lemma 7.3. For all γ P pΓ0,Γq, there exists a sufficiently small θ P p0, 1q such that

(104) sup
0ďkďK

`
Erχ∆t

N,k´1 sup
0ďtďtk

}R̃∆t
N ptq}mγ s

˘ 1

m ď CmpT qp1 ` }x0}qγq.

The value of the integer q in the two statements below does not depend on the value of the
regularity parameter γ.

To simplify the notation in the proofs below, set χk “ χ∆t
N,k, X̃ptq “ X̃∆t

N ptq, Xk “ XN,k,

Z̃x0ptq “ Z̃
∆t;x0

N ptq, Ỹ ptq “ Ỹ ∆t
N ptq, R̃ptq “ R̃∆t

N ptq and r̃ptq “ r̃∆t
N ptq. All the upper bounds are

uniform with respect to the omitted parameters N P N and ∆t “ T {K, K P N.
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Proof of Lemma 7.2. Note that for all t P r0, T s, one has

r̃ptq “ r̃1ptq ` r̃2ptq,
where

r̃1ptq “ ´
ż t

0

e´pt´sqA2 ´∆t}F pXℓpsqq}
1 ` ∆t}PNF pXℓpsqq}APNF pXℓpsqqds

r̃2ptq “ ´
ż t

0

e´pt´sqA2

APN

´
F pỸ ptℓpsqq ` Z̃x0ptℓpsqqq ´ F pỸ psq ` Z̃x0ptℓpsqqq

¯
ds.

Assume that the condition θ ă 1{6 is satisfied. First, for all k P t0, . . . ,Ku and all t P r0, tks,
one has

χk´1}r̃1ptq}γ ď χk´1

ż t

0

pt ´ sq´ 1

2∆t}F pXℓpsqq}2γds

ď Cχk´1

ż t

0

pt ´ sq´ 1

2∆tp1 ` }Xℓpsq}6γqds

ď Ct
1

2∆t1´6θ

ď CpT q.
This yields the inequality

sup
0ďkďK

`
Erχk´1 sup

0ďtďtk

}r̃1ptq}mγ s
˘ 1

m ď CmpT q.

It remains to prove a similar upper bound for r̃2ptq. Introduce an auxiliary parameter κ P p0, γ´ d
2

q.
One then has, for all t ď tk,

χk´1}r̃2ptq}γ ď Cκχk´1

ż t

0

pt ´ sq´ 1

2
´κ

4 }F pỸ ptℓpsqq ` Z̃x0ptℓpsqqq ´ F pỸ psq ` Z̃x0ptℓpsqqq}γ´κds

ď Cκχk´1

ż t

0

pt ´ sq´ 1

2
´κ

4 }Ỹ ptℓpsqq ´ Ỹ psq}γ´κMpsqds,

where

Mpsq “ 1 ` }Ỹ ptℓpsqq}2γ´κ ` }Ỹ psq}2γ´κ ` }Z̃x0ptℓpsqq}2γ´κ.

On the one hand, one has

χk´1}Ỹ ptℓpsqq ´ Ỹ psq}γ´κ ď χk´1}pe´ps´tℓpsqqA2 ´ IqỸ ptℓpsqq}γ´κ

` χk´1

ż s

tℓpsq

}e´ps´rqA2

APNF pXℓprqq}γ
1 ` ∆t}PNF pXℓprqq} dr

ď Cκ∆t
κ
4χk´1}Ỹ ptℓpsqq}γ ` ∆t

1

2χk´1p1 ` }Xℓpsq}3γq
ď Cκ∆tminpκ

4
, 1
2

q´3θ ` Cκ∆t
κ
4 }Z̃x0ptℓpsqq}γ .

On the other hand, one has for all s P r0, tkq
χk´1Mpsq ď Cχk´1

`
1 ` }Ỹ ptℓpsqq}2γ´κ ` }Ỹ psq ´ Ỹ ptℓpsqq}2γ´κ ` }Z̃x0ptℓpsqq}2γ´κ

˘

ď Cκ ` Cκ∆t´2θ ` Cκ∆t2minpκ
4
, 1
2

q´6θ ` Cκ}Z̃x0ptℓpsqq}2γ .
Using the Cauchy–Schwarz inequality and Lemma 7.1, if θ is sufficiently small, one then obtains

sup
0ďkďK

`
Erχk´1 sup

0ďsďtk

}Ỹ ptℓpsqq ´ Ỹ psq}mγ´κMpsqms
˘ 1

m ď Cp1 ` }x0}3γq,
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which then gives

sup
0ďkďK

`
Erχk´1 sup

0ďtďtk

}r̃2ptq}mγ s
˘ 1

m ď CmpT qp1 ` }x0}3γq.

Gathering the estimates the concludes the proof of Lemma 7.1. �

Proof of Lemma 7.3. Note that the process R̃ defined by (102) is solution of the evolution
equation

dR̃ptq
dt

` A2R̃ptq ` APNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqq “ 0,

with initial value R̃p0q “ 0.
The proof of Lemma 7.3 requires to complete three steps, which use different arguments, similar

to those that would be needed to prove moment bounds (50): first, energy estimates in the }A´ 1

2 ¨ }
and } ¨ } norms; second, arguments depending on dimension d to obtain estimates in the } ¨ }L6 norm;
third, the mild formulation to get estimates in the } ¨ }γ norm.

‚ Step 1: let us prove that

(105) sup
0ďkďK

`
Erχk´1 sup

0ďtďtk

}R̃ptq}ms
˘ 1

m ď CmpT qp1 ` }x0}qγq.

First, observe that rRptq P H, therefore one has the following energy estimate in the }A´ 1

2P ¨ }
norm:

1

2

d

dt
}A´ 1

2 R̃ptq}2 ` }A 1

2 R̃ptq}2

“ ´xF pR̃ptq ` r̃ptq ` Z̃x0ptqq, R̃ptqy
“ ´xF pR̃ptq ` r̃ptq ` Z̃x0ptqq ´ F pR̃ptqq, R̃ptqy ` xF pR̃ptqq, R̃ptqy
“ xr̃ptq ` Z̃x0ptq, R̃ptqy ´ xpr̃ptq ` Z̃x0ptqq3, R̃ptqy
´ 3xpr̃ptq ` Z̃x0q2, R̃ptqy ´ 3xr̃ptq ` Z̃x0ptq, R̃ptq2y
´ }R̃ptq}4L4 ` }R̃ptq}2 ´ xF pR̃ptq ` r̃ptq ` Z̃x0ptqq, R̃ptqy

ď ´1

2
}R̃ptq}4L4 ` }R̃ptq}2 ` C}r̃ptq ` Z̃x0ptq}4L4

ď ´1

2
}R̃ptq}4L4 ` 1

2
}A´ 1

2 R̃ptq}2 ` 1

2
}A 1

2 R̃ptq}2 ` C}r̃ptq ` Z̃x0ptq}4γ .

Applying Gronwall’s lemma yields the following inequality: for all t P r0, T s,

ż t

0

}A 1

2 R̃psq}2ds `
ż t

0

}R̃psq}4L4ds ď CpT q sup
0ďsďt

p}r̃psq}4γ ` }Z̃x0psq}4γq.
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Second, one has the energy estimate in the } ¨ } norm:

1

2

d

dt
}R̃ptq}2 ` }AR̃ptq}2 “ ´xAF pR̃ptq ` r̃ptq ` Z̃x0ptqq, R̃ptqy

“ ´xF pR̃ptq ` r̃ptq ` Z̃x0ptqq, AR̃ptqy
“ ´xF pR̃ptq ` r̃ptq ` Z̃x0q ´ F pR̃ptqq, AR̃ptqy
´ xF pR̃ptqq, AR̃ptqy

ď 1

2
}AR̃ptq}2 ` 1

2
}F pR̃ptq ` r̃ptq ` Z̃x0ptqq ´ F pR̃ptqq}2

` }∇R̃ptq}2 ´ 3}∇R̃ptqR̃ptq}2

ď 1

2
}AR̃ptq}2 ` }∇R̃ptq}2

` C
`
1 ` }r̃ptq}6γ ` }Z̃x0ptq}6γ

˘`
1 ` }R̃ptq}4L4

˘
´ 3}∇R̃ptqR̃ptq}2,

using Young’s inequality and the identity

xR̃3ptq, AR̃ptqy “ ´3x∇R̃ptqR̃2,∇R̃ptqy “ ´3}∇R̃ptqR̃ptq}2.

Using the inequality above, one obtains, for all t P r0, T s,

}R̃ptq}2 `
ż t

0

}AR̃psq}2ds `
ż t

0

}∇R̃psqR̃psq}2ds

ď CpT q
ż t

0

}A 1

2 R̃psq}2ds ` CpT q
ż t

0

`
1 ` }r̃psq}6γ ` }Z̃x0psq}6γ

˘`
1 ` }R̃psq}4L4

˘
ds

ď CpT q sup
0ďslet

p}r̃psq}4γ ` }Z̃x0psq}4γq

` CpT q sup
0ďsďt

`
1 ` }r̃psq}6γ ` }Z̃x0psq}6γ

˘ ż t

0

`
1 ` }R̃psq}4L4

˘
ds

ď CpT q sup
0ďsďt

`
1 ` }r̃psq}10γ ` }Z̃x0psq}10γ

˘
.

Using the moment bound from Lemma 7.2 then concludes the proof of the claim (105).
Note that one also obtains the inequalities

sup
0ďkďK

`
Erχk´1

`ż tk

0

}AR̃ptq}2dt
˘ms

˘ 1

m ď CmpT qp1 ` }x0}qγq

sup
0ďkďK

`
Erχk´1

`ż tk

0

}∇R̃ptqR̃psq}2ds
˘ms

˘ 1

m ď CmpT qp1 ` }x0}qγq

which are used below.
‚ Step 2: let us prove that

(106) sup
0ďkďK

`
Erχk´1 sup

0ďtďtk

}R̃ptq}mL6s
˘ 1

m ď CmpT qp1 ` }x0}qγq.

Different strategies are necessary to treat the cases d “ 1 and d “ 2, 3.
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First, assume that d “ 1. Using the definition (102) of R̃ptq, the Sobolev inequality (31), the
smoothing property (18), and the fact that F is a polynomial function of degree 3, one obtains

}R̃ptq}L6 ď
ż t

0

}e´pt´sqA2

AF pR̃psq ` r̃psq ` Z̃x0ptℓpsqqq}L6ds

ď C

ż t

0

}e´pt´sqA2

A1` 1

6F pR̃psq ` r̃psq ` Z̃x0ptℓpsqqq}ds

ď C

ż t

0

pt ´ sq´ 7

12 }F pR̃psq ` r̃psq ` Z̃x0ptℓpsqq}ds

ď C

ż t

0

pt ´ sq´ 7

12

`
1 ` }R̃psq}3L6 ` }r̃psq}3L6 ` }Z̃x0ptℓpsqq}3L6

˘
ds.

On the one hand, one has }r̃psq}L6 ď }r̃psq}γ and }Z̃x0ptℓpsqq}L6 ď }Z̃x0ptℓpsqq}γ for all s ď t ď tk.
On the other hand, using the Gagliardo-Nirenberg inequality (36) and Young’s inequality, one

obtains

pt ´ sq´ 7

12 }R̃psq}3L6 ď C}AR̃psq} 1

2 pt ´ sq´ 7

12 }R̃psq} 5

2

ď C}AR̃psq}2 ` Cpt ´ sq´ 7

9 }R̃psq} 10

3 .

Using the inequalities proved above then concludes the proof of the claim (106) in the case d “ 1.

Second, assume that d “ 2 or d “ 3. The mapping t ÞÑ JpR̃ptqq “ 1
2
}R̃ptq}21 ` 1

4
}R̃ptq}4

L4 ´
1
2
}R̃ptq}2

L2 , where J is the energy functional defined by (37), satisfies the evolution equation

dJpR̃ptqq
dt

“ xAR̃ptq ` F pR̃ptqq, dR̃ptq
dt

y

“ ´xAR̃ptq, A2R̃ptqy ´ xAR̃ptq, APNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqqy
´ xF pR̃ptqq, A2R̃ptqy ´ xF pR̃ptqq, APNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqqy
“ ´xA 3

2 R̃ptq, A 3

2 R̃ptqy ´ xA 3

2 R̃ptq, A 1

2PNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqqy
´ xA 1

2PNF pR̃ptqq, A 3

2 R̃ptqy ´ xA 1

2 R̃ptq, A 1

2PNF pR̃ptq ` r̃ptq ` Zx0ptℓptqqqy
“ ´}A 3

2 R̃ptq ` A
1

2PNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqq}2

` xA 1

2PNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqq, A 1

2PNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqqy
` xA 3

2 R̃ptq, A 1

2PNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqqy
´ xA 3

2 R̃ptq, A 1

2PNF pR̃ptqqy
´ xA 1

2PNF pR̃ptqq, A 1

2PNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqqy
“ ´}A 3

2 R̃ptq ` A
1

2PNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqq}2

` xF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqq ´ F pR̃ptqq, A2R̃ptq ` APNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqqy
“ ´}A 3

2 R̃ptq ` A
1

2PNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqq}2

` xA 1

2F pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqq ´ A
1

2F pR̃ptqq, A 3

2 R̃ptq ` A
1

2PNF pR̃ptq ` r̃ptq ` Z̃x0ptℓptqqqy.

Using Young’s inequality, and the fact that JpR̃p0qq “ 0 and A
1

2 pF pR̃psq ` r̃psq ` Z̃x0ptℓpsqqq ´
F pR̃psqqq P H, one obtains the inequality

JpR̃ptqq ď 1

2

ż t

0

}F pR̃psq ` r̃psq ` Z̃x0ptℓpsqqq ´ F pR̃psqq}21ds
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for all t P r0, T s. Using the identity ∇F pRq “ p2R2 ´ 1q∇R, one obtains for all s P r0, T s
}F pR̃psq ` r̃psq ` Z̃x0ptℓpsqqq ´ F pR̃psqq}21

“ }p2R̃psq2 ´ 1q∇R̃psq ´ 2
`
pR̃psq ` r̃psq ` Z̃x0ptℓpsqqq2 ´ 1

˘
∇

`
R̃psq ` r̃psq ` Z̃x0psq

˘
}2

ď C}r̃psq ` Z̃x0ptℓpsqq}2L8}R̃psq∇R̃psq}2

` C}r̃psq ` Z̃x0ptℓpsqq}4L8}∇R̃psq}2

` C}r̃psq ` Z̃x0ptℓpsqq}2L8}∇pr̃psq ` Z̃x0ptℓpsqqq}2L4

` C}∇pr̃psq ` Z̃x0ptℓpsqqq}2L4}R̃psq}4L4

` C}r̃psq ` Z̃psq}4L8}∇pr̃psq ` Z̃x0ptℓpsqq}2

ď C
`
1 ` }r̃psq}4γ ` }Z̃ptℓpsqq}4γ

˘`
1 ` }∇R̃psq}2 ` }R̃psq∇R̃psq}2 ` }R̃psq}4L4

˘
,

using the inequality }∇ ¨ }L4 ď C}∇ ¨ } d
4

ď C} ¨ }
1` d

4

ď C} ¨ }γ , which follows from the Sobolev

embedding H
d
4 Ă L4, see the inequality (38), and from the condition γ ě 1 ` d

4
.

One then obtains

χk´1 sup
0ďtďtk

JpR̃ptqq ď Cχk´1 sup
0ďtďtk

`
1 ` }r̃ptq}4γ ` }Z̃ptq}4γ

˘

¨ χk´1

ż tk

0

`
1 ` }∇R̃ptq}2 ` }R̃ptq∇R̃ptq}2 ` }R̃ptq}4L4

˘
dt.

Using the previous inequalities and Hölder’s inequality, one obtains

sup
0ďkďK

`
Erχk´1 sup

0ďtďtk

|JpR̃ptqq|ms
˘ 1

m ď CmpT qp1 ` }x0}qγq.

Finally, using the Sobolev embedding H1 Ă L6, for all d P t2, 3u, see the inequality (39), and the
lower bound 1

4
} ¨ }4

L4 ´ 1
2
} ¨ }2

L2 ě ´C, for all t P r0, T s one has

}R̃ptq}2L6 ď C}R̃ptq}2H1 ď C
`
JpR̃ptqq ` 1

˘
.

Using the inequalities proved above then concludes the proof of the claim (106) in the case d P t2, 3u.
‚ Step 3: let us finally prove the required estimate. Using the condition γ P pd

2
,Γq, one has

1
2

` γ
4

ă 1. Using the definition of R̃ptq and the smoothing inequality, for all t P r0, T s, one has

}R̃ptq}γ ď
ż t

0

}e´pt´sqA2

APNF pR̃psq ` r̃psq ` Z̃x0ptℓpsqqq}γds

ď C

ż t

0

pt ´ sq´ 1

2
´ γ

4 }F pR̃psq ` r̃psq ` Z̃x0ptℓpsqqq}ds

ď C

ż t

0

pt ´ sq´ 1

2
´ γ

4

`
1 ` }R̃psq}3L6 ` }r̃psq}3L6 ` }Z̃x0ptℓpsqqq}3L6

˘
ds

ď C

ż t

0

pt ´ sq´ 1

2
´ γ

4

`
1 ` }R̃psq}3L6 ` }r̃psq}3γ ` }Z̃x0ptℓpsqqq}3γ

˘
ds

since F is a polynomial of degree 3. One then obtains the inequality

χk´1 sup
0ďtďtk

}R̃ptq}γ ď CpT qχk´1 sup
0ďtďtk

`
}R̃ptq}3L6 ` }r̃ptq}3γ

˘
` sup

0ďtďT

}Z̃x0ptq}3γ .

It remains to use the inequalities proved above to conclude the proof of Lemma 7.3. �

We are now in position to provide the proof of Theorem 3.2.
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Proof of Theorem 3.2. Using the estimates from Lemmas 7.1, 7.2 and 7.3, and the identity

X̃ptq “ R̃ptq ` r̃ptq ` Z̃x0ptq,
one obtains

(107) sup
0ďkďK

`
Erχk´1 sup

0ďtďtk

}X̃ptq}mγ s
˘ 1

m ď CmpT qp1 ` }x0}qγq.

Let us now prove the following inequality:

(108) sup
0ďkďK

`
Er

`
1 ´ χk

˘
sup

0ďtďtk

}X̃ptq}mγ s
˘ 1

m ď CmpT qp1 ` }x0}qγq.

Using the identity

χk´1 ´ χk “ 1 sup
0ďℓďk´1

}Xℓ}γď∆t´θ ´ 1 sup
0ďℓďk

}Xℓ}γď∆t´θ “ χk´11}Xk}γą∆t´θ ,

and the convention χ´1 “ 1, one has

1 ´ χk “
kÿ

ℓ“0

`
χℓ´1 ´ χℓ

˘
“

kÿ

ℓ“0

χℓ´11}Xℓ}γą∆t´θ .

for all k P t0, . . . ,Ku. As a consequence, one has

`
Erp1 ´ χkq sup

0ďtďtk

}X̃ptq}mγ s
˘ 1

m ď
nÿ

ℓ“0

`
Erχℓ´11}Xℓ}γą∆t´θ sup

0ďtďtk

}X̃ptq}mγ s
˘ 1

m

ď
nÿ

ℓ“0

`
Erχℓ´11}Xℓ}γą∆t´θ s

˘ 1

2m
`
Er sup

0ďtďtk

}X̃ptq}2mγ s
˘ 1

2m

ď
nÿ

ℓ“0

`
Erχℓ´1∆tmpθqθ}Xℓ}mpθq

γ s
˘ 1

2m
`
Er sup

0ďtďtk

}X̃ptq}2mγ s
˘ 1

2m ,

using Markov’s inequality in the last step, with the auxiliary parameter mpθq ě 1 chosen below.
On the one hand, one has for all ℓ P t0, . . . ,Ku

`
Erχℓ´1∆tmpθqθ}Xℓ}mpθq

γ s
˘ 1

2m ď Cm,M,θpT q∆t
M

2mpθq
θp1 ` }x0}qγq

mpθq
2m .

On the other hand, for all t P r0, T s, one has X̃ptq “ Ỹ ptq ` Z̃x0ptq, therefore

}X̃ptq}γ ď }x0}γ ` }Z̃ptq}γ `
ż t

0

}e´pt´sqA2

APNF pXℓpsqq}γ
1 ` ∆t}PNF pXℓpsqq} ds

ď }x0}γ ` }Z̃ptq}γ `
ż t

0

pt ´ sq´ 2`γ
4

}PNF pXℓpsqq}
1 ` ∆t}PNF pXℓpsqq}ds

ď }x0}γ ` }Z̃ptq}γ ` 1

∆t

ż t

0

pt ´ sq´ 2`γ
4 ds.

This gives
`
Er sup

0ďtďtk

}X̃ptq}2mγ s
˘ 1

2m ď
`
Er sup

0ďtďT

}X̃ptq}2mγ s
˘ 1

2m ď CmpT q∆t´1p1 ` }x0}γq.

Gathering the two estimates and using the inequality k ď K “ T
∆t

then gives

`
Erp1 ´ χkq sup

0ďtďtk

}X̃ptq}mγ s
˘ 1

m ď Cm,θpT q∆t´2p1 ` }x0}γq∆t
mpθq
2m

θp1 ` }x0}qγq
mpθq
2m .

Choosing mpθq “ maxp4m
θ
, 1q then gives the required estimate.
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Finally, using the inequality χK ď χK´1, one obtains

`
Er sup

0ďtďT

}X̃ptq}mγ s
˘ 1

m ď
`
Er

`
1 ´ χK

˘
sup

0ďtďtK

}X̃ptq}mγ s
˘ 1

m

`
`
ErχK sup

0ďtďtK

}X̃ptq}mγ s
˘ 1

m

ď CmpT qp1 ` }x0}qγq.
This concludes the proof of Theorem 3.2. �
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