
ar
X

iv
:2

10
4.

14
19

6v
1 

 [
m

at
h.

PR
] 

 2
9 

A
pr

 2
02

1

The averaging principle for stochastic differential

equations driven by a Wiener process revisited

Charles-Edouard Bréhier

Abstract. We consider a one-dimensional stochastic differential equation driven by a
Wiener process, where the diffusion coefficient depends on an ergodic fast process. The
averaging principle is satisfied: it is well-known that the slow component converges in dis-
tribution to the solution of an averaged equation, with generator determined by averaging
the square of the diffusion coefficient.

We propose a version of the averaging principle, where the solution is interpreted as the
sum of two terms: one depending on the average of the diffusion coefficient, the other giving
fluctuations around that average. Both the average and fluctuation terms contribute to the
limit, which illustrates why it is required to average the square of the diffusion coefficient
to find the limit behavior.

1. Introduction

Multiscale and stochastic systems are ubiquitous in all fields of science and engineering.
Averaging and homogenization techniques [16] are popular methods to derive lower dimen-
sional problems, which are easier to understand and simulate. In this article, we focus on
the averaging principle for the following class of stochastic differential equations (SDEs)

(1) dXǫptq “ σ
`

Xǫptq, mpt{ǫq
˘

dβptq,
where ǫ ! 1 is the time scale separation parameter, β is a standard real-valued Brownian
motion, and the diffusion coefficient σ is a smooth function. See Section 2.1 for precise
assumptions. The fast component of the system is given by an ergodic Markov process
`

mptq
˘

tě0
, evolving at the time scale t{ǫ. The averaging principle states that one can elimi-

nate the fast process when ǫ Ñ 0, precisely the slow componentXǫ converges (in distribution)
to the solution X of an autonomous evolution equation called the averaged equation. In the
case of the system (1), the averaged equation is a SDE of the type

(2) dXptq “ ΣpXptqqdβptq,
where

Σ2p¨q “ σ2p¨q “
ż

σp¨, mq2dµpmq,

and µ denotes the invariant probability distribution of the fast ergodic process
`

mptq
˘

tě0
.
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In this article, we revisit this problem, and propose an original point of view which
explains why the limit equation is not given by simply averaging the diffusion coefficient σ,
which would give

dXptq “ σpXptqqdβptq.
Note that one has Σ2 “ σ2 ě σ2, thus the averaging principle may be interpreted as exhibiting
enhanced diffusion. The approach used in this article can be explained as follows: we
introduce a decomposition Xǫ “ Y ǫ ` Zǫ of the slow component, where

(3)

#

dY ǫptq “ σpY ǫptq ` Zǫptqqdβptq
dZǫptq “

`

σpY ǫptq ` Zǫptq, mǫptqq ´ σpY ǫptq ` Zǫptqq
˘

dβptq.

Observe that Y ǫ is defined in terms of σ, and thus may be interpreted as an average term,
whereas Zǫ may be interpreted as a fluctuation term. The reason behind the expression of the
averaged equation (2) in terms of σ2 is the fact that Zǫ converges to a non-trivial limit when
ǫ Ñ 0. Precisely, the main result of this article, Theorem 2.1, states that pY ǫpT q, ZǫpT qq
converges in distribution, when ǫ Ñ 0, to pY pT q, ZpT qq, for all T ě 0, given by

(4)

#

dY ptq “ σpY ptq ` Zptqqdβ1

t

dZptq “ xσypY ptq ` Zptqqdβ2

t ,

where
`

β1

t

˘

tě0
and

`

β2

t

˘

tě0
are two independent standard real-valued Wiener processes, and

xσy2 “ pσ ´ σq2. It is then straightforward to retrieve the standard version of the averaging
principle: XǫpT q “ Y ǫpT q ` ZǫpT q Ñ Y pT q ` ZpT q, and one checks that Y pT q ` ZpT q is
equal to XpT q in distribution. That identity is due to the following observation: one has

σ2 ` xσy2 “ σ2. The decomposition into average and fluctuation terms then clearly explains
the diffusion enhancement in the averaged equation (2).

The main result of this article has an elementary formulation. Even if the averaging
principle has been extensively studied by many authors, to the best of our knowledge, it
seems that the point of view proposed in this article is original and that Theorem 2.1 is
a new result in the mathematical literature. The analysis is performed for a simple one-
dimensional SDE, it may be generalized to more complicated problems.

Let us review the literature concerning the averaging principle for SDEs. The list of
references is not exhaustive. We refer to the seminal article [11] by Hasminkskii and to the
standard monograph [8] (in particular Chapter 7). See also [16] (in particular Chapter 17)
for a recent overview of the averaging and homogenization techniques for SDEs. Let us also
mention [19], and the recent works [17, 18]. In the last decade, the averaging principle
has been extensively studied for systems of stochastic partial differential equations, see for
instance [4, 5], contributions of the author [1, 2] and references therein. Recently Hairer
and Li [9] have extended the averaging principle for SDE systems of the type (1) where the
standard Brownian motion β is replaced by a fractional Brownian motion βH with Hurst
index H ą 1{2: in Section 4 below we explain how the point of view developped in the
present article is related to that generalization. Finally, numerical methods for systems
of the type (1) which are efficient when ǫ ! 1 have been studied: see for instance the
heterogeneous multiscale method proposed in [7] and the asymptotic preserving schemes
proposed in [3].
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The proof of the main result Theorem 2.1 employs two standard tools when studying the
behavior of multiscale stochastic systems: solutions of Kolmogorov and Poisson equations.
We refer for instance to [12] and to the series of articles [13, 14, 15] for similar computations.
See also [1, 2] where weak error estimates in the averaging principle for SPDEs are proved
using such techniques, and [17, 18]. An original feature of the proof of Theorem 2.1 below is
to consider the solutions of two Poisson equations (one related to the average behavior, one
related to the fluctuations), whereas the standard approach to the averaging principle only
requires a single Poisson equation. This may be surprising since the system (1) only depends
on two time scales t and t{ǫ. The use of two Poisson equations is standard in homogenization
or diffusion approximation problems, where three time scales t, t{ǫ and t{ǫ2 appear, see for
instance [6, 10] and [13, 14, 15]. The list of references is not exhaustive.

This article is organized as follows. Section 2 is devoted to state the assumptions (Sec-
tion 2.1) and the main result (Section 2.2) of this article. The proof of Theorem 2.1 is
provided in Section 3. Concluding remarks and perspectives for future works are given in
Section 4.

2. Setting and main result

Let
`

βptq
˘

tě0
be a standard real-valued Wiener process. Let ǫ P p0, 1q denote the time-

scale separation parameter. We consider the following SDE on the one-dimensional torus
T

(5) dXǫptq “ σ
`

Xǫptq, mǫptq
˘

dβptq,

with initial condition Xǫ
0

“ x0 P R (assumed to be deterministic and independent of ǫ for
simplicity). Assumptions for the diffusion coefficient σ and the fast process mǫ are given in
Section 2.1 below.

Working in the one-dimensional torus T simplifies the presentation, however one may
replace T by R with minor modifications in the setting. Generalization to higher dimensional
problems is mentioned in Section 4.

2.1. Assumptions. The diffusion coefficient σ is assumed to satisfy the following con-
ditions.

Assumption 1. The mapping σ : T ˆ R Ñ R is of class C4, with bounded derivatives

with respect to the second variable m. In addition, assume that for all x P T, the mapping

σpx, ¨q is not constant.

In particular, note that σ is Lipschitz continuous, this ensures the global well-posedness
of (5) for all ǫ ą 0.

The fast process mǫ is assumed to satisfy the following conditions:

Assumption 2. For all ǫ P p0, 1q and all t ě 0, one has mǫptq “ mpt{ǫq, where
`

mptq
˘

tě0

is a real-valued ergodic Markov process which is independent of β. We assume that the initial

condition mp0q “ m0 is a given deterministic real number. Assume that sup
tě0

Er|mptq|2s ă 8.

Let µ denote the unique invariant probability distribution of the process
`

mptq
˘

tě0
, and

let L denote its infinitesimal generator.
3



Define, for all x P T,

(6)

$

’

’

’

&

’

’

’

%

σpxq “
ż

σpx,mqdµpmq

xσypxq “
d

ż

`

σpx,mq ´ σpxq
˘2

dµpmq.

We assume that for all x P R, the Poisson equations

(7)

#´Lψ1px, ¨q “ σpx, ¨q ´ σpxq
´Lψ2px, ¨q “

`

σpx, ¨q ´ σpxq
˘

2 ´ xσypxq2

admit solutions ψ1, ψ2 – without loss of generality one assumes that for all x P T one has
ş

ψ1px,mqdµpmq “
ş

ψ2px,mqdµpmq “ 0 – and that the solutions ψ1, ψ2 are of class C4 on

T ˆ R. In addition, the derivatives are assumed to grow at most quadratically with respect

to m.

Note that the mappings σ and xσy2 inherit the regularity properties from the mapping
σ with respect to the x-variable: in particular they are of class C4 on the torus T. Recall
that for all x P T the mapping σpx, ¨q is not constant (owing to Assumption 1), thus one has
xσy2pxq ą 0 for all x P T. As a consequence, xσy then inherits the regularity properties from
xσy2, in particular it is of class C4.

Note that the solvability of the Poisson equations (7) is possible since the right-hand
sides satisfy the required centering conditions by definitions (6) of σ and xσy2. Observe also
that for all x P T one has

(8) σpxq2 ` xσypxq2 “ σ2pxq “
ż

σpx,mq2dµpmq.

Let us provide a standard example for the fast process:
`

mptq
˘

tě0
can be the solution of

the SDE

dmptq “ ´V 1pmptqqdt`
?
2dW ptq,

with appropriate assumptions on the potential V : R Ñ R – for instance V pxq “ x2{2, which
gives an Ornstein-Uhlenbeck process. In that example the fast process

`

mǫptq
˘

tě0
solves the

SDE

dmǫptq “ ´V 1pmǫptqq
ǫ

dt`
?
2?
ǫ
dW ptq,

and the invariant distribution µ is given by

dµpmq “ Z´1 expp´V pmqqdm

with the normalization constant Z “
ş

expp´V pmqqdm. In that example, it is straightfor-
ward to check that the conditions in Assumption 2 are satisfied (with appropriate regularity
and growth assumptions on V 1).
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2.2. Main result. The objective of this article is to propose a version of the averaging
principle with an original point of view. First, recall that the standard version states that
when ǫ Ñ 0, the solution Xǫ of (5) converges in distribution to the solutionX of the averaged
equation

(9) dXptq “ ΣpXptqqdβptq
with initial condition Xp0q “ x0, where

Σpxq “
b

σ2pxq.
Note that Σpxq ą σpxq, owing to the identity (8) and Assumption 1. We refer for instance
to [16, Chapter 17] (and the other references mentioned in Section 1).

The version of the averaging principle studied in this article requires to introduce two
auxiliary processes Y ǫ and Zǫ as follows: we consider the system

(10)

#

dY ǫptq “ σpY ǫptq ` Zǫptqqdβptq
dZǫptq “

`

σpY ǫptq ` Zǫptq, mǫptqq ´ σpY ǫptq ` Zǫptqq
˘

dβptq
with initial conditions Y ǫp0q “ 0 and Zǫp0q “ x0. Observe that by construction, one has the
identity

Xǫptq “ Y ǫptq ` Zǫptq
for all t ě 0.

The main result of this article is the convergence in distribution of pY ǫpT q, ZǫpT qq to
pY pT q, ZpT qq, where the process

`

Y ptq, Zptq
˘

tě0
is defined as follows:

(11)

#

dY ptq “ σpY ptq ` Zptqqdβ1

t

dZptq “ xσypY ptq ` Zptqqdβ2

t ,

where
`

β1

t

˘

tě0
and

`

β2

t

˘

tě0
are two independent standard real-valued Wiener processes.

We are now in position to state the refined version of the averaging principle.

Theorem 2.1. For all T P p0,8q, one has the convergence in distribution

pY ǫpT q, ZǫpT qq Ñ
ǫÑ0

pY pT q, ZpT qq.

Note that the standard version of the averaging principle is a straightforward corollary
of Theorem 2.1. On the one hand, one has the almost sure equality XǫpT q “ Y ǫpT q `ZǫpT q.
On the other hand, set Xptq “ Y ptq ` Zptq, then one has

dXptq “ σpXptqqdβ1

t ` xσypXptqqdβ2

t .

The associated infinitesimal generator is given by

1

2

`

σpxq2 ` xσypxq2
˘

B2

xx “ 1

2
σ2pxqB2

xx “ 1

2
Σpxq2B2

xx,

owing to the identity (8). As a consequence X and X are Markov processes with the same
infinitesimal generator, and Xp0q “ Xp0q “ x0: we thus obtain the equality XpT q “ XpT q
in distribution. Finally, Theorem 2.1 implies

XǫpT q “ Y ǫpT q ` ZǫpT q Ñ
ǫÑ0

Y pT q ` ZpT q “ XpT q
where the convergence and the equality are understood to hold in distribution.
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The refined version is an explanation of the well-known fact that Σpxq ą σpxq – which
is often justified by the observation that one needs to average the infinitesimal generator of
the process instead of its coefficients. It also illustrates why the convergence only holds in
distribution. To the best of our knowledge, Theorem 2.1 is a new result.

Let us present a simplified case to illustrate Theorem 2.1: assume that σpx,mq “ σpmq
only depends on m. In that case, σ and xσy are constants, the system (10) is rewritten as

#

dY ǫptq “ σdβptq
dZǫptq “

`

σpmǫptqq ´ σ
˘

dβptq.

In particular, the distribution of Y ǫpT q is N p0, σ2q does not depend on ǫ. Owing to The-
orem 2.1, ZǫpT q converges in distribution to ZpT q „ N p0, xσy2T q. In fact, more pre-
cisely pY ǫpT q, ZǫpT qq converges in distribution to the non-degenerate Gaussian distribution
N p0, Qq with diagonal covariance matrix Q, such that Q11 “ σ2T , Q22 “ xσy2T . Finally,

Y ǫpT q ` ZǫpT q converges in distribution to N p0, σ2T q, since σ2 ` xσy2 “ σ2. This confirms
how Theorem 2.1 is a refinement of the standard averaging principle in the simplified case

3. Proof of Theorem 2.1

The objective of this section is to give the proof of Theorem 2.1. Before proceeding, let
us first introduce some of the main arguments of the proof.

Assume that ϕ : T2 Ñ R is a mapping of class C4. We prove below that the weak error
satisfies

(12)
ˇ

ˇErϕpY ǫpT q, ZǫpT qqs ´ ErϕpY pT q, ZpT qqs
ˇ

ˇ ď CpT, ϕ, x0qǫ
for some CpT, ϕ, x0q P p0,8q. By a standard approximation argument, the weak error
estimate (12) implies that one has

ErϕpY ǫpT q, ZǫpT qqs Ñ
ǫÑ0

ErϕpY pT q, ZpT qqs

for all continuous mappings ϕ : T
2 Ñ R, which means the convergence in distribution

stated in Theorem 2.1. It thus suffices to establish the weak error estimate (12) to prove
Theorem 2.1.

To prove the weak error estimate (12), it is convenient to introduce two auxiliary map-
pings u and Φ from r0, T s ˆT

2 ˆR to R. First, u is the solution of the Kolmogorov equation
associated with the SDE system (11) for

`

Y ptq, Zptq
˘

tě0
:

(13) Btupt, y, zq “ 1

2
σpy ` zq2B2

yyupt, y, zq ` 1

2
xσypy ` zq2B2

zzupt, y, zq,

with initial condition up0, y, zq “ ϕpy, zq for all py, zq P T
2. Using Assumption 1 and (6),

one checks that u is of class C4 with respect to py, zq and of class C1 with respect to t.
Second, for all t ě 0, py, zq P T

2 and m P R, set

(14) Φpt, y, z,mq “ σpy ` zqB2

yzupT ´ t, y, zqψ1py, z,mq ` 1

2
B2

zzupT ´ t, y, zqψ2py, z,mq.

One checks that Φ is of class C1 with respect to t, and of class C2 with respect to py, z,mq,
with at most quadratic growth with respect to m.
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Proof of Theorem 2.1. Expressing the weak error in terms of the solution u of the
Kolmogorov equation (13), and applying Itô’s formula, one obtains

ErϕpY ǫ
T , Z

ǫ
T qs ´ ErϕpYT , ZT qs

“ Erup0, Y ǫ
T , Z

ǫ
T qs ´ ErupT, Y ǫ

0
, Zǫ

0
qs

“
ż T

0

E
“

´BtupT ´ t, Y ǫ
t , Z

ǫ
t q

‰

dt

` 1

2

ż T

0

E
“

σpY ǫ
t ` Zǫ

t q2ByyupT ´ t, Y ǫ
t , Z

ǫ
t q

‰

dt

`
ż T

0

E
“

σpY ǫ
t ` Zǫ

t q
`

σpY ǫ
t ` Zǫ

t , m
ǫ
tq ´ σpY ǫ

t ` Zǫ
t q

˘

B2

yzupT ´ t, Y ǫ
t , Z

ǫ
t q

‰

dt

` 1

2

ż T

0

E
“`

σpY ǫ
t ` Zǫ

t , m
ǫ
tq ´ σpY ǫ

t ` Zǫ
t q

˘2B2

zzupT ´ t, Y ǫ
t , Z

ǫ
t q

‰

dt

“
ż T

0

E
“

σpY ǫ
t ` Zǫ

t q
´

σpY ǫ
t ` Zǫ

t , m
ǫ
tq ´ σpY ǫ

t ` Zǫ
t q

¯

B2

yzupT ´ t, Y ǫ
t , Z

ǫ
t q

‰

dt

` 1

2

ż T

0

E
“

´

`

σpY ǫ
t ` Zǫ

t , m
ǫ
tq ´ σpY ǫ

t ` Zǫ
t q

˘2 ´ xσypY ǫ
t ` Zǫ

t q2
¯

B2

zzupT ´ t, Y ǫ
t , Z

ǫ
t q

‰

dt,

where the last line comes from replacing Btu using the Kolmogorov equation (13).
Observe that the two terms in the right-hand side above have a nice form, since the

factors in parenthesis are centered with respect to the invariant distribution µ in the m

variable, and the other factors do not depend on m. Recall that the auxiliary functions
ψ1 and ψ2 are defined as solutions of the Poisson equations (7). As a consequence, by the
definition (14) of the auxiliary function Φ, the weak error satisfies the identity

(15) ErϕpY ǫ
T , Z

ǫ
T qs ´ ErϕpYT , ZT qs “ ´

ż T

0

ErLΦpt, Y ǫ
t , Z

ǫ
t , m

ǫ
tqsdt.

Applying Itô’s formula, one has

E
“

ΦpT, Y ǫ
T , Z

ǫ
T , m

ǫ
T q

‰

“ ErΦp0, Y ǫ
0
, Zǫ

0
, mǫ

0
qs

`
ż T

0

E
“

AΦpt, Y ǫ
t , Z

ǫ
t , m

ǫ
tq

‰

dt` 1

ǫ

ż T

0

ErLΦpt, Y ǫ
t , Z

ǫ
t , m

ǫ
tqsdt,

where the auxiliary differential operator A is given by

A “ Bt ` 1

2
σpy`zq2B2

yy `σpy`zq
`

σpy`Z,mq´σpy`zq
˘

B2

yz ` 1

2

`

σpy`Z,mq´σpy`zq
˘2B2

zz.

Finally, the weak error estimate satifies

ErϕpY ǫ
T , Z

ǫ
T qs ´ ErϕpYT , ZT qs “ ǫ

`

ErΦp0, Y ǫ
0
, Zǫ

0
, mǫ

0
qs ´ ErΦpT, Y ǫ

T , Z
ǫ
T , m

ǫ
T qs

˘

` ǫ

ż T

0

E
“

AΦpt, Y ǫ
t , Z

ǫ
t , m

ǫ
tq

‰

dt

“ Opǫq
7



using the regularity properties of Φ and the moment estimate

sup
ǫPp0,1q

sup
tě0

Er|mǫptq|2s “ sup
tě0

Er|mptq|2s ă 8

owing to Assumption 2.
This concludes the proof of the weak error estimate (12) and of Theorem 2.1. �

Observe that the proof of Theorem 2.1 requires to exploit the solutions ψ1 and ψ2 of two
auxiliary Poisson equation. On the one hand, the proof of the standard averaging principle
exploits the solution ψ of a single Poisson equation, namely

´Lψpx, ¨q “ σ2px, ¨q ´ σ2pxq.
On the other hand, using the solutions of two Poisson equations is standard in homog-
enization theory, where the infinitesimal generator has an expansion of the form Lǫ “
L0 ` ǫ´1L1 ` ǫ´2L – whereas it is of the form Lǫ “ L0 ` ǫ´1L in the averaging regime
we consider. The two Poisson equation appears to deal with different scales ǫ0 and ǫ´1 in
that problem.

4. Discussion

In this article, we have revisited the averaging principle for the class of stochastic differ-
ential equations given by (1). Contrary to the standard approach, we propose to decompose
Xǫ “ Y ǫ ` Zǫ (see (10)), where Y ǫ is defined in terms of the average σ (with respect to the
fast variable) of the diffusion coefficient, and Zǫ represents fluctuations around the average.
Our main result, Theorem 2.1, states that pY ǫ, Zǫq converges in distribution to a non-trivial
limit pY, Zq. The key observation is that Z is not equal to 0, this explains why the limit X

for Xǫ is defined in terms of the average σ2 of the square of the diffusion coefficient. Note
that σ2 ě σ2 by the Cauchy-Schwarz inequality (see (8)), i.e. diffusion is enhanced in the
averaging procedure, and the behavior of the fluctuation term Zǫ quantifies the increase in
the diffusion.

The approach to prove Theorem 2.1 is based on a classical strategy when studying multi-
scale stochastic systems: weak error estimates are proved using solutions of the Kolmogorov
equation associated with the limit, and of Poisson equations associated with the behavior of
the fast component. The solvability of the Poisson equations requires centering conditions to
be satisfied, which identify limit. The proof of Theorem 2.1 is original since we employ the
solutions of two Poisson equations, instead of only one in the standard proof of the averaging
principle.

Our study is limited to one-dimensional SDEs. It is expected that generalizing the result
to higher-dimensional SDEs and SPDEs is possible. This may be studied in future works.
Note also that it would be straightforward to include drift terms in the SDE (1): since for
those terms one would only need to average the drift term, one would only need to modify
the definition of the average term Y ǫ, whereas the definition of the fluctuation term Zǫ would
not be modified.

To conclude this article, let us mention that recently the averaging principle was proved
for stochastic differential equations driven by a fractional Brownian motion with Hurst index
H ą 1{2, see [9]:

dXǫ
t ptq “ σ

`

Xǫptq, mpt{ǫq
˘

dβHptq.
8



The expression of the averaged equation is different from (9): it is of the type

dX
Hptq “ σpXHptqqdβHptq

i.e. one simply needs to average the diffusion coefficient. In that case, the decomposition
Xǫ “ Y ǫ ` Zǫ would give Zǫ Ñ 0 when ǫ Ñ 0, i.e. the fluctuation term does not contribute
to the limit if H ą 1{2 – in the same way as it does not contribute for drift terms. Our
result thus illustrates the differences in the averaging principle between the standard and
fractional Brownian motion cases. Note that, to the best of our knowledge, the validity and
expression of the averaging principle if the Hurst index satisfies H ă 1{2 is not known. The
approach introduced in this article may be suitable to investigate this challenging question
in future works.
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