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Asymptotic behavior of a class of multiple time scales

stochastic kinetic equations

Charles-Edouard Bréhier and Shmuel Rakotonirina-Ricquebourg∗

June 14, 2021

Abstract

We consider a class of stochastic kinetic equations, depending on two time scale separa-
tion parameters ε and δ: the evolution equation contains singular terms with respect to ε,
and is driven by a fast ergodic process which evolves at the time scale t{δ2. We prove that
when pε, δq Ñ p0, 0q the density converges to the solution of a linear diffusion PDE. This
is a mixture of diffusion approximation in the PDE sense (with respect to the parameter
ε) and of averaging in the probabilistic sense (with respect to the parameter δ). The proof
employs stopping times arguments and a suitable perturbed test functions approach which
is adapted to consider the general regime ε ‰ δ.

1 Introduction

Multiscale and/or stochastic models are popular in all fields of science and engineering. In this
paper, we consider a stochastic kinetic partial differential equation of the type

Btfε,δ ` 1
ε
apvq ¨ ∇xf

ε,δ ` bpvq ¨ ∇xf
ε,δ ` σpmδpt, xqqfε,δ “ 1

ε2
Lfε,δ, (1)

with initial condition fε,δp0q “ f
ε,δ
0 . The unknow fε,δ is a function of time t ě 0, position x P T

d

(the flat d-dimensional torus) and velocity v P V . Assumptions on the velocity fields a and b and
on the mapping σ are given below (see Section 2). Note that fε,δpt, x, vq may be interpreted as
a density of particles with position x and velocity v at time t; the system is not conservative
(the integral of fε,δ is not constant) due to the source term σpmδqfε,δ. In addition, the linear
operator L describes interactions between the particles: in this paper, we assume that L is the
Bhatnagar-Gross-Krook operator, given by

Lf “ ρM ´ f,

where µ is a σ-finite measure on V , the spatial density is defined by ρ .“ 〈f〉
.“
ş

V
fdµ, and where

M P L1pV, dµq is a density function, often called the Maxwellian (see Assumption 1).
The evolution equation (1) depends on the so-called driving process mδ, defined as follows:

one has mδpt, xq “ mpt{δ2, xq.
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The stochastic evolution equation (1) depends on two parameters ε and δ. In this paper, we
are interested in the asymptotic behavior when pε, δq Ñ p0, 0q. We prove the following result:
ρε,δ “

〈

fε,δ
〉

converges to the solution ρ of the following partial differential equation:

Btρ ` J ¨ ∇ρ` σ ρ “ divpK∇ρq, (2)

where J , σ and K are defined below, with initial condition ρp0q “ ρ0 “ lim ρε,δp0q. We refer
to the main results of this paper, Theorems 3.2 and 3.3 for rigorous statements, in particular
concerning the mode of convergence. Let us describe how the form of the limit equation (2)
arises in the asymptotic regime.

On the one hand, the parameter ε drives the behavior of the deterministic part of the evolution.
Under appropriate assumptions (including a centering condition for the velocity field a), the
spatial density ρε,δ “ 〈f〉

ε,δ converges when ε Ñ 0 to the solution of a diffusion partial differential
equation, where the velocity variable v has been eliminated. In the literature, such convergence
results are referred to as diffusion approximation results, see for instance [DGP00]. The result
is also partly an averaging result, since the term bpvq ¨ ∇x is replaced in the limit equation by
J ¨ ∇x, where J is the average of b (with respect to an appropriate measure).

On the other hand, the parameter δ is a time-scale separation parameter which determines the
random part of the evolution. When the process m such that mδpt, xq “ mpt{δ2, xq is assumed
to be ergodic (see Section 2, for instance one may consider an Ornstein-Uhlenbeck process), the
randomness may be eliminated when δ Ñ 0: only the average σ of σpmq with respect to the
invariant distribution remains in the limit evolution equation (it is a law of large numbers effect).
In the literature, such convergence results are referred to as averaging principle results.

In this paper, we thus prove the mixture of an diffusion approximation result in the PDE
sense, and of an averaging principle result in the probability sense, when simultaneously ε Ñ 0
and δ Ñ 0. To the best of our knowledge, this regime has not been considered in the literature so
far. Note that one of the major tasks in the analysis is to consider the general case when ε and
δ go to 0 independently. Indeed, the analysis would be simpler if ε “ δ. Note also that it would
be simpler if ε “ 0 and δ Ñ 0, or if ε Ñ 0 and δ “ 0, i.e. if the limits are taken successively.
The latter case is not included in the analysis but may be handled with similar techniques. The
limit equation (2) is the same in all regimes.

For deterministic problems (σ “ 0), diffusion approximation results have been extensively
studied. We refer for instance to [LK74, BLP79]. Kinetic models with small parameters appear
in various situations, for example when studying semi-conductors [GP92] and discrete velocity
models [LT97], or as limits for description of systems of particles, either with a single particle
[GR09] or multiple particles [PV03]. The asymptotic behavior of stochastic kinetic multiscale
problems have also been recently studied: we refer to the seminal article [DV12], and the more
recent contributions [DV20, DRV20, RR20]. In those works, the authors have obtained diffusion
approximation results both in the PDE and the probabilistic senses: the limit equation is a
stochastic linear diffusion PDE driven by a Wiener process (with Stratonovich interpretation).
Indeed, in those works σpmδq (with δ “ ε) is replaced by mδ{δ in (1), and the authors assume
that the driving process mδ satisfies an appropriate centering condition. In the present article,
we consider a law of large numbers regime (hence the averaging principle result), instead of a
central limit theorem regime. In spite of this fundamental difference, the setting is very close
to [RR20]: in particular a major technical difficulty which is solved in this paper is to avoid
boundedness assumptions on the driving process m, using only moment conditions, which allow
us to encompass for instance Ornstein-Uhlenbeck processes.

The literature concerning the averaging principle for stochastic differential equations and
stochastic partial differential equations is huge. The averaging principle in the SDE case has
been introduced in the seminal reference [Kha68], see also the monograph [PS08] and references
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therein. In the SPDE case, authors have mainly studied the averaging principle for parabolic
semilinear SPDE systems, see for instance [Cer09, CF09, Bré12, Bré20, RXY20] and references
therein. Let us also mention the recent preprints [CX20, XY21] where diffusion approximation
results are proved for such systems. The list of references above is not exhaustive.

The first main result of this manuscript is Theorem 3.2: the convergence of ρε,δ “
〈

fε,δ
〉

to ρ is understood as convergence in distribution (in the probabilistic sense), in the space
C0pr0, T s, H´ςpTdqq, for all arbitrarily small positive ς. Under an additional assumption (which
allows us to employ an averaging lemma), the convergence holds in the space L2pr0, T s, L2pTdqq,
see the second main result of this manuscript, Theorem 3.3. The functional spaces above are the
standard spaces where convergence holds in the deterministic case. The convergence in distri-
bution is the natural mode of the convergence for the probabilistic variable. However, since the
limit equation (2) is deterministic, if the limit initial condition ρ0 is also deterministic, then the
convergence holds in probability.

Let us now describe the main tools for the proof of the main results of this manuscript. We
follow a martingale problem approach combined with the perturbed test functions method, as in
the classical article [PSV77] (see also [Kus84, EK86, FGPSl07, PS08, dBG12]). Perturbed test
functions in the context of PDEs with diffusive limits applies in various situations, for instance in
the context of viscosity solutions [Eva89], nonlinear Schrödinger equations [dBG12], a parabolic
PDE [PP03] or, as in this article, kinetic SPDEs [DV12, DV20, DRV20, RR20].

The idea of the perturbed test function is to identify the limit generator L of the limit
equation (2) as

Lϕ “ lim
pε,δqÑp0,0q

Lε,δϕε,δ,

where ϕ “ ϕpρq is an arbitrary test function (depending only on the spatial density variable
ρ “ 〈f〉 appearing in the limit equation), and ϕε,δ “ ϕε,δpf,mq is the perturbed test function
given by

ϕε,δ “ ϕ ` εϕ1,0 ` ε2ϕ2,0 ` δ2ϕ0,2 ` εδ2ϕ1,2.

We refer to Proposition 4.3 for a rigorous statement. Note that due to the assumption that in
general ε ‰ δ, the construction of the perturbed test function requires to define the corrector
ϕ1,2 (corresponding to the term of the order εδ2). This corrector does not appear in the analysis
if ε “ δ. The construction of ϕ1,2 is one of the novelties of this manuscript.

In addition, like in the preprint [RR20], the driving process is not assumed to be bounded
(like in [DV12] for instance), and only moment conditions are satisfied. This generalization allows
us for instance to consider Ornstein-Uhlenbeck processes. The introduction of stopping times
arguments is required, hence the need to control the asymptotic behavior of the stopping times
τδ when δ Ñ 0. Note that we prove below that τδ Ñ 8 in probability: the arguments to prove
convergence are thus simpler than in [RR20].

The main result of this manuscript is the convergence of ρε,δ to ρ. In future works, it may
be interesting to study the fluctuations, i.e. to prove that ρε,δ ´ ρ, properly rescaled, converges
in distribution to a Gaussian process, solution of a linear stochastic evolution equation. Again
the use of the perturbed test functions approach may be a suitable approach. It would also
be interesting to investigate rates of convergence, both in the strong and weak senses, in the
spirit of [Bré12, Bré20] concerning parabolic systems, using Kolmogorov equations techniques.
Finally, the validity of diffusion approximation and averaging principle results is fundamental
for the efficient numerical simulation of the systems. In the deterministic setting, there has been
a lot of activity to develop asymptotic preserving and uniformly accurate numerical methods,
see for instance [Jin99, Jin12]. An asymptotic preserving scheme has been proposed in [AF19]
for a class of kinetic stochastic equations in the diffusion approximation regime. In a future
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work [BHRR21], we plan to investigate the generalization of the asymptotic preserving schemes
introduced and analyzed in the recent preprint [BRR20] for stochastic differential equations.

The manuscript is organized as follows. The setting is described in Section 2 (in particular
precise assumptions concerning the driving process m are provided). The main results, Theo-
rems 3.2 and 3.3, are stated and discussed in Section 3. Section 4 is devoted to the proofs of the
main results, using martingale problem formulations, tightness arguments and identification of
the limit. Auxiliary fundamental results are stated there: first, Proposition 4.1 concerning the
asymptotic behavior of the stopping time; second, Proposition 4.2 providing an a priori estimate
in an appropriate weighted L2 norm, uniformly with respect to ε, δ; third, Proposition 4.3 giving
the details on the perturbed test functions. The proofs of those three auxiliary results are given
in Section 5. Note that these three results are essential, and their proofs are given in a separate
section since they are the most original technical contributions of this manuscript (compared
with the more standard strategy described in Section 4).

2 Setting

2.1 Notation

The solution fε,δ of the stochastic kinetic problem considered in this article is a process fε,δ :
pt, x, vq P r0,8q ˆT

dˆV Ñ R, where V is a measurable space, equipped with a σ-finite measure
µ, and T

d denotes the flat d-dimensional torus.
Let us introduce the standard Hilbert spaces L2

x “ L2pTd,Rq and L2 “ L2pTd ˆ V,Rq of
real-valued functions, with inner products defined as follows:

ph, kqL2
x

“
ż

Td

hpxqkpxqdx, ph, kqL2 “
ż

TdˆV

hpx, vqkpx, vqdxdµpvq.

The associated norms are denoted by }¨}L2
x

and }¨}L2 respectively.

The following notation is used in the sequel: for all f P L1pTd ˆV q, let ρ P L1pTdq be defined
by

ρ
.“ 〈f〉

.“
ż

V

fdµ.

In addition, for all T P p0,8q, ς P p0, 1s, i P N0 and p P r1,8s, introduce the Banach spaces
Cix

.“ CipTd,Rq, C0
TH

´ς
x

.“ C0pr0, T s, H´ςpTd,Rqq and L
p
TL

2
x
.“ Lppr0, T s, L2pTd,Rqq.

Finally, the state space E of the driving stochastic process is assumed to be a Banach space,
with norm denoted by }¨}E .

2.2 Assumptions on the coefficients

Let us now state the assumptions concerning the linear operator L and the mappings a, b and σ.

Assumption 1. 1. Let the mapping M P L1pV, µq, be such that Mpvq ą 0 for all v P V ,
and normalized such that

ş

V
Mpvqdµpvq “ 1.

2. The linear operator L is defined as follows: for all f P L1pV, µq

Lf “ ρM ´ f “ 〈f〉 M ´ f. (3)
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3. The mappings a : V Ñ R
d and b : V Ñ R

d are bounded. In addition a satisfies the
centering condition

ż

V

apvqMpvqdµpvq “ 0.

4. The linear operators A and B are defined by

Afpx, vq .“ apvq ¨ ∇xfpx, vq,
Bfpx, vq .“ bpvq ¨ ∇xfpx, vq.

5. The mapping σ : E Ñ C
td{2u`2
x is Lipschitz continuous.

Let us also introduce the weighted Hilbert space L2pM´1q, with the inner product

ph, kqL2pM´1q “
ż

TdˆV

hpx, vqkpx, vqdxdµpvq
Mpvq .

The associated norm is denoted by }¨}L2pM´1q. Observe that applying the Cauchy-Schwarz
inequality yields the following results: for all f P L2pM´1q, one has f P L1pTd ˆV q, ρ P L2

x, and
Lf P L2pM´1q, with

ĳ

TdˆV

|fpx, vq|dµpvqdx ď }f}L2pM´1q

}ρM}L2pM´1q “ }ρ}L2
x

ď }f}L2pM´1q.

In addition, if f1 P L2pM´1q X L2 and f2 P L2pMq X L2, then

|pf1, f2qL2 | ď }f1}L2pM´1q }f2}L2pMq

as a consequence of the Cauchy-Schwarz inequality.

Example 2.1. The conditions in Assumption 1 above are satisfied in the following two examples:

1. Continuous velocities

• The space V “ R
d is equipped with the Lebesgue measure dµpvq “ dv.

• The function Mpvq “ p2πq´d{2 expp´}v}2{2q for all v P R
d is the standard Maxwellian.

• The velocity a is a bounded odd function. For instance, relativistic particles satisfy
apvq “ v?

1`}v}2
in convenient units.

2. Discrete velocities

• The space V “ t˘1ud is equipped with the counting measure.

• The function M is constant: Mpvq “ 1
2d

for all v P t˘1ud

• The velocity a is an odd function. For instance, the isotropic discrete velocity is given
by apvq “ v for all v P t˘1ud.

In both examples, the function σ is defined either as

• σpℓqpxq “ σ1pℓpxqq for all ℓ P E “ C
td{2u`2
x and x P T

d, with a mapping σ1 : R Ñ R,

• or as σpℓqpxq “ σ2px, ℓq for ℓ P E “ R and x P T
d, with a mapping σ2 : Td ˆ R Ñ R,

where σ1, σ2 are of class Ctd{2u`3 with bounded derivatives of all orders.
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2.3 Assumptions on the driving process

The driving process is a Markov process, which satisfies the conditions below.

Assumption 2. The family pmℓptqqℓPE defines a E-valued Markov process, where one has the
initial condition mℓp0q “ ℓ. Let Lm denote its infinitesimal generator, with domain denoted by
DpLmq.

We assume that this Markov process is ergodic, and that its unique invariant distribution,
denoted by ν, is integrable:

ş

E
}ℓ} dνpℓq ă 8.

The following notation is used throughout the article: for all Lipschitz continuous mappings
θ : E Ñ R, set

θ “
ż

E

θpℓqdνpℓq.

Let ℓ0 P E be a given initial condition, in the sequel the value of ℓ0 is omitted to simplify
notation: for all t ě 0, let

mptq “ mℓ0
ptq.

Assumption 2 is sufficient to state the main convergence results below. However, the analysis
of the asymptotic behavior of fε,δ when δ Ñ 0 requires additional technical assumptions. Since
they are not needed to state the convergence results below, they may be skipped by the reader,
until they are used to prove auxiliary results.

Assumption 3. The Markov process introduced in Assumption 2 satisfies the appropriate mo-
ment bounds: there exists γ P p2,8q such that

sup
iPN0

E

«

sup
tPri,i`1s

}mptq}γE

ff

ă 8. (4)

The assumption that γ ą 2 is crucial in the analysis. Observe that Assumption 3 implies the
following results:

ż

}ℓ}γ dνpℓq ă 8

sup
tě0

E r}mptq}γEs ă 8.

A mixing assumption is employed below to have quantitative information on the large time
behavior of the driving process.

Assumption 4. The Markov process introduced in Assumption 2 satisfies a mixing property:
there exists a nonnegative function γmix P L1pR`q such that, for all initial conditions ℓ1, ℓ2 P E,
there exists a coupling pm˚

ℓ1
,m˚

ℓ2
q of pmℓ1

,mℓ2
q, satisfying the inequality

E
“›

›m˚
ℓ1

ptq ´m˚
ℓ2

ptq
›

›

E

‰

ď γmixptq }ℓ1 ´ ℓ2}E
for all t ě 0.

Let us recall that a EˆE-valued random process pm˚
ℓ1
,m˚

ℓ2
q is a coupling of pmℓ1

,mℓ2
q if the

marginals safisty m˚
ℓ1

d“ mℓ1
and m˚

ℓ2

d“ mℓ2
(where equality is understood in distribution). As

a consequence of Assumption 4, it is straightforward to obtain the following result: if θ : E Ñ R

is Lipschitz continuous, then for all ℓ P E and all t ě 0, one has

ˇ

ˇErθpmℓptqqs ´ θ
ˇ

ˇ ď maxp1,
ż

E

›

›ℓ1
›

›

E
dνpℓ1qqLippθqγmixptqp1 ` }ℓ}Eq,
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where Lippθq denotes the Lipschitz constant of θ. Due to this consequence of the mixing property
(Assumption 4), the resolvent operator R0 introduced below is well-defined.

Definition 2.1 (Resolvent operator). Let
´

C
td{2u`2
x

¯˚

be the set of continuous linear forms on

C
td{2u`2
x and let E˚pσq .“

"

u ˝ σ | u P
´

C
td{2u`2
x

¯˚
*

Ă LippE,Rq. The resolvent operator R0 is

defined as follows: for all θ P E˚pσq

R0pθ ´ θqpℓq “
ż 8

0

E
“

θpmℓptqq ´ θ
‰

dt.

The function ψθ
.“ R0pθ ´ θq is the unique solution of the Poisson equation

´ Lmψθ “ θ ´ θ, (5)

satisfying the condition ψθ “ 0.

Note that the functions ψθ satisfy the following bound: there exists C P p0,8q, such that for
all θ P E˚pσq and for all ℓ P E, one has

|ψθpℓq| ď CLippθqp1 ` }ℓ}Eq, (6)

The remaining assumption deals with the infinitesimal generator Lm of the driving process.

Assumption 5. For all θ1, θ2 P E˚pσq, assume that ψθ1
ψθ2

is in the domain DpLmq of the
generator Lm of the driving process, and that Lmpψθ1

ψθ2
q has at most polynomial growth:

sup
ℓPE

|Lm pψθ1
ψθ2

q pℓq|
1 ` }ℓ}2

E

ă 8.

The assumptions above are satisfied if the driving process is a E-valued Ornstein-Uhlenbeck
process, as explained below.

Example 2.2. Let pmℓptqqℓPE be defined by

dmℓ,t “ ´pmℓ,t ´mqdt ` dWt, mℓ,0 “ ℓ, (7)

where W is an E-valued Wiener process. It satisfies Assumption 2 since it is ergodic and its
unique invariant distribution is a normal distribution, hence integrable. Moreover, we have

mℓptq “ ℓe´t `m
`

1 ´ e´t
˘

`
ż t

0

es´tdWs. (8)

Assumption 3 is satisfied for any γ P p2,8q. The coupling pm˚
ℓ1
,m˚

ℓ2
q of Assumption 4 is obtained

by driving both processes by the same Wiener process W . Indeed, (8) becomes

m˚
ℓ1

ptq ´m˚
ℓ2

ptq “ pℓ1 ´ ℓ2qe´t,

and Assumption 4 is satisfied with γmixptq “ e´t. Finally, with the notation of Assumption 5,
we have

ψθpℓq “
ż 8

0

pθpℓq ´ θpmqq e´tdt “ θpmq ´ θpℓq.

Since the infinitesimal generator is given by Lmϕpℓq “ Dϕpℓq¨pm´ℓq` 1
2

Tr
`

D2ϕpℓq
˘

, Assumption
5 is also satisfied.
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3 Main result

3.1 Description of the model and of the limit problem

The multiscale stochastic problem considered in this article depends on two parameters ε and
δ. Since the objective of this work is to prove a convergence result when pε, δq Ñ p0, 0q, without
loss of generality it is assumed that ε P p0, ε0s and δ P p0, δ0s, where ε0, δ0 are fixed – a precise
condition is stated below. To simplify notation, we use the following convention:

`

Xε,δ
˘

ε,δ
stands

for the family of random variables
`

Xε,δ
˘

εPp0,ε0s,δPp0,δ0s
.

First, for all δ P p0, δ0s, the fast driving process mδ is defined as follows: for all t ě 0, set

mδptq “ mpt{δ2q, (9)

where m is the driving process given by Assumption 2, with the initial condition mδp0q “ mp0q “
ℓ0, which is assumed to be independent of δ.

We study the asymptotic behavior when pε, δq Ñ p0, 0q of the solution fε,δ of the following
stochastic kinetic problem

Btfε,δ `
´1
ε
apvq ` bpvq

¯

¨ ∇xf
ε,δ ` σpmδqfε,δ “ 1

ε2
Lfε,δ. (10)

with initial condition fε,δp0q “ f
ε,δ
0 .

For any fixed ε P p0, ε0s, δ P p0, δ0s, the problem (10) is globally well-posed in the following
sense.

Proposition 3.1. Introduce the linear operator Aε “ ε´1A`B, with domain DpAεq .“
 

f P L2pM´1q | px, vq ÞÑ
`

ε´1apvq ` bpvq
˘

¨ ∇xfpx, vq P L2pM´1q
(

,
for all ε P p0, ε0s.

Let T P p0,8q, ε P p0, ε0s and δ P p0, δ0s. For any fε,δ0 P L2pM´1q, there exists, almost surely,
a unique mild solution fε,δ of (10) in C0pr0, T s;L2pM´1qq, in the sense that, almost surely, for
all t P r0, T s, one has

fε,δptq “ e´tAε

f
ε,δ
0 `

ż t

0

e´pt´sqAε

ˆ

1
ε2
Lfε,δpsq ´ σpmδpsqqfε,δpsq

˙

ds.

The proof of Proposition 3.1 is based on a standard fixed point argument, combined with the
following observation:

sup
tPr0,T s

›

›mδptq
›

›

E
ď sup
iďTδ´2`1

sup
tPri,i`1s

}mptq}E ă 8

owing to Assumption 3 on the moments of the driving process m. The proof of Proposition 3.1
is thus omitted.

Note that the statement of Proposition 3.1 is given for fixed ε ą 0 and δ ą 0, and does not
provide uniform estimates of the solution fε,δ with respect to these parameters. Proving such
estimates needs extra arguments, which are not needed to state the main results of the article.
We refer to Proposition... below for the statement of an appropriate a priori estimate in the
L2pM´1q norm, which requires the introduction of a stopping time τδ defined below.

Let us now introduce the so-called averaged equation. First, set

K “
ż

V

apvq b apvqMpvqdµpvq P Sym`pdq

J “
ż

V

bpvqMpvqdµpvq P R
d

σ “
ż

E

σpℓqdνpℓq P Ctd{2u`2
x .

(11)
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Note that K and J are well-defined since a and b are assumed to be bounded (see Assumption 1).
In addition, σ is well-defined since σ is globally Lipschitz continuous from E to C

td{2u`2
x (see

Assumption 1) and since the probability distribution ν is integrable (see Assumption 2).
The unknown ρ of the averaged equation is a mapping defined on r0,8q ˆT

d. We are finally
in position to write the averaged equation:

Btρ ` J ¨ ∇ρ` σ ρ “ divpK∇ρq, (12)

with initial condition ρp0q “ ρ0. In (12) above, ∇ and div are the gradient and divergence
operators with respect to the variable x respectively. We consider solutions of (12) in the weak
sense, see Definition 3.1 below. Note that the solution may be a random process, even if the
evolution is deterministic: it may happen that the initial condition ρ0 is random.

Definition 3.1. Let T P p0,8q and ρ0 be a L2
x-valued random variable. A stochastic process ρ

is a weak solution of (12) in L2
x if ρ P L8

T L
2
x almost surely and if, for all ξ P H2

x and t P r0, T s,
almost surely,

pρptq, ξqL2
x

“ pρ0, ξqL2
x

`
ż t

0

pρpsq, divpK∇ξq ` J ¨ ∇ξ ´ σξqL2
x
ds. (13)

For any L2
x-valued random variable, the averaged equation (12) admits a unique weak solution

in the sense of Definition 3.1.

3.2 Convergence results

Let us now state the main results of this article, concerning the asymptotic behavior of ρε,δ and
fε,δ when pε, δq Ñ p0, 0q. In the sequel, it is convenient to impose the following non restrictive
conditions on the parameters ε0 and δ0 (such that ε P p0, ε0s and δ P p0, δ0s):

ε0 ă min
ˆ

1,
´

4p}a}L8 ` }b}L8 qp1 ` T }σ}
C1

x
q
¯´1

˙

, δ0 ă min
´

1, }ℓ0}´1

E

¯

. (14)

Note that the condition for δ0 depends on the initial condition ℓ0 of the driving process. This
is one of the reasons why it is convenient to assume that it is deterministic and that it does not
depend on δ. Extensions to more general initial conditions for the driving process would require
extra technical assumptions and computations, which are omitted to simplify the setting and
focus on the main aspects of the analysis of the asymptotic behavior of the stochastic multiscale
problem (10) when pε, δq Ñ p0, 0q.

The initial condition f
ε,δ
0 of (10) is assumed to satisfy the following conditions.

Assumption 6. The family of initial conditions
´

f
ε,δ
0

¯

ε,δ
satisfies the following moment bound:

sup
εPp0,ε0s,δPp0,δ0s

E

„

›

›

›
f
ε,δ
0

›

›

›

12

L2pM´1q



ă 8.

In addition, the initial density ρ
ε,δ
0 P L2

x converges in distribution when pε, δq Ñ p0, 0q in L2
x to

ρ0 P L2
x: recall that this means that for any bounded continuous mapping Φ : L2

x Ñ R, one has

E

”

Φpρε,δ0 q
ı

ÝÝÝÝÑ
ε,δÑ0

E rΦpρ0qs .

9



Observe that in general ρ0 is a L2
x-valued random variable.

We are now in position to state the two main convergence results of this article. First, see
Theorem 3.2, ρε,δ “

〈

fε,δ
〉

converges in distribution to the unique solution ρ of the averaged
equation (12), in the space C0

TH
´ς
x for all ς ą 0. Second, under an additional technical assumption

which allows to apply an averaging lemma, one obtains a stronger result, see Theorem 3.3: ρε,δ

converges in distribution to ρ in the space L2
TL

2
x, and fε,δ converges in distribution to ρM in the

space L2
TL

2pM´1q. Moreover, the convergence results hold in probability if the initial condition
ρ0 (given by Assumption 6) of the averaged equation (12) is deterministic.

Let us state the first main result of this article.

Theorem 3.2. Let Assumptions 1 to 6 be satisfied. Let fε,δ be the solution of (10). Then, when
pε, δq Ñ p0, 0q, the random variable ρε,δ “

〈

fε,δ
〉

converges in distribution to the unique weak
solution ρ of (12), in C0

TH
´ς
x .

In addition, if the initial condition ρ0 “ lim
pε,δqÑp0,0q

ρ
ε,δ
0 P L2

x is deterministic, then the con-

vergence of ρε,δ to ρ holds in probability.

An additional assumption is required to state Theorem 3.3, as in [RR20] (Assumption 7
below). It allows us to apply a so-called averaging lemma (see [BD99, Theorem 2.3]), developed
for the study of kinetic PDEs, and to obtain convergence in the space L2

x (in Theorem 3.3)
instead of H´ς (in Theorem 3.2).

Assumption 7. • The space for the velocity variable is given by pV, dµq “ pRn, dµ
dv

pvqdvq,
with a Radon-Nikodym derivative (with respect to Lebesgue measure) satisfying dµ

dv
P

H1pRnq.

• The mapping a is locally Lipschitz continuous

• There exist Ca,µ P p0,8q and ςa,µ P p0, 1s such that, for all u P Sd´1, all λ P R and all
η P p0,8q, one has

ż

λăapvq¨uăλ`η

˜

ˇ

ˇ

ˇ

ˇ

dµ

dv
pvq

ˇ

ˇ

ˇ

ˇ

2

`
ˇ

ˇ

ˇ

ˇ

∇
dµ

dv
pvq

ˇ

ˇ

ˇ

ˇ

2
¸

dv ď Ca,µη
ςa,µ .

We are now in position to state the second main result of this article.

Theorem 3.3. Let Assumptions 1 to 6 and Assumption 7 be satisfied.
Then, when pε, δq Ñ p0, 0q, the random variable ρε,δ “

〈

fε,δ
〉

converges in distribution to the
unique weak solution ρ of (12), in the space L2

TL
2
x. Moreover, when pε, δq Ñ p0, 0q, the random

variable fε,δ converges in distribution to ρM, in the space L2
TL

2pM´1q.
In addition, if the initial condition ρ0 “ lim

pε,δqÑp0,0q
ρ
ε,δ
0 P L2

x is deterministic, then the con-

vergence of ρε,δ to ρ and of fε,δ to ρM hold in probability.

3.3 Discussion

The main results, Theorems 3.2 and 3.3, state that diffusion approximation (in the PDE sense)
and averaging (in the probabilistic sense) results hold, when pε, δq Ñ p0, 0q. These results are
natural generalizations of previously obtained results, either in the deterministic case (ε Ñ 0,
σ “ 0), or in the probabilistic case (δ Ñ 0, ε ą 0 fixed). In fact, using the same arguments as
in Section 4 below, one may obtain the following results, where the limits ε Ñ 0 and δ Ñ 0 are
taken successively.

10



On the one hand, if δ ą 0 is fixed, then ρε,δ “ 〈f〉
ε,δ converges when ε Ñ 0, to the solution

ρ0,δ of the evolution equation

Btρ0,δ ` σpmδqρ0,δ “ divpK∇ρ0,δq ´ J ¨ ∇ρ0,δ.

That result is a standard diffusion approximation result in the PDE sense. Then, when δ Ñ 0,
ρ0,δ converges to the solution ρ of the limit equation (12), owing to the standard averaging
principle for stochastic problems.

On the other hand, if ε ą 0 is fixed, then owing to the standard averaging principle, fε,δ

converges when δ Ñ 0, to the solution fε,0 of the evolution equation

Btfε,0 ` 1
ε
apvq ¨ ∇xf

ε,0 ` bpvq ¨ ∇xf
ε,0 ` σfε,0 “ 1

ε2
Lfε,0.

Then, when ε Ñ 0, ρε,0 “ 〈f〉
ε,0 converges to the solution ρ of the limit equation (12), owing to

the standard diffusion approximation result in the PDE sense.
To the best of our knowledge, the results above have not been rigorously proved in the

literature, however they are variants of well-studied results. The proofs of Theorems 3.2 and 3.3
do not encompass those regimes when either ε “ 0 or δ “ 0: essentially this would require to
adapt the construction of the perturbed test function. Indeed, below we directly focus on the
behavior of ρε,δ, thus the convergence fε,δ Ñ fε,0 when δ Ñ 0 cannot be covered directly, for
instance. In addition, one of the arguments of the proofs is the convergence τδ Ñ 8 when δ Ñ 0
(where τδ are stopping times defined below), thus the convergence ρε,δ Ñ ρ0,δ when ε Ñ 0 cannot
be covered without substantial modifications.

Still, one obtains the following result:

lim
δÑ0

lim
εÑ0

ρε,δ “ lim
εÑ0

lim
δÑ0

ρε,δ “ lim
pε,δqÑp0,0q

ρε,δ “ ρ,

where the convergence is understood in the appropriate sense. The analysis presented in this
article thus departs from the setting of [DV12, DV20, DRV20, RR20]. where in all cases there
is only one small parameter ε “ δ. Our result is expected but important: it shows that the
diffusion approximation and the averaging principle can be decoupled. As already mentioned in
the introduction, considering the general case ε ‰ δ requires new arguments, in particular the
construction of the perturbed test functions needs an additional corrector.

In the setting, it is assumed that the initial condition mδp0q of the fast driving process is
deterministic and independent of δ: mδp0q “ m0. It would be possible to extend the results
to more general initial conditions, under appropriate modified moment conditions. This would
for instance allow us to include the case where mδp0q is random and distributed following the
ergodic invariant distribution ν. Note also that if either the mapping σ or the process m would
have a bounded support, the analysis would be simplified.

As explained in the introduction, we have left open several questions for future works: first,
the analysis of fluctuations, second, the identification of (strong and weak) rates of convergence.

4 Description of the proof

In the sequel, the following convention is employed: given variables u and parameters λ, the
notation X1puq À X2puq means that for all parameters λ, there exists Cpλq P p0,8q such that
one has X1puq ď CpλqX2puq for all u. From the context the identification of variables (typically
ε, δ, f, ℓ) and parameters (typically T, ϕ) will be clear.

11



First, we introduce two of the most important tools of the proofs of the main results: the
stopping time τδ (see Section 4.1), and the perturbed test function ϕε,δ “ ϕ ` εϕ1,0 ` ε2ϕ2,0 `
δ2ϕ0,2 ` εδ2ϕ1,2 (see Section 4.2), constructed for a class of admissible functions ϕ such that
ϕpf, ℓq “ ϕp〈f〉q “ ϕpρq. Sections 4.1 and 4.2 contain important auxiliary results, which require
technical arguments in their proofs: the proofs are therefore postponed to Section 5.

The use of the stopping time τδ is instrumental to obtain appropriate moment bounds of the
solutions, uniformly with respect to ε, δ. We prove that τδ Ñ 8 in probability when δ Ñ 0. In
the arguments, as a consequence of Slutsky’s lemma (see more details below), it is then sufficient
to consider the stopped processes defined by fε,δ,τ

δ “ fε,δp¨ ^ τδq, ρε,δ,τδ “ ρε,δp¨ ^ τδq and
mδ,τδ “ mδp¨ ^ τδq.

The use of the perturbed test function method is standard in the analysis of multiscale
stochastic problems, see for instance [DV12, DV20, DRV20, RR20] in a similar context of
stochastic kinetic equations. Compared to those references, note that it is necessary to consider
two parameters ε, δ which may be independent. When δ “ ε, the construction of the corrector
ϕ1,2 is not needed.

We then proceed to the proof of the main results of this article. The arguments are standard.
We first check a tightness property for

`

ρε,δ
˘

ε,δ,τδ in the appropriate function space. We then

check that the Markov process pfε,δ,τδ

,mδ,τδq is the solution of a martingale problem for all
ε ą 0, δ ą 0, and letting pε, δq Ñ p0, 0q, using the perturbed test function, we prove that any limit

point of the family
´

ρε,δ,τ
δ
¯

ε,δ
is a weak solution of the averaged equation, in the sense of (13).

Since τδ Ñ 8 in probability when δ Ñ 0, a uniqueness argument for the averaged equation
then concludes the proof of Theorem 3.2. Theorem 3.3 is then obtained by the application of
the averaging lemma. The fact that convergence holds in probability when ρ0 is deterministic
is a straightforward well-known consequence of Portmanteau Theorem (and is not specific to
the PDE framework of this paper): in that case the solution ρ of the averaged equation is also
deterministic.

4.1 Stopping times and a priori estimates

In this section, first we give the definition of the stopping time τδ, second we state that τδ Ñ 8
in probability when δ Ñ 0. Finally, we state an a priori estimate for fε,δ,τ

δ

in L2pM´1q, which
is uniform with respect to ε, δ. The proofs are postponed to Section 5.

For all δ P p0, δ0s and all t ě 0, set

ζδptq “ 1
δ

ż t

0

`

σpmδpsqq ´ σ
˘

ds P Ctd{2u`2
x . (15)

Definition 4.1. Let α P p 2
γ
, 1q, then for all δ P p0, δ0s, define

τδ “ τδm ^ τδζ ,

where

τδm “ inf
 

t P r0, T s |
›

›mδptq
›

›

E
ě δ´α

(

,

τδζ “ inf
!

t P r0, T s |
›

›ζδptq
›

›

C1
x

ě δ´1
)

.

Note that τδ is a stopping time for the filtration
`

Fδ
t

˘

tPR` generated by the driving process
mδ, with Fδ

t “ σ
`

mδpsq
˘

0ďsďt
. In the definition above, γ is the parameter introduced in

Assumption 3.

12



The initial conditions of the stopped processes mδ,τδ

and ζδ,τ
δ

satisfy
›

›

›
mδ,τδp0q

›

›

›

E
“ }ℓ0}E ď

δ´1
0 ď δ´α (since δ ď δ0 ď 1 and α ă 1), and ζδ,τ

δ p0q “ 0. As a consequence, almost surely
τδ ą 0, and the following estimates for mδ and ζδ hold: for all t ě 0 and all δ P p0, δ0s, one has

›

›

›
mδ,τδ ptq

›

›

›

E
“

›

›mδpt^ τδq
›

›

E
ď δ´α, (16)

and
›

›

›
ζδ,τ

δ ptq
›

›

›

C1
x

“
›

›ζδpt ^ τδq
›

›

C1
x

ď δ´1. (17)

Let us now study the behavior of the stopping time τδ when δ Ñ 0.

Proposition 4.1. When δ Ñ 0, τδ Ñ 8 in probability: for all T ą 0, one has

P
`

τδ ă T
˘

ÝÝÝÝÝÑ
pε,δqÑ0

0.

The proof of Proposition 4.1 is postponed to Section 5.
Finally, let us state the following a priori estimate in the L2pM´1q norm for fε,δ,τ

δptq, in an
almost sure sense.

Proposition 4.2. For T P p0,8q, there exists CpT q P p0,8q, such that for all t P r0, T s,
ε P p0, ε0s and δ P p0, δ0s, almost surely one has

›

›

›
fε,δ,τ

δ ptq
›

›

›

2

L2pM´1q
` 1

2ε2

ż t^τδ

0

›

›

›
Lfε,δ,τ

δpsq
›

›

›

2

L2pM´1q
ds ď CpT q

›

›

›
f
ε,δ
0

›

›

›

2

L2pM´1q
. (18)

Let us emphasize that the constant CpT q appearing on the right-hand side of (18) is deter-
ministic and does not depend on ε and δ.

The proof of Proposition 4.2 is posponed to Section 5. Note that the a priori estimate
›

›

›
fε,δ,τ

δptq
›

›

›

L2pM´1q
À

›

›

›
f
ε,δ
0

›

›

›

L2pM´1q
is instrumental in all the arguments of the proof of Theo-

rem 3.2, whereas the upper bound for the integral term on the left-hand side of (18) is used only
in the proof of Theorem 3.3.

4.2 Perturbed test functions

In this section, we describe the construction of a perturbed test function ϕε,δ, such that the
following properties are satisfied:

ϕε,δ ÝÝÝÝÑ
ε,δÑ0

ϕ

Lε,δϕε,δ ÝÝÝÝÑ
ε,δÑ0

Lϕ,

where ϕ is any sufficiently smooth function such that ϕpf, ℓq “ ϕp〈f〉q, and Lε,δ and L are
the infinitesimal generators associated with the Markov processes pfε,δ,mδq and ρ, solving (10)
and (12) respectively.

To state more rigorously and more precisely the properties mentioned above, we first introduce
two appropriate classes of test functions, such that ϕ P Θlim and ϕε,δ P Θ for all ε, δ, and such
that the errors |ϕε,δ ´ ϕ| and |Lε,δϕε,δ ´ Lϕ| are quantified in terms of ε, δ.

Let us first describe the class of functions Θlim.
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Definition 4.2. Let Θlim be the class of real-valued test functions ϕ such that for all f P
L2pM´1q and ℓ P E, one has

ϕpf, ℓq “ ϕpρq “ χppρ, ξqL2
x
q, (19)

where we recall that ρ “ 〈f〉 “
ş

V
fdµ, with arbitrary χ P C3

b pR,Rq and ξ P C3
x.

Recall that K, J and σ are defined by (11). The infinitesimal generator L associated with
the limit problem (12) is defined by

Lϕpρq “ Dϕpρq ¨ pdivxpK∇xρq ´ J ¨ ∇xρ´ σρq , (20)

for all ρ P L2
x and all ϕ P DpLq, with the domain DpLq given by

DpLq “
 

ϕ P C0pL2
xq | Lϕ P C0pL2

xq
(

.

Note that Θlim Ă DpLq. In addition, for all ϕ P Θlim, of the form (19), one has for all ρ P L2
x

Lϕpρq “ χ1ppρ, ξqL2
x
q pρ, divxpK∇xξq ` J ¨ ∇xξ ´ σξqL2

x
. (21)

Let us now describe the class of functions Θ.

Definition 4.3. Let Θ be the class of test functions ϕ : L2pM´1q ˆ E Ñ R satisfying the
following conditions.

• For all ℓ P E, ϕp¨, ℓq P C1pL2pM´1qq.
• For all f P L2pM´1q, ϕpf, ¨q P C0pEq.

• For all i P t1, 2u and all f P L2pM´1q, ϕpf, ¨qi P DpLmq and Lmpϕiq P C0pL2pM´1q ˆ Eq.

• For all f P L2pM´1q and ℓ P E, denote by ∇fϕpf, ℓq P L2pM´1q the gradient of ϕ at pf, ℓq,
which is defined defined such that

@h P L2pM´1q, p∇fϕpf, ℓq, hq
L2pM´1q “ Dfϕpf, ℓq ¨ h.

Then, for all f P L2pM´1q and ℓ P E, one has
ż ż

}∇x∇fϕpf, ℓqpx, vq}2
dx
dµpvq
Mpvq ă 8.

• There exists Cϕp0,8q such that, for all f, h P L2pM´1q and ℓ1, ℓ2 P E,

|ϕpf, ℓ1q| ` |Dfϕpf, ℓ1qpAhq| ` |Dfϕpf, ℓ1qpBhq| ` |Dfϕpf, ℓ1qpℓ2hq| ` |Dfϕpf, ℓ1qpLhq|

ď Cϕ

´

1 ` }f}3

L2pM´1q ` }h}3

L2pM´1q

¯´

1 ` }ℓ1}2

E ` }ℓ2}2

E

¯

.

The infinitesimal generator Lε,δ associated with the stochastic problem (10) with driving
process mδ, satisfies the following multiscale expansion in terms of ε, δ:

Lε,δ “ L0 ` ε´1L1 ` ε´2L2 ` δ´2Lm (22)

where the infinitesimal generator of the driving process Lm is introduced in Assumption 2 above,
and L0, L1 and L2 are defined as follows: for all f P L2pM´1q and all ℓ P E, set

L0ϕpf, ℓq “ ´Dfϕpf, ℓq ¨ pσpℓqf `Bfq,
L1ϕpf, ℓq “ ´Dfϕpf, ℓq ¨ pAfq,

L2ϕpf, ℓq “ Dfϕpf, ℓq ¨ Lf,
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for real-valued functions ϕ P DpLε,δq where

DpLε,δq “
 

ϕ P C0pL2pM´1q ˆ Eq | Lε,δϕ P C0pL2pM´1q ˆ Eq
(

is the domain of the unbounded linear operator Lε,δ. Recall that A “ apvq ¨∇x and B “ bpvq ¨∇x

(see Assumption 1).
Note that the following property is satisfied: for all ϕ P Θ, one has ϕ P DpLε,δq and ϕ2 P

DpLε,δq. In addition, observe that Θlim Ă Θ.
We are now in position to state the main result of this section.

Proposition 4.3. For all ϕ P Θlim, there exists functions ϕ1,0, ϕ2,0, ϕ0,2 and ϕ1,2 such that the
following properties hold.

• Set
ϕε,δ “ ϕ ` εϕ1,0 ` ε2ϕ2,0 ` δ2ϕ0,2 ` εδ2ϕ1,2. (23)

Then ϕε,δ P Θ.

• There exists Cpϕq P p0,8q, such that for all ε P p0, ε0s, δ P p0, δ0s and all pf, ℓq P
L2pM´1q ˆ E, one has

ˇ

ˇLε,δϕε,δ ´ Lϕ
ˇ

ˇ pf, ℓq ď Cpϕqp1 ` }f}3

L2pM´1qq
´

εp1 ` }ℓ}Eq ` δ2p1 ` }ℓ}2

Eq
¯

. (24)

• One has the following upper bounds: there exists Cpϕq P p0,8q, such that for all pf, ℓq P
L2pM´1q ˆ E,

|ϕ1,0pfq| ď Cpϕq }f}L2pM´1q , (25)

|ϕ2,0pfq| ď Cpϕqp1 ` }f}2

L2pM´1qq, (26)

|ϕ0,2pf, ℓq| ď Cpϕq }f}L2pM´1q p1 ` }ℓ}Eq, (27)

|ϕ1,2pf, ℓq| ď Cpϕqp1 ` }f}2

L2pM´1qqp1 ` }ℓ}Eq. (28)

Note that the following error estimates holds: for all pf, ℓq P L2pM´1q ˆ E, one has

ˇ

ˇϕε,δpf, ℓq ´ ϕp〈f〉q
ˇ

ˇ Àϕ p1 ` }f}2

L2pM´1qqpε ` δ2p1 ` }ℓ}Eqq. (29)

The proof of Proposition 4.3 is postponed to Section 5. Using the standard terminology, the
functions ϕ1,0, ϕ2,0, ϕ0,2 and ϕ1,2 are referred to as the correctors in the sequel.

Note that one of the novelties of the result above is the construction of the corrector ϕ1,2,
which is not required in the case ε “ δ which is treated in other contributions, see [DV12, DV20,
DRV20, RR20]. More precisely, if ε, δ, it suffices to construct a perturbed test function of the
type ϕε “ ϕ ` εϕ1 ` ε2ϕ2. In fact, ϕ1 “ ϕ1,0 and ϕ2 “ ϕ2,0 ` ϕ0,2.

4.3 Martingale property

The proofs of Theorems 3.2 and 3.3 is based on an interpretation in terms of solutions of mar-
tingale problems. Indeed, combined with the perturbed test function approach described above,
this formulation is convenient to identify limit points when pε, δq Ñ p0, 0q.

Several arguments in the proofs of the auxiliary results below employ the following auxiliary
result.
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Proposition 4.4. Let ϕ P Θ. For all t P R
`, set

M ε,δ
ϕ ptq .“ ϕpfε,δptq,mδptqq ´ ϕpfε,δp0q,mδp0qq ´

ż t

0

Lε,δϕpfε,δpsq,mδpsqqds. (30)

Then, M ε,δ,τδ

ϕ is a càdlàg
`

Fδ
t

˘

tPR`-martingale. In addition, for all t P R
`, one has

E

„

ˇ

ˇ

ˇ
M ε,δ,τδ

ϕ ptq
ˇ

ˇ

ˇ

2


“ E

«

ż t^τδ

0

`

Lε,δpϕ2q ´ 2ϕLε,δϕ
˘

pfε,δpsq,mδpsqqds
ff

“ 1
δ2

E

«

ż t^τδ

0

`

Lmpϕ2q ´ 2ϕLmϕ
˘

pfε,δpsq,mδpsqqds
ff

.

In the statement of Proposition 4.4 above, note that the process M ε,δ
ϕ is stopped, where the

stopping time τδ is given by Definition 4.1. Considering the stopped process allows us to use the
estimate (18) of Proposition 4.2 in the sequel. Moreover, note that ϕ is assumed to belong to
the class of functions Θ introduced in Definition 4.3: in fact Proposition 4.4 is the justification
of the requirements on ϕ in Definition 4.3.

The proof of Proposition 4.4 is standard and is omitted.

4.4 Proofs of Theorems 3.2 and 3.3

In order to prove the convergence in distribution results of ρε,δ to ρ when pε, δq Ñ p0, 0q, it suffices
to prove that for any arbitrary sequence pεi, δiqiě1 such that pεi, δiq Ñ p0, 0q when i Ñ 8, ρεi,δi

converges in distribution to ρ. To simplify the notation, we fix such a sequence and in the sequel
one should interpret ε “ εi and δ “ δi. Moreover, in Proposition 4.6 and in the proofs, pεi, δiqiě1

may also denote a subsequence of the original sequence.

4.4.1 Two technical results

Two additional technical results are required for the proof of the main results of this article.
First, let us state a tightness result.

Proposition 4.5. Let Assumptions 1 to 6 be satisfied.
The family of processes

`

ρε,δ
˘

ε,δ
is tight in the space C0

TH
´ς
x , for all arbitrarily small ς P p0, 1s.

Moreover, if Assumption 7 is also satisfied, then the family of processes
`

ρε,δ
˘

ε,δ
is tight in

the space L2
TL

2
x.

Second, let us state a result which allows us to identify limit points of the family
`

ρε,δ
˘

ε,δ
.

Proposition 4.6. Assume that ρ8 is a C0
TH

´ς
x -valued random variable, such that ρεi,δi

dÝÝÝÑ
iÑ8

ρ8,

in distribution in C0
TH

´ς
x , for some sequence pεi, δiq ÝÝÝÑ

iÑ8
0, εi P p0, ε0s, δi P p0, δ0s.

Then, for all ϕ P Θlim, almost surely, for all t P r0, T s, one has

ϕpρ8ptqq ´ ϕpρ8p0qq ´
ż t

0

Lϕpρ8psqqds “ 0.

The proofs of Propositions 4.5 and 4.6 are technical and are given below.
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4.4.2 Proofs of the main results

We are now in position to prove the main results of this article.

Proof of Theorem 3.2. Let ς P p0, 1q be fixed. Owing to Proposition 4.5, the family of processes
`

ρε,δ
˘

ε,δ
is tight in the space C0

TH
´ς
x . Due to Prohorov Theorem, there exist a C0

t TH
´ς
x -valued

random variable ρ8 and sequences pεiqiPN and pδiqiPN, such that εi Ñ 0 and δi Ñ 0, and

ρεi,δi
dÝÝÝÑ

iÑ8
ρ8. Let us prove that ρ8 is a weak solution of (12): this requires to prove that (13)

holds and that ρ8 P L8
T L

2
x almost surely.

To obtain (13), it suffices to use Proposition 4.6 and a localization argument. Introduce the
auxiliary functions χr, for all r ě 0, such that χr P C3

b pRq, χr is odd and

@u P r0, rs, χrpuq “ u,

@u P rr ` 1,8q, χrpuq “ r ` 1.

Let ξ P H2
x and define the test function ϕr P Θlim by

ϕrpρq “ χr
´

pρ, ξqL2
x

¯

.

Since ρ8 P C0
TH

´ς
x almost surely, the random variable

S
.“ sup
tPr0,T s

ˇ

ˇ

ˇ
pρ8ptq, ξqL2

x

ˇ

ˇ

ˇ
,

is finite almost surely. On the one hand, by the definition of S, one has ϕSpρ8ptqq “ pρ8ptq, ξqL2
x

and similarly LϕSpρ8ptqq “ pρ8ptq, divpK∇ξq ` J ¨ ∇ξ ´ σξqL2
x
, for all t ě 0. On the other

hand, owing to Proposition 4.6, one has, for all t ě 0,

ϕSpρ8ptqq “ ϕSpρ8p0qq `
ż t

0

LϕSpρ8psqqds.

Combining the arguments proves that (13) holds, for all ξ P H2
x.

Let us now prove that ρ8 P L8
T L

2
x. Consider the self-adjoint operator S on L2

x defined by

DpSq “ H2
x, Sρ “ divpK∇ρq ´ σρ.

Since K is a positive symmetric matrix, the operator S ´ Λ id is invertible when Λ ą }σ}
C0

x
.

Its inverse is a compact operator, owing to the compact embedding H2
x Ă L2

x. Therefore, there
exists a complete orthonormal system peiqiPN0

of L2
x composed of eigenvectors for pS ´ Λ idq´1.

For i P N0, let λi P R be the eigenvalue of S associated to the eigenvector ei: Sei “ λi. Note
that λi ď Λ for all i P N0.

Fix i P N0. Since ei P H2
x, (13) reads for t P r0, T s

pρ8ptq, eiqL2
x

“ pρ0, eiqL2
x

` λi

ż t

0

pρ8psq, eiqL2
x
ds`

ż t

0

pρ8psq, J ¨ ∇xeiqL2
x
ds.

Therefore, one has, for all t P r0, T s

pρ8pt, ¨ ` tJq, eiqL2
x

“ eλit pρ0, eiqL2
x
.

17



Since λit ď ΛT and ρ0 P L2
x,

ˇ

ˇ

ˇ
pρ8pt, ¨ ` tJq, eiqL2

x

ˇ

ˇ

ˇ

2

is summable. We thus have ρ8ptq P L2
x and

}ρ8ptq}2

L2
x

“ }ρ8pt, ¨ ` tJq}2

L2
x

ď e2ΛT }ρ0}2

L2
x
. (31)

This proves that ρ8 P L8
T L

2
x, and that ρ8 is a weak solution of (12) in the sense of Definition

3.1.
To prove the convergence in distribution stated in Theorem 3.2, it only remains to prove that

the weak solution of (12) is unique. Since the evolution equation is linear, it is sufficient to prove
that, if ρ0 “ 0, then any weak solution ρ of (12) satisfies ρptq “ 0 for all t P r0, T s. This claim is
a straightforward consequence of (31) (satisfied by any function ρ satisfying (13)).

As a consequence, any limit point ρ8 of the tight family
`

ρε,δ
˘

ε,δ
in the space C0

TH
´ς
x is the

unique solution ρ of (12). Therefore ρε,δ converges in distribution to the unique weak solution ρ
of (12).

When the initial condition ρ0 is deterministic, the solution ρ of (12) is also deterministic.
Then, using Portmanteau Theorem, in that case

`

ρε,δ
˘

ε,δ
converges to ρ in probability.

This concludes the proof of Theorem 3.2.

Proof of Theorem 3.3. Let Assumption 7 be satisfied. Owing to Proposition 4.5, the family of
processes

`

ρε,δ
˘

ε,δ
is tight in L2

TL
2
x. Therefore, there exist a L2

TL
2
x-valued random variable ρ8

and sequences pεiqiPN and pδiqiPN, such that εi Ñ 0 and δi Ñ 0, and ρεi,δi
dÝÝÝÑ

iÑ8
ρ8. On the

one hand, convergence in L2
TL

2
x implies convergence in L2

TH
´ς
x . On the other hand, owing to

Theorem 3.2, ρεi,δi converges to ρ in C0
TH

´ς
x , thus in L2

TH
´σ
x . Therefore ρ8 is equal to ρ in

distribution. By uniqueness of the limit points, one thus obtains the convergence of
`

ρε,δ
˘

ε,δ
to

ρ in L2
TL

2
x.

It remains to establish the convergence of fε,δ to ρM.
Note first that the mapping h P L2

TL
2
x ÞÑ hM P L2

TL
2pM´1q is continuous (it is a bounded

linear operator). Thus, ρε,δM ÝÝÝÝÑ
ε,δÑ0

ρM in distribution in L2
TL

2pM´1q.
Owing to Slutsky’s Lemma (since [Bil99, Theorem 4.1]) and to the identity

fε,δ “ ´Lfε,δ ` ρε,δM,

it only remains to prove that Lfε,δ ÝÝÝÝÑ
ε,δÑ0

0 in probability in L2
TL

2pM´1q.
Owing to Proposition 4.2, almost surely one has

ż T^τδ

0

›

›Lfε,δpsq
›

›

2

L2pM´1q
ds ď ε2CpT q

›

›

›
f
ε,δ
0

›

›

›

2

L2pM´1q
.

Therefore, on the event τδ ě T , one has
›

›Lfε,δ
›

›

L2

T
L2pM´1q

ď ε
a

CpT q
›

›

›
f
ε,δ
0

›

›

›

L2pM´1q
. As a

consequence, we have for η P p0, 1q

P

´

›

›Lfε,δ
›

›

L2

T
L2pM´1q

ą η
¯

“ P

´

τδ ă T,
›

›Lfε,δ
›

›

L2

T
L2pM´1q

ą η
¯

` P

´

τδ ě T,
›

›Lfε,δ
›

›

L2

T
L2pM´1q

ą η
¯

ď P
`

τδ ă T
˘

` P

ˆ

ε
a

CpT q
›

›

›
f
ε,δ
0

›

›

›

L2pM´1q
ą η

˙

ď P
`

τδ ă T
˘

` η´1ε
a

CpT qE
„

›

›

›
f
ε,δ
0

›

›

›

L2pM´1q



,
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owing to the Markov inequality. Using Proposition 4.1 and Assumption 6, one obtains the
convergence of Lfε,δ to 0 in probability in L2

TL
2pM´1q when pε, δq Ñ p0, 0q. This concludes the

proof of the convergence in distribution of fε,δ to ρM.
When ρ0 is deterministic, ρ is deterministic, and the convergence results hold in probability,

using Portmanteau Theorem.
This concludes the proof of Theorem 3.3.

4.4.3 Proofs of the two technical results

The following lemma is used in the proofs of Propositions 4.5 and 4.6.

Lemma 4.7. Let ϕ : L2pM´1q ˆ E Ñ R be a function such that

sup
fPL2pM´1q,ℓPE

|ϕpf, ℓq|
p1 ` }f}6

L2pM´1qqp1 ` }ℓ}Eq
ă 8.

Then, for all T P p0,8q, ε P p0, ε0s and δ P p0, δ0s and for all random times τ1 and τ2 satisfying
almost surely 0 ď τ1 ď τ2 ď T , one has

sup
ε,δ

E

«

ż τ2^τδ

τ1^τδ

ˇ

ˇ

ˇ
ϕpfε,δ,τδ ptq,mδ,τδ ptqq

ˇ

ˇ

ˇ
dt

ff

À E rτ2 ´ τ1s
1

2
´ 1

γ . (32)

Recall that γ ą 2 is given by Assumption 3.

Proof of Lemma 4.7. Since mδ,τδptq “ mδptq for all t P rτ1 ^ τδ, τ2 ^ τδs, the estimate (18) from
Proposition 4.2 yields

E

«

ż τ2^τδ

τ1^τδ

ˇ

ˇ

ˇ
ϕpfε,δ,τδ ptq,mδ,τδptqq

ˇ

ˇ

ˇ
dt

ff

ÀT,ϕ E

«

ż τ2^τδ

τ1^τδ

ˆ

1 `
›

›

›
f
ε,δ
0

›

›

›

6

L2pM´1q

˙

`

1 `
›

›mδptq
›

›

˘

dt

ff

.

Let p˚ P r1,8q defined by 1
γ

` 1
2

` 1
p˚ “ 1. Using the moment estimates for mδ (see

Assumption 3) and for fε,δ (see Assumption 6), and applying Hölder inequality, one obtains

E

«

ż τ2^τδ

τ1^τδ

ˇ

ˇ

ˇ
ϕpfε,δ,τδ ptq,mδ,τδ ptqq

ˇ

ˇ

ˇ
dt

ff

À
ż T

0

E

„

1trτ1,τ2suptq
ˆ

1 `
›

›

›
f
ε,δ
0

›

›

›

6

L2pM´1q

˙

`

1 `
›

›mδptq
›

›

˘



dt

À
ż T

0

E

”

1trτ1,τ2suptqp˚
ı1{p˚

E

«

ˆ

1 `
›

›

›
f
ε,δ
0

›

›

›

6

L2pM´1q

˙2
ff1{2

E

”

`

1 `
›

›mδptq
›

›

˘γ
ı1{γ

dt

À
ż T

0

E
“

1trτ1,τ2suptq
‰1{p˚

dt

À
˜

ż T

0

E
“

1trτ1,τ2suptq
‰

dt

¸1{p˚

À E

„
ż τ2

τ1

dt

1{p˚

À E rτ2 ´ τ1s1{p˚

.
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All the estimates above are uniform with respect to ε P p0, ε0s and δ P p0, δ0s. This concludes
the proof of Lemma 4.7.

Before proceeding, let us recall some useful results concerning tightness.
Introduce the Skorokhod space DTH

´ς
x , which is the space of H´ς

x -valued càdlàg functions
on r0, T s. For all X P C0

TH
´ς
x and all ∆ P r0, T s, set

wXp∆q .“ sup
0ďtďsďt`∆ďT

}Xpsq ´Xptq}

w1
Xp∆q .“ sup

ptiqi

max
i

sup
tiďtďsăti`1

}Xpsq ´Xptq} ,

where ptiqi denotes any finite subdivision of r0, T s. The moduli of continuity ωX and ω1
X satisfy

the following inequality (see [Bil99, equation (14.11)]): for all ∆ P r0, T s and all X P C0
TH

´ς
x , one

has
wXp∆q ď 2w1

Xp∆q.
We refer to [Bil99, Theorems 8.2 and 15.2] for tightness criteria in the spaces C0

TH
´ς
x and DTH

´ς .
As a consequence, tightness in DTH

´ς
x of a family a family of processes

`

Xε,δ
˘

ε,δ
implies its

tightness in C0
TH

´ς
x .

Observe that tightness in DTH
´ς is easier to prove than tightness in C0

TH
´ς
x , owing to

[Jak86, Theorem 3.1]. More precisely, since the class of functions Θlim is closed under addition
and separates points, tightness of a family

`

Xε,δ
˘

ε,δ
in the Skorokhod space DTH

´ς is equivalent
to the following claims:

(i) For all η P p0, 1s, there exists a compact set Kη Ă H´ς
x such that, for all ε P p0, ε0s and

δ P p0, δ0s,
P
`

@t P r0, T s, Xε,δptq P Kη

˘

ą 1 ´ η.

(ii) For all ϕ P Θlim,
`

ϕpXε,δq
˘

ε,δ
is tight in the Skorohod space Dpr0, T s,Rq of càdlàg real-

valued functions defined on the interval r0, T s.

To check that piiq is satisfied, we employ Aldous’s criterion, see [JS03, Theorem 4.5 p356] (note
that the criterion is simplified since here ϕ is bounded): it suffices to prove that for all η P p0,8q,
one has

lim
∆Ñ0

lim sup
pε,δqÑp0,0q

sup
τ1ďτ2ďτ1`∆

P
`ˇ

ˇϕpXε,δpτ2qq ´ ϕpXε,δpτ1qq
ˇ

ˇ ą η
˘

“ 0, (33)

where supτ1ďτ2ďτ1`∆ denotes the supremum with respect to all
`

Fδ
t

˘

tPR` -stopping times τ1 and
τ2 satisfying a.s. τ1, τ2 P r0, T s and τ1 ď τ2 ď τ1 ` ∆.

Proof of Proposition 4.5. First, recall that τδ Ñ 8 in probability, when δ Ñ 0 (see Proposi-
tion 4.1. Owing to Slutsky’s Lemma [Bil99, Theorem 4.1], it thus suffices to prove the tightness

of the family
´

ρε,δ,τ
δ
¯

ε,δ
.

Let us first establish the tightness in the space C0
TH

´ς
x , with an arbitrarily small parameter

ς ą 0. As explained above, in fact we establish the tightness in DTH
´ς , using the criteria stated

above. First, (i) is satisfied: indeed the embedding L2
x Ă H´ς

x is compact, and the a priori
estimate (18) (see Proposition 4.2) yields the uniform moment bound

sup
ε,δ

Er sup
0ďtďT

›

›

›
ρε,δ,τ

δ ptq
›

›

›

2

L2
x

s ď sup
ε,δ

Er sup
0ďtďT

›

›

›
fε,δ,τ

δptq
›

›

›

2

L2pM´1q
s ď sup

ε,δ

Er
›

›fε,δp0q
›

›

2

L2
x

s ă 8
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owing to Assumption 6. Then (i) is a straightforward consequence of Markov inequality.
It remains to establish (ii), using Aldous criterion 33. Let ϕε,δ be the perturbed test function

given by (23), see Proposition 4.3, and let M ε,δ

ϕε,δ be defined as by (30) (in Proposition 4.4). For
all t ě 0, set

θε,δptq “ ϕpρε,δp0qq ` ϕε,δpfε,δptq,mδptqq ´ ϕε,δpfε,δp0q,mδp0qq

“ ϕpρε,δp0qq `
ż t

0

Lε,δϕε,δpfε,δpsq,mδpsqqds `M
ε,δ

ϕε,δ ptq, (34)

For all stopping times τ1, τ2, one has the equality

ϕpρε,δ,τδ pτ2qq ´ ϕpρε,δ,τδ pτ1qq “
´

θε,δ,τ
δ pτ2q ´ θε,δ,τ

δ pτ1q
¯

´
´

ϕε,δpfε,δ,τδ pτ2q,mδ,τδpτ2qq ´ ϕpρε,δ,τδ pτ2qq
¯

`
´

ϕε,δpfε,δ,τδ pτ1q,mδ,τδpτ1qq ´ ϕpρε,δ,τδ pτ1qq
¯

.

On the one hand, owing to the error estimate (29), the estimates (16) and (18) for
›

›

›
mδ,τδptq

›

›

›

E

and
›

›

›
fε,δ,τ

δptq
›

›

›

L2pM´1q
yield

ˇ

ˇ

ˇ
ϕε,δpfε,δ,τδptq,mδ,τδ ptqq ´ ϕpρε,δ,τδ ptqq

ˇ

ˇ

ˇ
Àϕ p1 `

›

›

›
f
ε,δ
0

›

›

›

2

L2pM´1q
qpε` δ2p1 ` δ´αqq.

Since α ă 1 in Definition 4.1, we get

E

”ˇ

ˇ

ˇ
ϕε,δpfε,δ,τδpτiq,mδ,τδpτiqq ´ ϕpρε,δ,τδ pτiqq

ˇ

ˇ

ˇ

ı

ÝÝÝÝÑ
ε,δÑ0

0,

for i “ 1, 2.
On the other hand, we claim that

sup
ε,δ

sup
τ1ďτ2ďτ1`∆

E

”ˇ

ˇ

ˇ
θε,δ,τ

δ pτ2q ´ θε,δ,τ
δ pτ1q

ˇ

ˇ

ˇ

ı

ÝÝÝÑ
∆Ñ0

0. (35)

To prove that this claim holds, note that

ˇ

ˇ

ˇ
θε,δ,τ

δ pτ2q ´ θε,δ,τ
δ pτ1q

ˇ

ˇ

ˇ
ď
ż τ2^τδ

τ1^τδ

ˇ

ˇLε,δϕε,δpfε,δpsq,mδpsqq
ˇ

ˇ ds`
ˇ

ˇ

ˇ
M

ε,δ,τδ

ϕε,δ pτ2q ´M
ε,δ,τδ

ϕε,δ pτ1q
ˇ

ˇ

ˇ
.

(36)
To treat the first term on the right-hand side of (36), observe that for pf, ℓq P L2pM´1q ˆE, one
has

ˇ

ˇLε,δϕε,δpf, ℓq
ˇ

ˇ À ε
´

1 ` }f}3

L2pM´1q

¯

p1 ` }ℓ}q ` δ2
´

1 ` }f}3

L2pM´1q

¯´

1 ` }ℓ}2
¯

` |Lϕpρq|

À
´

1 ` }f}3

L2pM´1q

¯

p1 ` }ℓ}q ` δ2
´

1 ` }f}3

L2pM´1q

¯´

1 ` }ℓ}2
¯

,

owing to the error estimate (24) for Lε,δϕε,δ´Lϕ (see Proposition 4.3) and to the expression (20)
of Lϕ. Using Lemma 4.7, one obtains

sup
ε,δ

sup
τ1ďτ2ďτ1`∆

E

«

ż τ2^τδ

τ1^τδ

ˇ

ˇ

ˇ

´

1 `
›

›fε,δpsq
›

›

3

L2pM´1q

¯

`

1 `
›

›mδpsq
›

›

˘

ˇ

ˇ

ˇ
ds

ff

À ∆1{2´1{γ ÝÝÝÑ
∆Ñ0

0,
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since γ ą 2 (see Assumption 3. In addition, recall that α ă 1: using the estimate (16), one
obtains

sup
ε,δ

sup
τ1ďτ2ďτ1`∆

E

«

ż τ2^τδ

τ1^τδ

ˇ

ˇ

ˇ
δ2

´

1 `
›

›fε,δpsq
›

›

3

L2pM´1q

¯´

1 `
›

›mδpsq
›

›

2
¯ˇ

ˇ

ˇ
ds

ff

À ∆ ÝÝÝÑ
∆Ñ0

0.

To treat the second term on the right-hand side of (36), note that M
ε,δ,τδ

ϕε,δ is a square-
integrable martingale, owing to Proposition 4.4. In addition, since τ1 ď τ2 are stopping times,
one has

E

„

ˇ

ˇ

ˇ
M

ε,δ,τδ

ϕε,δ pτ2q ´M
ε,δ,τδ

ϕε,δ pτ1q
ˇ

ˇ

ˇ

2


“ E

„

ˇ

ˇ

ˇ
M

ε,δ,τδ

ϕε,δ pτ2q
ˇ

ˇ

ˇ

2

´
ˇ

ˇ

ˇ
M

ε,δ,τδ

ϕε,δ pτ1q
ˇ

ˇ

ˇ

2


“ 1
δ2

E

«

ż τ2^τδ

τ1^τδ

`

Lmppϕε,δq2q ´ 2ϕε,δLmϕε,δ
˘

pfε,δpsq,mδpsqqds
ff

.

Recall the expression (23) of the perturbed test function ϕε,δ. Since ϕ, ϕ1,0 and ϕ2,0 do not
depend on ℓ P E, one has

E

„

ˇ

ˇ

ˇ
M

ε,δ,τδ

ϕε,δ pτ2q ´M
ε,δ,τδ

ϕε,δ pτ1q
ˇ

ˇ

ˇ

2


“ δ2
E

«

ż τ2^τδ

τ1^τδ

`

Lmppϕ0,2 ` εϕ1,2q2q ´ 2pϕ0,2 ` εϕ1,2qLmpϕ0,2 ` εϕ1,2q
˘

pfε,δpsq,mδpsqqds
ff

.

The correctors ϕ0,2 and ϕ1,2 satisfy the properties (27) and (28) respectively. In addition, fε,δ

and mδ satisfy the estimates (18) and (16) respectively. Using Assumption 5 and the condition
0 ď τ2 ´ τ1 ď ∆, one finally obtains

E

„

ˇ

ˇ

ˇ
M

ε,δ,τδ

ϕε,δ pτ2q ´M
ε,δ,τδ

ϕε,δ pτ1q
ˇ

ˇ

ˇ

2


À ∆δ2
E

„

p1 `
›

›

›
f
ε,δ
0

›

›

›

2

L2pM´1q
qp1 ` δ´2αq



À ∆ ÝÝÝÑ
∆Ñ0

0,

since α ă 1 and using Assumption 6.
Gathering the estimates for the two terms on the right-hand side of (36), the claim (35) is

proved. One finally obtains

sup
ε,δ

sup
τ1ďτ2ďτ1`∆

E

”ˇ

ˇ

ˇ
ϕpρε,δ,τδ pτ2qq ´ ϕpρε,δ,τδ pτ1qq

ˇ

ˇ

ˇ

ı

ÝÝÝÑ
∆Ñ0

0,

hence (33) holds. This concludes the proof of the tightness of the family
´

ρε,δ,τ
δ
¯

ε,δ
is tight in

the space C0
TH

´ς
x .

It remains to prove the tightness of
´

ρε,δ,τ
δ
¯

ε,δ
is tight in the space L2

TL
2
x, if Assumption 7

is satisfied. It suffices to establish the following claims: for all η P p0, 1q, there exists R P p0,8q
and ς2 P p0, 1q, such that

lim
∆Ñ0

lim sup
pε,δqÑp0,0q

P

´

w
ρε,δ,τδ p∆q ą η

¯

“ 0, (37)

and

sup
ε,δ

P

ˆ

›

›

›
ρε,δ,τ

δ
›

›

›

L2

T
Hς2

x

ą R

˙

ă η. (38)
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Indeed, for all R ą 0, ς2 ą 0 and η : p0,8q Ñ r0,8q such that ηp∆q ÝÝÝÑ
∆Ñ0

0, the set

KR,η
.“
!

ρ P L2
TL

2
x | }ρ}

L2

T
Hς2

x
ď R and @∆ P p0, 1q, wρp∆q ă ηp∆q

)

is compact in L2
TL

2
x, see [Sim87, Theorem 5]

The first claim is a consequence of the tightness of
´

ρε,δ,τ
δ
¯

ε,δ
in C0

TH
´ς
x proved above,

see [Bil99, Theorem 8.2].
Owing to Markov inequality, it suffices to prove the following inequality:

sup
ε,δ

E

„

›

›

›
ρε,δ,τ

δ
›

›

›

L2

T
Hς2

x



À 1, (39)

Let gε,δ “ εBtfε,δ ` apvq ¨ ∇xf
ε,δ ` εbpvq ¨ ∇xf

ε,δ. By Assumption 7, we are in position to
apply an averaging lemma , precisely [BD99, Theorem 2.3] (with fptq “ fε,δpεtq, gptq “ gε,δpεtq
and h “ 0 until time T ^ τδ). After rescaling the time t ÞÑ t{ε, one obtains the inequality

›

›

›
ρε,δ,τ

δ
›

›

›

2

L2

T
H

ς1{4

x

“
ż T^τδ

0

›

›

›
ρε,δ,τ

δ ptq
›

›

›

2

H
ς1{4

x

dt

À ε
›

›

›
f
ε,δ
0

›

›

›

2

L2
x

`
ż T^τδ

0

›

›

›
fε,δ,τ

δptq
›

›

›

2

L2pM´1q
dt `

ż T^τδ

0

›

›

›
gε,δ,τ

δptq
›

›

›

2

L2pM´1q
dt.

Applying the Cauchy-Schwarz inequality gives

›

›

›
gε,δ,τ

δptq
›

›

›

L2pM´1q
“
›

›

›

›

εfε,δ,τ
δptqσpmδ,τδ ptqq ` 1

ε
Lfε,δ,τ

δptq
›

›

›

›

L2pM´1q

ď ε
›

›

›
fε,δ,τ

δ ptq
›

›

›

L2pM´1q

›

›

›
σpmδ,τδ ptqq

›

›

›

C0
x

` 1
ε

›

›

›
Lfε,δ,τ

δptq
›

›

›

L2pM´1q
.

It is now crucial to use the a priori estimate (18) (see Proposition 4.2) to control the intergral
term

ż T^τδ

0

1
ε

›

›

›
Lfε,δ,τ

δptq
›

›

›

L2pM´1q
dt

uniformly with respect to ε, δ. Using Assumption 6, the estimates (16) and (18) for mδ,τδptq and
fε,δ,τ

δptq, and Lemma 4.7, the claim (39) is proved, with ς2 “ ς1

4
.

Since we proved (37) and (38), the family
´

ρε,δ,τ
δ
¯

ε,δ
is tight in L2

TL
2
x, when Assumption 7

is satisfied.
This concludes the proof of Proposition 4.5.

Proof of Proposition 4.6. Let ρ8 be such that ρ8 “ lim
iÑ8

ρεi,δi , for some sequence pεi, δiq Ñ
p0, 0q.

For all ϕ P Θlim, define the stochastic process Mϕ as follows: for all t ě 0,

Mϕptq “ ϕpρ8ptqq ´ ϕpρ8p0qq ´
ż t

0

Lϕpρ8psqqds.

Let us start by proving that, for all ϕ P Θlim, Mϕ is a square integrable martingale adapted to
the filtration generated by ρ8.
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Let the test function ϕ P Θlim be fixed. Since ϕ is bounded, to prove that the process Mϕ is
square-integrable, it suffices to prove that

sup
tPr0,T s

E

”

|Lϕpρ8ptqq|2
ı

ă 8. (40)

Observe that, for all t P r0, T s, the mapping ρ P C0
TH

´ς
x ÞÑ |Lϕpρptqq|2 P R is continuous.

Thus one has the convergence in distribution
ˇ

ˇ

ˇ
Lϕpρεi,δi,τ

δi ptqq
ˇ

ˇ

ˇ

2
dÝÝÝÑ

iÑ8
|Lϕpρ8ptqq|2 (see [Bou04,

Proposition IX.5.7]). In addition,
ˆ

ˇ

ˇ

ˇ
Lϕpρεi,δi,τ

δi ptqq
ˇ

ˇ

ˇ

2
˙

εi,δi

is uniformly integrable: one has

sup
iPN

E

„

ˇ

ˇ

ˇ
Lϕpρεi,δi,τ

δi ptqq
ˇ

ˇ

ˇ

4


À sup
ε,δ

E

„

›

›

›
f
ε,δ
0

›

›

›

4

L2pM´1q



ă 8,

using the estimates from Proposition 4.2 and Assumption 6, and the expression (21) of Lϕ when
ϕ P Θlim. Using [Bil99, Theorem 5.4], the convergence in distribution and uniform integrability
property give

E

”

|Lϕpρ8ptqq|2
ı

“ lim
iÑ8

E

„

ˇ

ˇ

ˇ
Lϕpρεi,δi,τ

δi ptqq
ˇ

ˇ

ˇ

2


À sup
ε,δ

E

„

›

›

›
f
ε,δ
0

›

›

›

2

L2pM´1q



ă 8.

This yields the square integrability property (40).
The next step is to prove that Mϕ is a martingale. Let 0 ď s1 ď ... ď sj ď s ď t and let

g P C0
b ppH´ς

x qjq be a continuous bounded function. Define the mapping

Φ : ρ P C0
TH

´ς
x ÞÑ

ˆ

ϕpρptqq ´ ϕpρpsqq ´
ż t

s

Lϕpρpuqqdu
˙

gpρps1q, ..., ρpsjqq.

To prove that Mϕ is a martingale, it suffices to prove the following claim: E rΦpρ8qs “ 0.

Let us first check that E

”

Φpρεi,δi,τ
δi q

ı

Ñ E rΦpρ8qs when i Ñ 8. This claim follows from

the definition of ρ8 as the limit in distribution of ρεi,δi,τ
δi and straightforward arguments. The

mapping Φ is continuous on C0
TH

´ς
x and

´

Φpρεi,δi,τ
δi q

¯

εi,δi

is uniformly integrable. Using the

same arguments as for the proof of (40), one obtains the following convergence result:

E

”

Φpρεi,δi,τ
δi q

ı

ÝÝÝÑ
iÑ8

E rΦpρ8qs .

Let us now check that E
”

Φpρεi,δi,τ
δi q

ı

Ñ 0 when i Ñ 8. This claim follows from a martingale

property and the perturbed test function to take the limit i Ñ 8. Let ϕε,δ be the perturbed test
function given by (23), see Proposition 4.3. Using the martingale property from Proposition 4.4,
one has

E

«˜

ϕεi,δipfεi,δi,τ
δi ptq,mδi,τ

δi ptqq ´ ϕεi,δi pfεi,δi,τ
δi psq,mδi,τ

δi psqq

´
ż t^τδi

s^τδi

Lεi,δiϕεi,δipfεi,δipuq,mδipuqqdu
¸

gpρεi,δi,τ
δi ps1q, ..., ρεi,δi,τ

δi psjqq
ff

“ 0.
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Using the expression ϕε,δ “ ϕ` εϕ1,0 ` ε2ϕ2,0 ` δ2ϕ0,2 ` εδ2ϕ1,2 (see (23), and the boundedness
of g, one obtains the upper bound

ˇ

ˇ

ˇ
E

”

Φpρεi,δi,τ
δi q

ıˇ

ˇ

ˇ
À

6
ÿ

j“1

E r|rj |s ,

with

r1 “ εipϕ1,0pfεi,δi,τ
δi ptqq ´ ϕ1,0pfεi,δi,τ

δi psqqq
r2 “ ε2

i pϕ2,0pfεi,δi,τ
δi ptqq ´ ϕ2,0pfεi,δi,τ

δi psqqq
r3 “ δ2

i pϕ0,2pfεi,δi,τ
δi ptq,mδi,τ

δi ptqq ´ ϕ0,2pfεi,δi,τ
δi psq,mδi,τ

δi psqqq
r4 “ εiδ

2
i pϕ1,2pfεi,δi,τ

δi ptq,mδi,τ
δi ptqq ´ ϕ1,2pfεi,δi,τ

δi psq,mδi,τ
δi psqqq

r5 “
ż t^τδi

s^τδi

´

Lεi,δiϕεi,δipfεi,δi,τ
δi puq,mδi,τ

δi puqq ´ Lϕpρεi,δi,τ
δi puqq

¯

du

r6 “
ż t

t^τδi

Lϕpρεi,δi,τ
δi puqqdu´

ż s

s^τδi

Lϕpρεi,δi,τ
δi puqqdu.

Using estimates (25), (26), (27) and (28) of Proposition 4.3 and estimates (16) and (18) on mδi,τ
δi

and fεi,δi,τ
δi , one has

|r1| À εi

›

›

›
f
εi,δi

0

›

›

›

L2pM´1q
,

|r2| À ε2
i p1 `

›

›

›
f
εi,δi

0

›

›

›

2

L2pM´1q
q,

|r3| À δ2
i p1 `

›

›

›
f
εi,δi

0

›

›

›

L2pM´1q
qp1 ` δ´α

i q,

|r4| À εiδ
2
i p1 `

›

›

›
f
εi,δi

0

›

›

›

2

L2pM´1q
qp1 ` δ´α

i q.

Since α ă 1 (see Definition 4.1), using Assumption 6, one obtains E r|rk|s ÝÝÝÑ
iÑ8

0, for k P J1, 4K.

To treat the next term r5, it is necessary to use Lemma 4.7: using the estimate (24), one
obtains

E r|r5|s À εipt´ sq 1

2
´ 1

γ ` δ2
i p1 ` δ´2α

i q ÝÝÝÑ
iÑ8

0,

using the condition α ă 1.
The last term r6 is treated as follows: using the Cauchy-Schwarz inequality, the expression (21)

for Lϕ and the estimate 4.2, one obtains

E r|r6|s2 À E

„

›

›

›
f
ε,δ
0

›

›

›

2

L2pM´1q



E

”

`ˇ

ˇt ´ t^ τδi
ˇ

ˇ `
ˇ

ˇs´ s ^ τδi
ˇ

ˇ

˘2
ı

À P
`

τδi ă T
˘

ÝÝÝÑ
iÑ8

0,

owing to Assumption 6 and to Proposition 4.1 which gives the convergence in probability τδ Ñ 8.
Gathering the results, one obtains E

”

Φpρεi,δi,τ
δi q

ı

Ñ 0 when i Ñ 8, hence E rΦpρ8qs “

limiÑ8 E

”

Φpρεi,δi,τ
δi q

ı

“ 0. This concludes the proof that, for all ϕ P Θlim, Mϕ is a square-
integrable martingale adapted to the filtration generated by ρ8.
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The final step is to prove that E

”

|Mϕptq|2
ı

“ 0, for all t P r0, T s and ϕ P Θlim.

Let ∆ P p0,8q be an arbitrarily small real-number and let 0 “ t0 ă t1 ă ... ă tj “ t be a
subdivision of r0, ts such that maxkPJ0,j´1K |tk`1 ´ tk| ď ∆. Since Mϕ is a centered martingale,
with Mϕp0q “ 0, one has

E

”

|Mϕptq|2
ı

“
n´1
ÿ

i“0

E

”

|Mϕptk`1q ´Mϕptkq|2
ı

ď 2
n´1
ÿ

i“0

E

”

|ϕpρ8ptk`1qq ´ ϕpρ8ptkqq|2
ı

` 2
n´1
ÿ

i“0

E

«

ˇ

ˇ

ˇ

ˇ

ż tk`1

tk

Lϕpρ8psqqds
ˇ

ˇ

ˇ

ˇ

2
ff

. (41)

On the one hand, for 0 ď t ď t1 ď T , one has the identity

ˇ

ˇϕpρ8pt1qq ´ ϕpρ8ptqq
ˇ

ˇ

2 “ Mϕ2pt1q ´Mϕ2ptq ´ 2ϕpρ8ptqq
`

Mϕpt1q ´Mϕptq
˘

`
ż t1

t

Lpϕ2qpρ8psqqds ´ 2ϕpρ8ptqq
ż t1

t

Lpϕqpρ8psqqds.

The test functions ϕ and ϕ2 belong to the class Θlim, therefore, owing to the first part of the proof,
Mϕ and Mϕ2 are centered martingales for the filtration generated by ρ8. As a consequence,

E

”

ˇ

ˇϕpρ8pt1qq ´ ϕpρ8ptqq
ˇ

ˇ

2
ı

“ E

«

ż t1

t

Lpϕ2qpρ8psqqds ´ 2ϕpρ8ptqq
ż t1

t

Lϕpρ8psqqds
ff

. (42)

Since L is a first order derivative operator (see (20)), it is straightforward to check that Lpϕ2q “
2ϕLϕ. One thus obtains

E

”

|ϕpρ8ptk`1qq ´ ϕpρ8ptkqq|2
ı

“ 2E
„
ż tk`1

tk

pϕpρ8psqq ´ ϕpρ8ptkqqq Lϕpρ8psqqds


ď 2
ż tk`1

tk

E

”

|ϕpρ8psqq ´ ϕpρ8ptkqq|2
ı1{2

E

”

|Lϕpρ8psqq|2
ı1{2

ds,

owing to the Cauchy-Schwarz inequality. Since ϕ P Θlim, one may use the inequality (40), and ϕ
is bounded. Thus, (42) gives (with t “ tk and t1 “ s)

E

”

|ϕpρ8psqq ´ ϕpρ8ptkqq|2
ı

À s´ tk.

Using (40), one obtains

E

”

|ϕpρ8ptk`1qq ´ ϕpρ8ptqq|2
ı

À
ż tk`1

tk

ps ´ tkq1{2ds À ∆3{2. (43)

On the other hand, (40) yields

E

«

ˇ

ˇ

ˇ

ˇ

ż tk`1

tk

Lϕpρ8psqqds
ˇ

ˇ

ˇ

ˇ

2
ff

À ∆2. (44)

Finally, (41), (43) and (44) yield

E

”

|Mϕptq|2
ı

À ∆1{2 ` ∆ ÝÝÝÑ
∆Ñ0

0.
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This concludes the proof that E

”

|Mϕptq|2
ı

“ 0. We deduce that, for all t P r0, T s, almost

surely, Mϕptq “ 0. Since ρ8 P C0
TH

´ς , Mϕ is a continuous process. As a consequence, almost
surely, for all t P r0, T s, Mϕptq “ 0, which concludes the proof of Proposition 4.6.

5 Proof of the auxiliary results

5.1 Asymptotic behavior of the stopping time

The goal of this section is to provide the proof of Proposition 4.1: τδ Ñ 8 in probability when
δ Ñ 0.

Proof of Proposition 4.1. Let us first prove the first claim: τδm Ñ 8 in probability.
Introduce the following sequence of real-valued random variables: for all i P t0, 1, . . .u, set

Si
.“ sup
tPri,i`1s

}mptq}E .

The random variables Si are almost surely finite, since ErSγi s ă 8 for all i ě 0 owing to
Assumption 3.

Owing to the condition α ą 2{γ, there exists α1 such that 2{γ ă α1 ă α. Using Markov
inequality and Assumption 3, one obtains

8
ÿ

i“1

P

´

Si ě i
α1

2

¯

ď
8
ÿ

i“1

E rSγi s
i

α1γ
2

“ sup
iě1

E rSγi s
8
ÿ

i“1

1

i
α1γ

2

ă 8.

Using Borel-Cantelli’s lemma, there exists a N-valued random variable I0, such that almost
surely,

@i ą I0, Si ă i
α1

2 .

Define the random variable Z “ sup
0ďiďI0

Si. Since I0 is almost surely finite, Z is also an almost

surely finite random variable. Observe that almost surely, for all t ě 0, one has

›

›mδptq
›

›

E
ď Sttδ´2u ď Z `

X

tδ´2
\

α1

2 ď Z `
`

tδ´2
˘

α1

2 .

We are now in position to conclude the proof of the first claim: for all T P p0,8q, one obtains

P
`

τδm ă T
˘

“ P

˜

sup
tPr0,T s

›

›mδptq
›

›

E
ą δ´α

¸

ď P

´

Z ` T
α1

2 δ´α1 ą δ´α
¯

ÝÝÝÑ
δÑ0

0,

since α1 ă α. Thus τδm Ñ 8 in probability.
It remains to prove the second claim: τδζ Ñ 8 in probability. Let p P pα, 1q be an arbitrary

real number. Owing to the Markov inequality and to the continuous embedding H td{2u`2
x Ă C1

x,
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for all T P p0,8q and for all δ P p0, ε0s, one has

P
`

τδζ ă T
˘

“ P
`

τδζ ă T, τδζ ă τδm
˘

` P
`

τδζ ă T, τδζ ě τδm
˘

ď P

˜

δ sup
tPr0,T s

›

›

›
ζδ,τ

δ ptq
›

›

›

C1
x

ě 1

¸

` P
`

τδm ă T
˘

ď δ2
E

«

sup
tPr0,T s

›

›

›
ζδ,τ

δ ptq
›

›

›

2

C1
x

ff

` P
`

τδm ă T
˘

ď δ2p1´pq sup
δ

E

«

δ2p sup
tPr0,T s

›

›

›
ζδ,τ

δ ptq
›

›

›

2

H
td{2u`2

x

ff

` P
`

τδm ă T
˘

.

Owing to the first claim, it thus remains to prove that

sup
δ

E

«

δ2p sup
tPr0,T s

›

›

›
ζδ,τ

δ ptq
›

›

›

2

H
td{2u`2

x

ff

ă 8,

for all T P p0,8q.
Let β be an arbitrary multi-index of size |β| ď td{2u ` 2. For all δ P p0, δ0s and T P p0,8q,

one has

E

»

– sup
tPr0,T s

›

›

›

›

›

B|β|ζδ,τ
δ ptq

Bxβ

›

›

›

›

›

2

L2
x

fi

fl ď
ż

Td

E

»

– sup
tPr0,T s

ˇ

ˇ

ˇ

ˇ

ˇ

B|β|ζδ,τ
δ pt, xq

Bxβ

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl dx. (45)

Below an upper bound for the expectation on the right-hand side of (45) is obtained using
properties of a well-chosen martingale. For all x P T

d and all multi-indices β such that |β| ď
td{2u ` 2, introduce the auxiliary function θβx defined by

θβxpℓq “ B|β|σpℓq
Bxβ pxq,

for all n P E. Observe that θβx is an element of the set E˚pσq, and one may define ψβx
.“

R0pθβx ´ θβxpσqq, which solves of the Poisson equation ´Lmψ
β
x “

`

θβx ´ θβxpσq
˘

, see Definition 2.1.
Observe that one has the identities

B|β|ζδpt, xq
Bxβ “ 1

δ

ż t

0

B|β|pσpmδpsqq ´ σq
Bxβ pxqds

“ 1
δ

ż t

0

´

θβxpmδpsqq ´ θ
β

x

¯

ds

“ ´1
δ

ż t

0

Lmψ
β
xpmδpsqqds.

Finally, for all x P T
d, δ P p0, δ0s and t ě 0, set

M δ

δ1`pψ
β
x

ptq “ δ1`pψβx pmδptqq ´ δ1`pψβxpmp0qq ´ 1
δ2

ż t

0

δ1`pLmψ
β
x pmδpsqqds

“ δ1`pψβx pmδptqq ´ δ1`pψβxpmp0qq ` δp
B|β|ζδpt, xq

Bxβ (46)
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Then the stopped process pM δ
δ1`p qτδ “ M δ

δ1`p p¨ ^ τδq is a martingale. In addition, one obtains
the upper bound

E

»

–δ2p sup
tPr0,T s

ˇ

ˇ

ˇ

ˇ

ˇ

B|β|ζδ,τ
δ pt, xq

Bxβ

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ď 2E

«

sup
tPr0,T s

ˇ

ˇ

ˇ
δ1`pψβxpmδ,τδ ptqq

ˇ

ˇ

ˇ

2

ff

` E

«

sup
tPr0,T s

ˇ

ˇ

ˇ
M

δ,τδ

δ1`pψ
β
x

ptq
ˇ

ˇ

ˇ

2

ff

.

On the one hand, owing to estimates (6) and (16), one obtains

E

«

sup
tPr0,T s

ˇ

ˇ

ˇ
δ1`pψβx pmδ,τδptqq

ˇ

ˇ

ˇ

2

ff

À δ2`2p
`

1 ` δ´2α
˘

À 1,

since α ă 1.
On the other hand, Doob’s Maximal Inequality yields

E

«

sup
tPr0,T s

ˇ

ˇ

ˇ
M

δ,τδ

δ1`pψ
β
x

ptq
ˇ

ˇ

ˇ

2

ff

ď 4E
„

ˇ

ˇ

ˇ
M

δ,τδ

δ1`pψ
β
x

pT q
ˇ

ˇ

ˇ

2


ď 4
δ2

E

«

pδ1`pq2

ż T^τδ

0

´

Lm

´

`

ψβx
˘2
¯

´ 2ψβxLmψ
β
x

¯

pmδpsqqds
ff

ÀT δ
2p
`

1 ` δ´2α
˘

À 1,

since p P pα, 1q, using Assumption 5 and the estimates (6) and (16).
Since all the bounds obtained above are uniform with respect to x P T

d, gathering the
estimates one obtains (46) yields

ż

xPTd

E

»

–δ2p sup
tPr0,T s

ˇ

ˇ

ˇ

ˇ

ˇ

B|β|ζδ,τ
δ pt, xq

Bxβ

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl dx À 1.

The arguments explained above then yield the result: for all T P p0,8q,

P
`

τδζ ă T
˘

À δ2p1´pq ` P
`

τδm ă T
˘

Ñ
δÑ0

0,

therefore one has τδζ Ñ 8 in probability.
Since τδ “ τδm ^ τδζ , the proof of Proposition 4.1 is completed.

5.2 A priori estimate of the solution in L2pM´1q

The goal of this section is to provide the proof of Proposition 4.2, which gives an almost sure a
priori estimate for fε,δ,τ

δ

in the space C0
TL

2pM´1q and for Lfε,δ,τ
δ

in the space L2
t^τδL

2pM´1q,
in terms of the norm of the initial condition

›

›

›
f
ε,δ
0

›

›

›

L2pM´1q
.

Proof of Proposition 4.2. For all δ P p0, δ0s and all t ě 0, set

ηδpt, ¨q “
ż t

0

σpmδpsqqp¨qds “ δζδpt, ¨q ` tσp¨q P Ctd{2u`2
x ,
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where ζδ is defined by(15). Note that, owing to (17), for all δ P p0, δ0s, and i “ 0, 1, one has

sup
tPr0,τδ^T s

›

›ηδptq
›

›

Ci
x

ď 1 ` T }σ}
Ci

x
. (47)

Let us now introduce the following family of weight functions Mδ indexed by δ P p0, δ0s: for
all t ě 0, x P T

d and v P V , set

Mδpt, x, vq “ exp
`

´2ηδpt, xq
˘

Mpvq,

The associated weighted L2 norm is defined by

}f}2

L2pMδptq´1q
.“
ĳ |fpx, vq|2

Mδpt, x, vqdxdµpvq.

Note that for all h P L2pM´1q and all t P r0, τδ ^ T s, the inequality (47) yields

}h}2

L2pM´1q ď }h}2

L2pMδptq´1q e
2`2T }σ}

C0
x . (48)

It is thus sufficient to prove estimates in the weight norm }¨}L2pMδptq´1q, to retrieve the a priori
estimates in the space L2pM´1q, when the condition t ď τδ ^ T is satisfied.

For all t ě 0, one has

1
2

Bt
›

›fε,δptq
›

›

2

L2pMδptq´1q
“
ĳ

fε,δpt, x, vq
Mδpt, x, vq Btfε,δpt, x, vqdxdµpvq

´
ĳ

ˇ

ˇfε,δpt, x, vq
ˇ

ˇ

2

2 |Mδpt, x, vq|2
BtMδpt, x, vqdxdµpvq

“ Aε,δptq ` Bε,δptq ` Cε,δptq

with

Aε,δptq “ 1
ε2

ĳ

fε,δpt, x, vq
Mδpt, x, vqLf

ε,δpt, x, vqdxdµpvq

Bε,δptq “ ´1
ε

ĳ

fε,δpt, x, vq
Mδpt, x, vq papvq ` εbpvqq ¨ ∇xf

ε,δpt, x, vqdxdµpvq

Cε,δptq “ ´
ĳ

ˇ

ˇfε,δpt, x, vq
ˇ

ˇ

2

Mδpt, x, vq

ˆ

σpmδq ` BtMδ

2Mδ

˙

pt, x, vqdxdµpvq.

Note that the third term vanishes: Cε,δptq “ 0 for all t ě 0. Indeed, the definition of the weight
function Mδ yields the identity σpmδq ` BtM

δ

2Mδ “ 0.
Using the identity fε,δ “ ρε,δM ´Lfε,δ and the property

ş

V
Lfε,δpt, x, vqdµpvq “ 0, the first

term Aε,δptq is written as follows: for all t ě 0,

Aε,δptq “ 1
ε2

ĳ

fε,δpt, x, vq
Mδpt, x, vqLf

ε,δpt, x, vqdxdµpvq

“ 1
ε2

ż

Td

e2ηδpt,xqρε,δpt, xq
ż

V

Lfε,δpt, x, vqdµpvqdx ´ 1
ε2

ĳ

ˇ

ˇLfε,δpt, x, vq
ˇ

ˇ

2

Mδpt, x, vq dµpvqdx

“ ´ 1
ε2

›

›Lfε,δptq
›

›

2

L2pMδptq´1q
.
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The treatment of the second term Bε,δptq requires technical computations. Using an integra-
tion by parts arguments, for all t ě 0 one obtains

Bε,δptq “ ´1
ε

ĳ

papvq ` εbpvqq ¨ f
ε,δpt, x, vq∇xf

ε,δpt, x, vq
Mδpt, x, vq dxdµpvq

“ ´1
ε

ĳ

papvq ` εbpvqq ¨
1
2

ˇ

ˇfε,δpt, x, vq
ˇ

ˇ

2
∇xMδpt, x, vq

|Mδpt, x, vq|2
dxdµpvq

“ 1
ε

ĳ

papvq ` εbpvqq ¨ ∇xη
δpt, xq

ˇ

ˇfε,δpt, x, vq
ˇ

ˇ

2

Mδpt, x, vq dµpvqdx.

Using again the identity fε,δ “ ρε,δM ´ Lfε,δ then gives, for all t ě 0,

Bε,δptq “ 1
ε

ż

Td

e2ηδpt,xq
ˇ

ˇρε,δpt, xq
ˇ

ˇ

2
∇xη

δpt, xq ¨
ˆ
ż

V

papvq ` εbpvqqMpvqdµpvq
˙

dx

` 1
ε

ĳ

papvq ` εbpvqq ¨ ∇xη
δpt, xq

ˇ

ˇLfε,δpt, x, vq
ˇ

ˇ

2

Mδpt, x, vq dµpvqdx

´ 2
ε

ĳ

papvq ` εbpvqq ¨ ∇xη
δpt, xqρε,δpt, xqLfε,δpt, x, vq Mpvq

Mδpt, x, vqdµpvqdx

“ B1
ε,δptq ` B2

ε,δptq ` B3
ε,δptq.

Let us now treat successively the three terms appearing on the right-hand side above.

• Owing to Assumption 1 and to the definition of J , one has
ş

V
papvq`εbpvqqMpvqdµpvq “ εJ .

Therefore
ˇ

ˇB1
ε,δptq

ˇ

ˇ “
ˇ

ˇ

ˇ

ˇ

ż

Td

e2ηδpt,xq
ˇ

ˇρε,δpt, xq
ˇ

ˇ

2
J ¨ ∇xη

δpt, xqdx
ˇ

ˇ

ˇ

ˇ

ď }b}L8

›

›∇xη
δptq

›

›

Cx

ż

Td

e2ηδpt,xq
ˇ

ˇρε,δpt, xq
ˇ

ˇ

2
dx.

Owing to the Cauchy-Schwarz inequality, one obtains
ż

Td

e2ηδpt,xq
ˇ

ˇρε,δpt, xq
ˇ

ˇ

2
dx ď

ż

Td

e2ηδpt,xq

ż

V

ˇ

ˇfε,δpt, x, vq
ˇ

ˇ

2

Mδpt, x, vq dµpvq
ż

V

Mδpt, x, vqdµpvqdx

“
›

›fε,δptq
›

›

2

L2pMδptq´1q
, (49)

since
ş

V
Mδpt, x, vqdµpvq “ e´2ηδpt,xq for all t ě 0 and all x P T

d. As a consequence, using
the inequality (47), for all t P r0, τδ ^ T s, one has

ˇ

ˇB1
ε,δptq

ˇ

ˇ ď }b}L8 p1 ` T }σ}
C1

x
q
›

›fε,δptq
›

›

2

L2pMδptq´1q
.

• Using the condition ε ď ε0 with ε0 satisfying (14), and the inequality (47), for t P r0, τδ^T s
one has

ˇ

ˇB2
ε,δptq

ˇ

ˇ ď 1
4ε2

›

›Lfε,δptq
›

›

2

L2pMδptq´1q
.

• Using Young’s inequality, then using the inequalities (47) and (49), one obtains, for all
t P r0, τδ ^ T s,
ˇ

ˇB3
ε,δptq

ˇ

ˇ ď 4p}a}L8 ` }b}L8 q2
›

›∇xη
δptq

›

›

2

Cx

ż

Td

e2ηδpt,xq
ˇ

ˇρε,δpt, xq
ˇ

ˇ

2
dx ` 1

4ε2

›

›Lfε,δptq
›

›

2

L2pMδptq´1q

ď 4p}a}L8 ` }b}L8 q2p1 ` T }σ}
C1

x
q2
›

›fε,δptq
›

›

2

L2pMδptq´1q
` 1

4ε2

›

›Lfε,δptq
›

›

2

L2pMδptq´1q
.
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Gathering the estimates, one obtains the following inequalities: for all t P r0, τδ ^ T s,

|Bε,δptq| ď C0pT q
›

›fε,δptq
›

›

2

L2pMδptq´1q
` 1

2ε2

›

›Lfε,δptq
›

›

2

L2pMδptq´1q

and

1
2

Bt
›

›fε,δptq
›

›

2

L2pMδptq´1q
` 1

2ε2

›

›Lfε,δptq
›

›

2

L2pMδptq´1q
ď C0pT q

›

›fε,δptq
›

›

2

L2pMδptq´1q
.

where C0pT q P p0,8q is a deterministic real number, and does not depend on ε, δ. Applying
Gronwall’s inequality, for all t P r0, τδ ^ T s, one gets

›

›fε,δptq
›

›

2

L2pMδptq´1q
` 1

2ε2

ż t

0

›

›Lfε,δpsq
›

›

2

L2pMδptq´1q
ds ď CpT q

›

›

›
f
ε,δ
0

›

›

›

2

L2pM´1q
,

where CpT q P p0,8q is a deterministic real number, and does not depend on ε, δ. Finally,
using (48), one obtains the a priori estimate (18), which concludes the proof of Proposition 4.2.

5.3 Construction of the perturbed test function ϕε,δ

The objective of this section is to prove Proposition 4.3: more precisely, given a test function
ϕ P Θlim (which only depends on ρ “ 〈f〉), we construct the four correctors ϕ1,0, ϕ2,0, ϕ0,2 and
ϕ1,2, such that the perturbed test function ϕε,δ defined by (23) satisfies the error estimates (24)
and (29), and appropriate upper bounds.

Below, we first state auxiliary results concerning solutions of Poisson equations. The ex-
pression of Lε,δϕε,δ is then expanded in powers of ε and δ, and the resulting equality yields a
family of equations to be satisfied by the correctors in order to satisfy (24). The correctors are
finally constructed successively as solutions of appropriate Poisson equations. Eventually, it only
remains to check the required regularity properties and upper bounds, this step follows from
straightforward computations.

5.3.1 Auxiliary results on Poisson equations

As will be clear below, the construction of the correctors requires to solve Poisson equations of
the type ´L2ψpf, ℓq “ ϑpf, ℓq (where ℓ is considered as a fixed parameter) and ´Lmψpf, ℓq “
ϑpf, ℓq (where f is considered as a fixed parameter). We describe below the corresponding
centering conditions which are needed for the solvability of those Poisson equations, and give the
expressions of the solutions.

To solve the first class of Poisson equations, let us introduce the process pgfptqq
tPR` , associated

with the infinitesimal generator L2, with the initial condition gf p0q “ f : for all t ě 0, one has

gf ptq “ ρM ` e´t pf ´ ρMq ,

where ρ “ 〈f〉 “ 〈g〉f ptq for all t ě 0.
The solvability of the first class of Poisson equations ´L2ψ “ ϑ is ensured when the following

centering condition is satisfied: for all ρ P L2
x and all ℓ P E,

ϑpρM, ℓq “ 0. (50)

If (50) is satisfied, then the function ψ defined by

ψpf, ℓq “
ż 8

0

ϑpgf ptq, ℓqdt, (51)
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for all f P L2pM´1q and ℓ P E, is a solution of the Poisson equation ´L2ψ “ ϑ. It is the unique
solution such that ψpρM, ℓq “ 0 for all ρ P L2

x and ℓ P E.
The solvability of the second class of Poisson equations ´Lmψ “ ϑ is ensured when the

following centering condition is satisfied: for all f P L2pM´1q,
ż

E

ϑpf, ℓqdνpℓq “ 0. (52)

If (52) is satisfied, then the function ψ defined by

ψpf, ℓq “
ż 8

0

E rϑpf,mℓptqqs dt. (53)

for all f P L2pM´1q and ℓ P E, is a solution of the Poisson equation ´Lmψ “ ϑ. It is the unique
solution such that

ş

ψpf, ℓqdνpℓq “ 0 for all f P L2pM´1q.
In the sequel, the following class of functions ϑ is considered. For all h, k P L2

x, define
θh,kpℓq “ phσpℓq, kqL2

x
for all ℓ P E. Observe that θh,k P E˚pσq (see Definition 2.1). For all

f P L2pM´1q and ℓ P E, set ϑh,kpf, ℓq “ θh,kpnq ´ θh,k, with θh,k “
ş

θh,kpℓqdνpℓq “ phσ, kqL2
x
.

For such functions ϑh,k, the solution of the Poisson equation ´Lmψh,k “ ϑh,k “ θh,k ´ θh,k is
given by

ψh,k “ R0

`

θh,kpℓq ´ θh,k
˘

,

where the resolvent operator R0 is introduced in Definition 2.1. Using the estimate (6) and
the to Riesz representation Theorem, for all ℓ P E, there exists a bounded linear operator
R0pℓq : L2

x Ñ L2
x such that, for all ℓ P E and h, k P L2

x, ψh,kpℓq “ pR0pℓqh, kqL2 . Let us state
some useful properties of the operators R0pℓq.

piq For all ℓ P E, R0pℓq is self-adjoint.

piiq For all ℓ P E and h P L2
x, one has

}R0pℓqh}L2 À }h}L2 p1 ` }ℓ}Eq .

piiiq For all ℓ P E and all h P H1
x, one has R0pℓqh P H1

x, and

}R0pℓqh}H1
x

À }h}H1
x

p1 ` }ℓ}Eq .

The proof of Claim piq is straightforward: for all h, k P L2
x, θh,k “ θk,h, thus ψh,k “ ψk,h,

which gives for all ℓ P E
pR0pℓqh, kqL2 “ ph,R0pℓqkqL2 .

Claim piiq follows from the estimate (6): one has |ψh,kpℓq| À }h}L2 }k}L2 p1 ` }ℓ}Eq, since
Lippθh,kq ď Lippσq }h}L2 }k}L2 .

Finally, Claim piiiq is obtained as follows: since E P C1
x, one has }θh,k}

LippEq ď }h}H1
x

}k}H´1

x

if h P H1
x and k P L2

x. Using the estimate (6) then gives |ψh,kpℓq| À }h}H1
x

}k}H´1

x
p1 ` }ℓ}Eq.
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5.3.2 Multiscale expansion and family of Poisson equations

Let ϕε,δ be of the form (23), where the correctors are not known at this stage. Then Lε,δϕε,δ is
expressed as follows:

Lε,δϕε,δ “ ε´2L2ϕ ` δ´2Lmϕ

` ε´1 pL1ϕ ` L2ϕ1,0q ` εδ´2Lmϕ1,0

` pL0ϕ` L1ϕ1,0 ` L2ϕ2,0 ` Lmϕ0,2q ` ε´2δ2L2ϕ0,2 ` ε2δ´2Lmϕ2,0

` ε pL0ϕ1,0 ` L1ϕ2,0 ` Lmϕ1,2q ` ε´1δ2 pL1ϕ0,2 ` L2ϕ1,2q
` ε2L0ϕ2,0 ` δ2L0ϕ0,2 ` δ2L1ϕ1,2

` εδ2L0ϕ1,2,

where each line on the right-hand side corresponds to expressions of degree ´2, . . . , 3 in terms of
the variables ε, δ. The goal is to construct the correctors such that Lε,δϕε,δ ´ Lϕ goes to 0 when
pε, δq Ñ p0, 0q, more precisely such that (24) holds. The following family of conditions provide
sufficient conditions on the correctors to satisfy (24): on the one hand, the correctors solve the
following system of equations,

L2ϕ “ Lmϕ “ 0, (54)

L1ϕ ` L2ϕ1,0 “ Lmϕ1,0 “ 0, (55)

L0ϕ ` L1ϕ1,0 ` L2ϕ2,0 ` Lmϕ0,2 “ Lϕ, (56)

L2ϕ0,2 “ Lmϕ2,0 “ 0, (57)

L1ϕ0,2 ` L2ϕ1,2 “ 0, (58)

on the other hand, the following estimates are satisfied,

|L0ϕ1,0pf, ℓq| ` |L1ϕ2,0pf, ℓq| ` |Lmϕ1,2pf, ℓq| ` |L0ϕ2,0pf, ℓq| À p1 ` }f}3

L2pM´1qqp1 ` }ℓ}Eq,
(59)

|L0ϕ0,2pf, ℓq| ` |L1ϕ1,2pf, ℓq| ` |L0ϕ1,2pf, ℓq| À p1 ` }f}3

L2pM´1qqp1 ` }ℓ}2

Eq, (60)

for all f P L2pM´1q and ℓ P E. The estimates (25), (26), (26) and (28) are byproducts of the
constructions of the correctors below.

Observe that the last equation in the system, Equation (58), would not appear if ε “ δ,
or if a constraint of the type ε´1δ2 Ñ 0 is satisfied. In the expression of Lε,δϕε,δ above, the
condition (58) corresponds to a contribution of the term of degree 1. One of the novelties of
this work is to consider the general case, hence the need to construct the corrector ϕ1,2. On the
contrary, as will be clear below, the condition (57) on the correctors ϕ0,2 and ϕ2,0 is simpler to
treat, it only means that ϕ0,2pf, ℓq “ ϕ0,2pρM, ℓq and ϕ2,0pf, ℓq “ ϕ2,0pfq. In the case ε “ δ,
this only consists in writing the corrector ϕ2 of order 2 as a sum of two terms ϕ2,0 ` ϕ0,2.

Recall that the test function ϕ belongs to the class of test functions Θlim (see Definition 4.2):
ϕpf, ℓq “ χppρ, ξqL2

x
q. In the sequel, to simplify the expressions, we use the notation χρ “

χppρ, ξqL2
x
q, χ1

ρ “ χ1ppρ, ξqL2
x
q, and similar notation for the higher order derivatives χ2

ρ and χ3
ρ .

Let us explain how the rest of this section proceeds. We first check that (54) holds when ϕ is
a function in the class Θlim. Then, we successively construct the correctors ϕ1,0, ϕ2,0 and ϕ0,2,
and ϕ1,2, as solutions of Poisson equations, using the tools above. We finally check that (59)
and (60) holds. The proof of Proposition 4.3 is concluded when all those steps are completed.
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5.3.3 Verification of the condition (54)

The function ϕ is in the class Θlim: as a consequence ϕpf, ℓq “ ϕpρMq does not depend on ℓ,
and only depends on f through ρ “ 〈f〉. It is then straightforward to check that Lmϕpf, ℓq “
L2ϕpf, ℓq “ 0 for all f P L2pM´1q and ℓ P E. Therefore (54) holds.

5.3.4 Construction of the corrector ϕ1,0 using the condition (55)

First, using (53), the condition Lmϕ1,0 “ 0 implies that ϕ1,0 is independent of ℓ: ϕ1,0pf, ℓq “ ϕpfq
for all f P L2pM´1q, ℓ P E.

Second, ϕ1,0 is the solution of the Poisson equation

´L2ϕ1,0pfq “ L1ϕpfq “ ´χ1
ρ p〈Af〉 , ξqL2

x
.

The centering condition (50) is satisfied for ϑ “ L1ϕ, indeed 〈AρM〉 “ 0 for all ρ P L2
x. Using

the expression (51), one thus defines the corrector ϕ1,0 as follows: for all f P L2pM´1q and ℓ P E,
set

ϕ1,0pf, ℓq “
ż 8

0

L1ϕpgf ptqqdt.

Recall that 〈gf ptq〉 “ ρ and 〈Agf ptq〉 “ e´t 〈Af〉 for all t ě 0, thus one has, for all f P L2pM´1q
and ℓ P E,

ϕ1,0pf, ℓq “ ´
ż 8

0

e´tχ1
ρ p〈Af〉 , ξqL2

x
dt “ ´χ1

ρ p〈Af〉 , ξqL2
x

“ χ1
ρ pf,AξqL2 , (61)

using an integration by parts argument in the last equality.
Using the expression (61), it is then straightforward to check that the estimate (25) is satisfied.

This concludes the construction of the corrector ϕ1,0.

5.3.5 Construction of the correctors ϕ2,0 and ϕ0,2 using the conditions (56)–(57)

It is required to combine the two conditions (56) and (57) in order to build the correctors ϕ2,0

and ϕ0,2.
First, using (53), the condition Lmϕ2,0 “ 0 implies that ϕ2,0 is independent of ℓ: ϕ2,0pf, ℓq “

ϕpfq for all f P L2pM´1q, ℓ P E. Similarly, using (51), the condition L2ϕ0,2 “ 0 implies that
ϕ0,2pf, ℓq “ ϕ0,2pρM, ℓq, with ρ “ 〈f〉, for all f P L2pM´1q, n P E.

Second, observe that one has

L0ϕpf, ℓq ` L1ϕ1,0pf, ℓq “ ´χ1
ρ pσpℓqρ, ξqL2

x
´ χ1

ρ p〈Bf〉 , ξqL2
x

´ χ2
ρ p〈Af〉 , ξqL2

x
pf,AξqL2 ´ χ1

ρ pAf,AξqL2

“ ϑ0,2pρM, ℓq ` ϑ2,0pfq,

for all f P L2pM´1q and ℓ P E, where the auxiliary functions ϑ0,2 and ϑ2,0 are defined as follows:

ϑ0,2pρM, ℓq “ ´χ1
ρ pσpℓqρ, ξqL2

x

ϑ2,0pfq “ χ1
ρ pf,BξqL2 ` χ2

ρ p〈Af〉 , ξq2

L2
x

` χ1
ρ

`

f,A2ξ
˘

L2

“ χ2
ρ p〈Af〉 , ξq2

L2
x

` χ1
ρ

`

f,A2ξ `Bξ
˘

L2
,
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Note that using (21), for all ρ P L2
x, one has

Lϕpρq “ χ1
ρ pρ, divxpK∇xξqqL2

x
` χ1

ρ pρ, J ¨ ∇xξqL2
x

´ χ1
ρ pρ, σξqL2

x

“ χ1
ρ

`

ρ,K : ∇2
xξ
˘

L2
x

` χ1
ρ pρ, J ¨ ∇xξqL2

x
´ χ1

ρ pσρ, ξqL2
x

“ χ1
ρ

`

ρM, A2ξ `Bξ
˘

L2
´ χ1

ρ pσρ, ξqL2
x

“ ϑ2,0pρMq `
ż

E

ϑ0,2pρM, ¨qdν

“ ϑ2,0pρMq `
ż

E

ϑ0,2pρM, ¨qdν.

Indeed, 〈AρM〉 “ 0 for all ρ P L2
x.

As a consequence, the correctors ϕ2,0 and ϕ0,2 are constructed as the solutions of the Poisson
equations

´L2ϕ2,0pfq “ pϑ2,0pfq ´ ϑ2,0pρMqq , (62)

´Lmϕ0,2pρM, ℓq “
ˆ

ϑ0,2pρM, ℓq ´
ż

E

ϑ0,2pρM, ¨qdν
˙

. (63)

Indeed, if (62) and (63) are satisfied, then the arguments above show that the conditions (56)
and (57) hold. It remains to solve the two Poisson equations, and to check that the estimates (26)
and (27) are satisfied.

On the one hand, the centering condition (50) is satisfied, and (51) gives the following defini-
tion for ϕ2,0: for all f P L2pM´1q, set

ϕ2,0pfq “
ż 8

0

pϑ2,0pgf ptqq ´ ϑ2,0pρMqq dt

(64)

Using the properties 〈gf ptq〉 “ ρ, 〈Agf ptq〉 “ e´t 〈Af〉 and gf ptq ´ ρM “ e´t pf ´ ρMq, for all
t ě 0, one obtains the following expression for ϕ2,0: for all f P L2pM´1q,

ϕ2,0pfq “
ż 8

0

χ2
ρ p〈Agf ptq〉 , ξq2

L2
x
dt `

ż 8

0

χ1
ρ

`

gfptq ´ ρM, A2ξ `Bξ
˘

L2
dt

“
ż 8

0

e´2tχ2
ρ p〈Af〉 , ξq2

L2
x
dt `

ż 8

0

e´tχ1
ρ

`

f ´ ρM, A2ξ `Bξ
˘

L2
dt

“ 1
2
χ2
ρ p〈Af〉 , ξq2

L2
x

` χ1
ρ

`

f ´ ρM, A2ξ `Bξ
˘

L2

“ 1
2
χ2
ρ pf,Aξq2

L2 ` χ1
ρ

`

f ´ ρM, A2ξ `Bξ
˘

L2
. (65)

On the other hand, the centering condition (52) is satisfied, and (53) gives the following
definition for ϕ0,2: for all ρ P L2

x and ℓ P E, set

ϕ0,2pf, ℓq “
ż 8

0

E

„

ϑ0,2pρM,mℓptqq ´
ż

E

ϑ0,2pρM, ¨qdν


dt

“ ´
ż 8

0

E

”

χ1
ρ ppσpmℓptqq ´ σqρ, ξqL2

x

ı

dt

“ ´χ1
ρ pρ,R0pℓqξqL2

x
. (66)

Using the expressions (65) and (66), it is then straightforward to check that the estimates (26)
and (27) are satisfied. This concludes the construction of the correctors ϕ2,0 and ϕ0,2.
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5.3.6 Construction of the corrector ϕ1,2 using the condition (58)

The last step in the construction of the correctors, is to define ϕ1,2: owing to (58), it is constructed
as the solution of the Poisson equation ´L2ϕ1,2 “ L1ϕ0,2. Using the expression (66) of ϕ0,2, one
has

L1ϕ0,2pf, ℓq “ χ2
ρ p〈Af〉 , ξqL2

x
pρ,R0pℓqξqL2

x
` χ1

ρ p〈Af〉 , R0pℓqξqL2
x
,

for all f P L2pM´1q and ℓ P E.
Note that the centering condition (50) is satisfied: for all ρ P L2

x and ℓ P E, one has

L1ϕ0,2pρM, ℓq “ 0,

since 〈AρM〉 “ 0. Therefore, ϕ1,2 is defined using (51): for all f P L2pM´1q and ℓ P E,

ϕ1,2pf, ℓq “
ż 8

0

L1ϕ0,2pgf ptq, ℓqdt.

Using the properties 〈gfptq〉 “ ρ and 〈Agfptq〉 “ e´t 〈Af〉 for all t ě 0, one obtains the following
expression for ϕ1,2: for all f P L2pM´1q and ℓ P E,

ϕ1,2pf, ℓq “
ż 8

0

e´t
´

χ2
ρ p〈Af〉 , ξqL2

x
pρ,R0pℓqξqL2

x
` χ1

ρ p〈Af〉 , R0pℓqξqL2
x

¯

dt

“ χ2
ρ p〈Af〉 , ξqL2

x
pρ,R0pℓqξqL2

x
` χ1

ρ p〈Af〉 , R0pℓqξqL2
x

“ ´χ2
ρ pf,AξqL2 pρ,R0pℓqξqL2

x
´ χ1

ρ pf,ApR0pℓqξqqL2 . (67)

Using the expression (67), it is then straightforward to check that the estimate (28) is satisfied.
This concludes the construction of the corrector ϕ1,2.

5.3.7 Verification of the conditions (59)–(60)

Note that ϕε,δ defined by (23) belongs to the class of functions Θ given in Definition 4.3. It thus
only remains to check that the conditions (59) and (60) hold. This is done using the following
expressions: for all f P L2pM´1q and ℓ P E, one has

L0ϕ1,0pf, ℓq “ ´χ2
ρ pσpℓqρ ` 〈Bf〉 , ξqL2

x
pf,AξqL2 ´ χ1

ρ pσpℓqf,AξqL2 ,

L1ϕ2,0pf, ℓq “ 1
2
χ3
ρ pf,Aξq3

L2 ` χ2
ρ pf,AξqL2

`

f,A2ξ
˘

L2

` χ2
ρ pf,AξqL2

`

f ´ ρM, A2ξ `Bξ
˘

L2
` χ1

ρ

`

f ´ ρM, A3ξ `ABξ
˘

L2
,

Lmϕ1,2pf, ℓq “ χ2
ρ pf,AξqL2 pρ, σpℓqξqL2

x
` χ1

ρ pf,ApσpℓqξqqL2 ,

L0ϕ2,0pf, ℓq “ ´1
2
χ3
ρ pσpℓqρ ` 〈Bf〉 , ξqL2

x
pf,Aξq2

L2 ´ χ2
ρ pf,AξqL2 pσpℓqf `Bf,AξqL2

´ χ2
ρ pσpℓqρ ` 〈Bf〉 , ξqL2

x

`

f ´ ρM, A2ξ `Bξ
˘

L2

´ χ1
ρ

`

σpℓqpf ´ ρMq `Bpf ´ ρMq, A2ξ `Bξ
˘

L2
,

L0ϕ0,2pf, ℓq “ ´χ2
ρ pσpℓqρ ` 〈Bf〉 , ξqL2

x
pR0pℓqρ, ξqL2

x
´ χ1

ρ pσpℓqρ ` 〈Bf〉 , R0pℓqξqL2
x
,
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L1ϕ1,2pf, ℓq “ ´χ3
ρ pf,Aξq2

L2 pρ,R0pℓqξqL2
x

´ χ2
ρ

`

f,A2ξ
˘

L2
x

pρ,R0pℓqξqL2
x

´ χ2
ρ pf,AξqL2 pρ,ApR0pℓqξqqL2

x
´ χ2

ρ pf,AξqL2 pf,ApR0pℓqξqqL2

´ χ1
ρ

`

f,A2pR0pℓqξq
˘

L2
,

L0ϕ1,2pf, ℓq “ χ2
ρ pσpℓqρ ` 〈Bf〉 , ξqL2

x
pf,AξqL2 pρ,R0pℓqξqL2

x
` χ2

ρ pσpℓqfBf,AξqL2
x

pρ,R0pℓqξqL2
x

` χ2
ρ pf,AξqL2 pσpℓqρ` 〈Bf〉 , R0pℓqξqL2

x
` χ2

ρ pσpℓqρ ` 〈Bf〉 , ξqL2
x

pf,ApR0pℓqξqqL2

` χ1
ρ pσpℓqf `Bf,ApR0pℓqξqqL2 .

It is then straightforward to check that (59) and (60) hold. This concludes the proof of Proposi-
tion 4.3.
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