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Abstract: Differentiation is the process whereby a cell acquires a specific phenotype, by dif-
ferential gene expression as a function of time. This is thought to result from the dynamical
functioning of an underlying Gene Regulatory Network (GRN). The precise path from the
stochastic GRN behavior to the resulting cell state is still an open question. In this work we
propose to reduce a stochastic model of gene expression, where a cell is represented by a vector
in a continuous space of gene expression, to a discrete coarse-grained model on a limited number
of cell types. We develop analytical results and numerical tools to perform this reduction for
a specific model characterizing the evolution of a cell by a system of piecewise deterministic
Markov processes (PDMP). Solving a spectral problem, we find the explicit variational form
of the rate function associated to a Large deviations principle, for any number of genes. The
resulting Lagrangian dynamics allows us to define a deterministic limit, the basins of attraction
of which can be identified to cellular types. In this context the quasipotential, describing the
transitions between these basins in the weak noise limit, can be defined as the unique solution
of an Hamilton-Jacobi equation under a particular constraint. We develop a numerical method
for approximating the coarse-grained model parameters, and show its accuracy for a symmetric
toggle-switch network. We deduce from the reduced model an analytical approximation of the
stationary distribution of the PDMP system, which appears as a beta mixture. Altogether
those results establish a rigorous frame for connecting GRN behavior to the resulting cellular
behavior, including the calculation of the probability of jumps between cell types.

Keywords: Single cell, Gene Regulation Network, Energetic Landscape, Piecewise Determin-
istic Markov Processes, Large deviation, Metastability
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Introduction

Differentiation is the process whereby a cell acquires a specific phenotype, by differential gene
expression as a function of time. Measuring how gene expression changes as differentiation pro-
ceeds is therefore of essence to understand this process. Advances in measurement technologies
now allow to obtain gene expression levels at the single cell level. It offers a much more accurate
view than population-based measurements, that has been obscured by mean population-based
averaging [1], [2]. It has among other established that there is a high cell-to-cell variability
in gene expression, and that this variability has to be taken into account when examining a
differentiation process at the single-cell level [3], [4], [5], [6], [7], [8], [9], [10],[11].
A popular vision of the cellular evolution during differentiation, introduced by Waddington in
[12], is to compare cells to marbles following probabilistic trajectories, as they roll through a
developmental landscape of ridges and valleys. These trajectories are represented in the gene
expression space: a cell can be described by a vector, each coordinate of which represents the
expression of a gene [13], [14]. Thus, the state of a cell is characterized by its position in the
gene expression space, i.e its specific level for all of its expressed genes. This landscape is often
regarded to be shaped by the underlying gene regulatory network (GRN), the behavior of which
can be influenced by many factors, such as proliferation or cell-to-cell communication.
A cell has theoretically as many states as the combination of proteins quantity possibly asso-
ciated to each gene, which is potentially huge [15]. But metastability seems inherent to cell
differentiation processes, as evidenced by limited number of existing cellular phenotypes [16],
[17], providing a rationale for dimension reduction approaches [18]. Indeed, since [19] and [20],
many authors have identified cell types with the basins of attraction of a dynamical system
modeling the differentiation process, although the very concept of ”cell type” has to be inter-
rogated in the era of single-cell omics [21].
Adapting this identification for characterizing metastability in the case of stochastic models of
gene expression has been studied mostly in the context of stochastic diffusion [22], [23], [24], but
also for stochastic hybrid systems [25]. In the weak noise limit, a natural development of this
analysis consists in describing the transitions between different macrostates within the Large
deviations framework [26], [27].
We are going to apply this strategy for a piecewise-deterministic Markov process (PDMP)
describing GRN dynamics within a single cell, introduced in [28], which corresponds accurately
to the non-Gaussian distribution of single–cell gene expression data. The main contribution
of this article is to derive the explicit variational form of the rate function associated to a
Large deviations principle (LDP) for this model. We replace this result in the context of
studying metastability, and discuss the conditions of existence and uniqueness of a quasipotential
able to describe transitions between basins. For any network, we provide a numerical method
for computing these transition times. We also propose a non-Gaussian mixture model for
approximating proteins distribution.

1 Materials and methods

1.1 GRN model and fast transcription reduction

We recall briefly the PDMP model, which is described in details in [28], based on a hybrid version
of the well-established two-state model of gene expression [29], [30] including both mRNA and
protein production [31] and illustrated in Figure 1.
A gene is described by the state of a promoter, which can be {on, off }. If the promoter is on,
mRNAs will be transcripted with a rate s0 and degraded with a rate d0. If it is off , only mRNA
degradation occurs. Translation of mRNAs into proteins happens regardless of the promoter
state at a rate s1, and protein degradation at a rate d1. Neglecting the molecular noise of
proteins and mRNAs, we obtain the hybrid model:
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Figure 1: The two-states model of gene expression.
Ref: [30], [28]


E(t) : 0

kon−−→ 1, 1
koff−−→ 0,

M ′(t) = s0E(t)− d0M(t),

P ′(t) = s1M(t)− d1P (t).

where (E(t),M(t), P (t)) denote respectively the promoter, mRNA and protein concentration
at time t.
The key idea is to put this two-states model in a network. Denoting n the number of genes, the
vector (E,M,P ) describing the process is now of dimension 3n. The jump rate of each gene i
is characterized by two specific functions kon,i and koff ,i.
To take into account the interactions between genes, we consider that for all i = 1, · · · , n, kon,i

is a function of the full vector P lower bounded by positive constant. The function is chosen
such that if gene i activates gene j, then ∂Pikon,j ≥ 0. For the sake of simplicity, we consider
that koff ,i does not depend on the protein level. Considering the bursting nature of mRNA, we
assume koff ,i � kon,i.
Two modifications are performed in [28] to this mechanistic model. First, the parameters s0

and s1 can be removed to obtain a dimensionless model, from which physical trajectories can
be retrieved with a simple rescaling.
Second, a scaling analysis leads to simplify the model. Indeed, degradation rates plays a crucial
role in the dynamics of the system. The ratio

d0,i
d1,i

controls the buffering of promoter noise

by mRNAs and, since koff ,i � kon,i, the ratio
kon,i

d0,i
controls the buffering of mRNA noise by

proteins. It is often considered that promoter switches and mRNA bursts are fast in regard to
protein dynamics, i.e

d0,i
d1,i
� 1 with

kon,i

d0,i
fixed. The correlation between mRNAs and proteins

produced by the gene is then very small, and the model can be reduced by removing mRNA
and making proteins directly depend on the promoters. The value of the ratio

d0,i
d1,i

is evaluated

around 5 [32].
Considering the mean value of the function kon,i, denoted ki, which corresponds to its value
when the gene i does no interact with the GRN, we can also take the protein timescale as a refer-
ence by fixing d1,i, and rescale the interaction functions with the coefficient ε =

d1,i
ki

. Assuming

that ki
d0,i

is greater than 1, ε is smaller than 1/5. We then replace (kon,i, koff ,i)← (
k̃on,i

ε ,
k̃off ,i

ε ).

For the sake of simplicity, we will write from now, kon,i and koff ,i instead of k̃on,i and k̃off ,i.

We obtain a reduced dimensionless system for any network of n genes:

∀i ∈ {1, · · · , n} :

Ei(t) : 0

kon,i(X(t))

ε−−−−−−→ 1, 1

koff ,i
ε−−−→ 0,

X ′i(t) = di(Ei(t)−Xi(t)).
(1)

Here, X describes the protein vector in the renormalized gene expression space Ω := (0, 1)n and
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E describes the promoter state, in Se := {0, 1}n, where we identify the state off with 0, and
the state on with 1.
As card(SE) = 2n, we can write the joint probability density u(t, e, x) of (Et, Xt) as a 2n-
dimensional vector u(t, x) = ue(t, x)e∈SE ∈ R2n . The master equation on u can be written:

∂u

∂t
(t, x) +

n∑
i=1

∂

∂xi
(Fi(x)u(t, x)) =

1

ε

n∑
i=1

Ki(x)u(t, x). (2)

For all i = 1, · · · , n, for all x ∈ Ω, Fi(x) and Ki(x) are matrices of size 2n. Each Fi is diagonal,
and the term on a line associated to a promoter state e corresponds to the drift of gene i:
di(ei − xi). Ki is not diagonal: each state e is coupled with every state e’ such that only the
coordinate ei changes in e, from 1 to 0 or conversely. Each of these matrices can be expressed as
a tensorial product of (n− 1) two-dimensional identity matrices with a two-dimensional matrix
corresponding to the operator associated to an isolated gene.

• Fi(x) = I2 ⊗ · · · ⊗ F (i)(x)︸ ︷︷ ︸
i-th position

⊗ · · · ⊗ I2 • Ki(x) = I2 ⊗ · · · ⊗ K(i)(x)︸ ︷︷ ︸
i-th position

⊗ · · · ⊗ I2,

• F (i)(x) =

(
−dixi 0

0 di(1− xi)

)
• K(i)(x) =

(
−kon,i(x) koff ,i(x)
kon,i(x) −koff ,i(x)

)
.

We detail in Appendix A the two-dimensional case for a better understanding of this tensorial
expression.

1.2 Deterministic approximation in the weak noise limit

The previous model describes the promoter state of every gene i at each time as a Bernoulli
random variable. We use the biological fact that promoter switches are frequent in regard to
protein dynamic, i.e ε < 1 with the previous notations. When ε � 1, we can approximate the
conditional distribution of the promoters knowing proteins, ρ, by its quasistationary approxi-
mation ρ:

∀i = 1, · · · , n, ∀x ∈ Ω : ρi(x) ' ρi(x) =
kon,i(x)

koff ,i + kon,i(x)
(3)

which is derived from the stationary distribution of the Markov chain on the promoters states

for a given value of the protein vector X = x, defined by the matrix
n∑
i=1

Ki(x) (see [33], [34]).

Thus, the PDMP model (1) can be coarsely approximated by a system of ordinary differential
equations:

∀i = 1, · · · , n : ẋi(t) = di

(
kon,i(x(t))

koff ,i + kon,i(x(t))
− xi(t)

)
. (4)

Intuitively, these trajectories correspond to the mean behaviour of a cell in the weak noise limit,
i.e when promoters jump much faster than proteins concentration changes. We will show in
Section 2.4 that for any T < ∞, a random path (Xε(t))0≤t≤T converges in probability to a
trajectory (x(t))0≤t≤T solution of the system (4) when ε→ 0. The diffusion limit, which keeps
a residual noise scaled by

√
ε, can also be rigorously derived from the PDMP system [35].

Even if this strongly depends on the interaction functions (kon,i)i=1,··· ,n and model parameters,
we assume that any limit set of a trajectory solution of the system (4) as t → +∞ is reduced
to a single point, described by one of the solutions of:

∀i = 1, · · · , n :
kon,i(x)

koff,i + kon,i(x)
− xi = 0. (5)
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Figure 2: Comparison between the average on a large number of simulated trajectories (shown
on the left) with ε = 1/7 and the trajectories generated by the deterministic system (shown on
the right) for a single pathway network: gene 1 −→ gene 2 −→ gene 3.

Alternatively speaking, we rule out the existence of attractive limit cycles or more complicated
orbits. The gene expression space Ω can be then decomposed in many basins of attraction,
associated to the attractors of the system (5).

Without noise, the fate of a cell trajectory is fully characterized by its initial state x0. Gener-
ically, it converges to the attractor of the basin of attraction it belongs to, which is a single
point by assumption.
Noise can modify the deterministic trajectories in at least two ways. In short time, a stochastic
trajectory can deviate significantly from the deterministic one, which is expected for biologically
relevant parameters. In the case of a single, global, attractor, the deterministic system allows
to retrieve the global dynamics of the process, i.e the equilibrium and the order of convergence
between the different genes (see Figure 2).
In long time, stochastic dynamics can even push the trajectory out of its basin of attraction to
another one, changing radically the fate of the cell. These transitions cannot be catched by the

deterministic limit, and happen on a time scale which is expected to be of the order of e
C
ε (owing

to a Large deviations principle studied below), where C is an unknown constant depending on
the basins. We illustrate this situation for a toggle-switch network, which generates complex
behaviours in two dimensions (see Figure 3a). An example of random path, the stochastic
evolution of promoters and proteins along time, is represented in Figure 3b. All the details on
the interaction functions and the parameters used for this network can be found respectively in
the Appendices B and C.

1.3 Metastability

For a small ε, the passage of a single cell from one basin of attraction to another is a rare event:
the process will spend in each basin a time long enough to equilibrate inside.
Adopting the paradigm of metastability referred in the introduction, we identify each cell type
to a basin of attraction associated to a stable equilibrium of the deterministic system (4). In
this point of view, a cell type corresponds to a metastable sub-region of the gene expression
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(a)

(b)

Figure 3: 3a : Phase portrait of the deterministic approximation for a symmetric toggle-switch
with strong inhibition: two genes which activate themselves and inhibit each other.
3b : Example of a stochastic trajectory generated by the toggle-switch, for ε = 1/8.
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space. It also corresponds to the notion of macrostate used in the theory of Markov State
Models which has been recently applied to the study of a discrete cell differentiation model in
[36]. Provided we can describe accurately the rates of transition between the basins on the long
run, the process can then be coarsely reduced to a new discrete process on the cell types.

More precisely, let m be the number of basins of attraction of the system (4). We denote Z
the set of these m basins, that we order arbitrarily: Z = {Z1, · · · , Zm}. The stable equilibrium
points of the system (5), called attractors are denoted by (Xeq,Zi)Zi∈Z . Each attractor is
associated to a specific basin of attraction. The closure of these m basins, (Zi)i∈{1,··· ,m}, covers
the gene expression space Ω. For characterizing explicitly metastability, we are going to build a
discrete process (Ẑεl )l∈N, with values in Z. From a random path Xε

t of the PDMP system such

that Xε
0 ∈ Z, we define the discrete process Ẑεl , which describes the cell types, as follows:

∀l ∈ N : Ẑεl =
m∑
i=1

Zi1{Xε
τl
∈Zi},

where (τl)l∈N is a sequence of stopping times defined by:

τ ε0 = 0,

∀l ∈ N∗ : τ εl = inf{t ≥ τ εl−1 | Xε
t ∈ Z \ Ẑεl−1},

As we will see in Section 2.4 with more details, for every basin Zi such that Ẑl = Zi, whatever is
the point on the boundary of Zi which has been first attained, Xε

t reaches the attractor Xeq,Zi

of Zi before leaving the basin, with probability converging to 1 as ε → 0. Thus, for any basin
Zj , the probability P(Ẑl+1 = Zj) is asymptotically entirely characterized by the value of Ẑl,
as it is asymptotically independent of the trajectory converging to Xeq,Zi and, in particular, of

the value of Xε
τl

. In other words, (Ẑl) converges to a Markov chain when ε → 0. For small ε,
it is natural to approximate the distribution of the exit time from a basin by an exponential
distribution. The in silico distribution represented in Figure 4 illustrates this assumption, even
if the exponential distribution seems to overestimate the smallest values.

To completely characterize metastability, it remains to compute the rates of these exponential
transition laws {aεij}i,j , defined ∀Zi, Zj ∈ Z2, i 6= j, by:

aεij =
1

T
ε
Zi,Zj

,

where T
ε
Zi,Zj = E(τ ε1 | Ẑε1 = Zj , Ẑ

ε
0 = Zi) is the Mean First Passage Time (MFPT) of exit

from Zi to Zj . These transition rates characterize a time-continuous Markov process Zεt , with
discrete state space Z. It represents accurately, when ε is small enough, the main dynamics
of the system. This reduced model is then fully described by m2 transition rates: when the
number of genes n is large, it is significantly smaller than the n2 parameters characterizing the
GRN model (see Appendix B).

1.4 MFPTs’ numerical approximation

The collection of MFPTs described previously are conditional expectations, conditioned on rare
events: when ε� 1 or when the number of genes is large, they would be impossible to compute
with a crude Monte-Carlo method.
In this Section, we justify that a numerical method based on a splitting algorithm allows to
compute the MFPTs between any couple of basins (Zi,Zj), j 6= i.
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Figure 4: Comparison between the distribution of the exit time from a basin, obtained with
a Monte-Carlo method, and the exponential law with appropriate expected value, for ε = 1/8.
We represent the two densities in normal scale (on the left-hand side) and in logarithmic scale
(on the right-hand side) to observe the overestimation of smallest values.

1.4.1 General setting

Let consider R > 0, and r < R, two small parameters characterizing two small neighborhoods
of the attractor of Zi: we denote γZi the r-neighborhood of Xeq,Zi , and ΓZi its R-neighborhood.
Splitting algorithms can provide an unbiased estimator of the probability, for a random path
Xε
t of the PDMP system starting in x ∈ Zi, of reaching a basin Zj before entering in γZi :

pεij(x) = Pεx
(
τ εZj < τ ε

γZi∪{Z\{Zi∪Zj}}

)
, (6)

where x ∈ Zi and τ εA = inf{t ≥ 0 | Xε
0 = x,Xε

t ∈ A}, ∀A ⊂ Ω.

To obtain an approximation of T
ε
Zi,Zj from the probability (6), we follow a method of [37] which

consists in cutting a transition path into two pieces: a piece going from Xeq,Zi to ∂ΓZi , and
another reaching Zj from ∂ΓZi .
Consider the random path Xε

t generated by the PDMP, with initial condition Xε
0 ∈ Zi. We

define the stopping times (µε1, · · · , µεl ), (σε1, · · · , σεl ) defined by: µε0 = 0, ∀l ∈ N,
σεl = inf{t ≥ µεl | Xε

t ∈ {γZi ∪ {Z \ {Zi ∪ Zj}}} ∪ ∂Zj} and µεl+1 = inf{t ≥ σεl | Xε
t ∈ Zi \ ΓZi}

(see Figure 5).
We define the chain Y ε

l = Xε
σl

. If Y ε
l ∈ ∂Zj , we set ∀k > l : σεk = µεk = ∞ and the chain Yl

stops.

1.4.2 Method for one gene

Consider the case of one gene: the boundary set ∂ΓZi is reduced to a single point x0. Thus,
in such one-dimensional gene expression space, a random path crosses x0 to both exit ΓZi and
come back to γZi if it does not leave the basin before: the Markov property of the PDMP
process then justifies that the quantities E(µεl −σεl−1) and E(σεl −µεl | Y ε

l /∈ ∂Zj) do not depend
on l.
As explained in [37], the random variable W ε

ij = inf{l | Y ε
0 = x0, Y

ε
l ∈ ∂Zj} follows then a
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Figure 5: Illustration for a random path Xt of the stopping times describing the entrance in
a r-neighborhood γ (σ) and the exit from a R-neighborhood Γ (µ) of an attractor Xeq.

geometric distribution, with expected value (pεij(x0))−1.

Let denote T
ε
Zi,Zi = E(σεl+1 − σεl | ∀j, Y ε

l /∈ ∂Zj). The MFPT T
ε
Zi,Zj is equal to the mean

number of attempts of exit from Zi without reaching γZi , multiplied by the mean time of the
trajectories which do not reach ∂Zj , added to the mean time to reach γZi for the first time from
any point of Zi, and to the mean time to reach ∂Zj from the first time from any point of ∂ΓZi .
These two last quantities are negligible with respect to the first one when the event of interest
is rare enough. Thus, for one gene and when ε� 1, the MFPT between the two basins can be
approximated by the following expression:

T
ε
Zi,Zj '

T
ε
Zi,Zi

pεij(x0)
. (7)

1.4.3 Generalization for more than one gene

The difficulty for generalizing this reasoning in more than one dimension is to keep the Marko-
vian properties which had been used to cut the trajectories into pieces.
Heuristically, the same argument which led us to approximate the PDMP system by a Markov
jump process can be used to justify the asymptotic independence on l of the quantity E(µεl −
σεl−1): for ε� 1, any trajectory starting from ∂ΓZi will rapidly loose the memory of its starting
point after a mixing time within ΓZi .
But it is more complicated to conclude on the independence on l of the quantity E(σεl − µεl |
Y ε
l /∈ ∂Zj), which strongly depends on the position of Y ε

l when the gene expression space is
multidimensional.
Following the proposition 1. of [37], we introduce two hypersurfaces γmin,Zi = {x ∈ Zi, pεij(x) =
c1} and Γmin,Zi = {x ∈ Zi, p

ε
ij(x) = c2}, where c1 < c2 are two constants, and we replace

γZi and ΓZi by γmin,Zi and Γmin,Zi in the definitions of the stopping times µεl and σεl . Intu-
itively, we substitute to the squared euclidean distance, used for characterizing the neighbor-
hood γZi and ΓZi , a new function based on the probability of reaching the (unknown) boundary:
∀x, y ∈ Zi, || x − y ||2←| pεij(x) − pεij(y) |. The function pεij is generally called commitor, and
the hypersurfaces γmin,Zi and Γmin,Zi isocommitor surfaces.
Replacing the neighborhood of each attractor by these isocommitor surfaces, the problem is
reduced to the one-dimensional case ([37]), and E(σεl − µεl | Y ε

l /∈ ∂Zj) is independent of l.
As above, we define W ε

ij = inf{l | Y ε
0 ∈ ∂Γmin,Zi , Y

ε
l ∈ ∂Zj} and derive the expression (7).

1.4.4 Beta approximation and isocommitor surface approximation

These isocommitor surfaces are unknown, but they can be approximated from the potential
of the PDMP system within each basin, defined in the equilibrium case by the well-known
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Boltzman law: V = − ln(û), û being the marginal on proteins of the stationary distribution of
the process. For reasons that will be precisely the subject of next sections (studied within the
context of Large deviationss), the probability pεij(x) is generally linked in the weak noise limit
to the function V by the relation:

∀x ∈ Zi : pεij(x) ∼
ε→0

Cije
V (x)/ε,

where Cij is a constant specific to each couple of basins (Zi, Zj).

To build such approximation, we remark that when ε is small, a cell within a basin Zj ∈ Z
is supposed to be most of the time close to its attractor: a rough approximation could lead
to identify the activation rate of a promoter ei in each basin by the dominant rate within the
basin, corresponding to the value of kon,i on the attractor. For any gene i = 1, · · · , n and any
basin Zj ∈ Z, we can then approximate:

∀x ∈ Zj : kon,i(x) ≈ kon,i(Xeq,Zj ).

Under this assumption, the stationary distribution of the process is close to the stationary
distribution of a simple two states model with constant activation function, which is a product
of Beta distributions [28]. We then obtain an approximation of the marginal on proteins of the
stationary distribution within each basin Zj :

pZj ≈
n∏
i=1

Beta

(
kon,i(Xeq,Zj )

εdi
,
koff ,i

εdi

)
,

By construction, this approximation is going to be better in a small neighborhood of the at-
tractor Xeq,Zj . Thus, this expression provides an approximation of the potential V when x is
close enough from an attractor Xeq,Zj :

V (x) ≈ − ln
(
pZj (x)

)
(8)

In every basin Zi, and for all x ∈ Zi close to the attractor, the hypersurfaces where pεij is constant
will be then well approximated by the hypersurfaces where the explicitly known function ξZj =

− ln

(
n∏
i=1

Beta

(
kon,i(Xeq,Zj )

dij ,
koff ,i

di

))
is constant.

For each attractor Xeq,Zi , we can then approximate the two isocommitor surfaces described
previously: {

γmin,Zi ' {x ∈ Zi | ξZi(x) = c′1}
Γmin,Zi ' {x ∈ Zi | ξZi(x) = c′2},

(9)

where c′1 and c′2 are two constants such that ξ(Xeq,Zi) < c′1 < c′2.

1.4.5 Algorithm and limits

In the method described above, we see that the main ingredient for computing MFPTs is to
compute the quantities (6). A powerful method for computing rare events numerically is given
by splitting algorithms. We adapt an Adaptative Splitting Algorithm (AMS) described in [38].
Details concerning the AMS algorithm in the special case of the PDMP system can be found in
Appendix D. In Section 2.5, we will verify that the probabilities given by the AMS algorithm
are consistent with the ones obtained by a crude Monte-Carlo method for the toggle-switch
network.
However, this quantity becomes hard to compute when both the number of genes of interest
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increases and ε decreases. Indeed, the AMS algorithm allows to compute probabilities much
smaller than the ones we expect for biologically relevant parameters (ε > 0.1), but the number
of simulations needed grows at least with a polynomial factor in ε. If the number of genes
considered is large, these simulations can make the algorithm impossible to run in a reasonable
time. We are now going to develop an analytical approach for approximating this probability
by the one of the optimal trajectory of exit from each basin, computed within the context of
Large deviations.

1.5 Analytical approximation

1.5.1 Large deviations setting

In this section, we derive a variational principle for approximating the transition probability
(6) introduced in Section 1.4.
A powerful methodology for rigorously deriving a variational principle for optimal paths is Large
deviations theory. It has been developed extensively within the context of Stochastic Differential
Equations (SDE) [39][40].
For the sake of simplicity, we present here only an heuristic version. There exists a Large
deviations principle (LDP) for a stochastic process with value in Ω if for all x0 ∈ Ω and a
random path Xε

t over [0, T ] starting at x0, there exists a lower semi-continuous function defined
on the set of continuous trajectories from [0, T ] to Ω, JT : C0T (Rn) → [0,∞], such that for all
set of trajectories A ⊂ C0T (Rn):

−ε ln
(
Pεx0(Xε

t ∈ A)
)
∼
ε→0

min
φ∈A

JT (φ). (10)

The quantity JT (φ) is called the cost of the trajectory φ.

The particular application of this theory to stochastic hybrid systems has been developed in
detail in [41] and [42]. We now present consequences of results developed in [43].

Definition 1. We call Hamiltonian the function H : Ω × Rn 7→ R defined for any (x, p) ∈
Ω×Rn, as the only eigenvalue associated to a positive right-eigenvector ζ(x, p), unique up to a
normalization, of the following spectral problem:

M(x, p)ζ(x, p) = H(x, p)ζ(x, p), (11)

where M(x, p) ∈M2n,2n(R) is defined by:

M(x, p) =
n∑
i=1

(Ki(x) + piFi(x)) .

We remark that the matrix M(x, p) has off-diagonal nonnegative coefficients. Moreover, the
positivity of the kon,i makes M irreducible (the matrix allows transition between any couple
(e, e′) ∈ S2

E after at most n steps). Thereby, the Perron Frobenius Theorem may be applied
leading to existence and uniqueness of H(x, p).

The following Theorem is a direct consequence of theoretical results of [43] applied to the PDMP
system (1).

Theorem 1. Let denote Ωv(x) =
n⊗
i=1

(−dixi, di(1− xi)).

∀x ∈ Ω, ∀v ∈ Ωv(x), the Fenchel-Legendre transform of the Hamiltonian:

L(x, v) = sup
p∈Rn

(〈p, v〉 −H(x, p))
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is well defined.
Moreover, there exists a LDP for the PDMP system, and for any trajectory φt in C0T (Rn), piece-
wise differentiable and verifying, for all t ∈ [0, T ), φ̇(t) ∈ Ωv(φ(t)), the cost can be interpreted
as a classical action, expressed as the integral of the function L called Lagrangian:

JT (φ) =

∫ T

0
L(φ(t), φ̇(t))dt. (12)

1.5.2 WKB approximation and Hamilton-Jacobi equation

The Hamiltonian defined in (11) also appears in the WKB (Wentzell, Kramer, Brillouin) ap-
proximation of the master equation [34], [43]. This approximation consists in injecting in (2) a
solution of the form:

∀e ∈ SE , ue(x, t) = ζe(x, t)e
−V (x,t)

ε , (13)

the underlying assumption being that the density u is non-zero on all Ω. Making a Taylor
expansion in ε of the functions V and ζe, for any e, and keeping only the leading order terms
in ε, V 0 and ζ0 = (ζ0,e)e∈SE in the resulting master equation, we obtain:

−∂tV 0(x, t)ζ0(x, t) =

n∑
i=1

(
Ki(x) + ∂xiV 0Fi(x)

)
ζ0(x, t).

Identifying the vectors ζ0 and ∇V 0 with ζ and p in (11), we obtain that V 0 is solution of an
Hamilton-Jacobi equation:

∀x ∈ Ω : H(x,∇V 0(x, t)) + ∂tV 0(x, t) = 0. (14)

We remark that (13) is reminiscent of the Gibbs distribution associated with a potential. More
details about the interpretation of this equation and its link with the quasistationary approxi-
mation can be found in [34].

Suppose that a function V of class C1(Ω,R) is solution of the previous equation (14). For any
piecewise differentiable trajectory φt ∈ C0T (Ω) such that φ̇(t) ∈ Ωv(φ(t)) for all t ∈ [0, T ), one
has, by definition of the Fenchel-Legendre transform:∫ T

0
L(φ(t), φ̇(t))dt =

∫ T

0
sup
p

(
n∑
i=1

piφ̇i(t)−H(φ(t), p)

)
dt

≥
∫ T

0

n∑
i=1

∂xiV (φ(t), t)φ̇i(t)−H(φ(t),∇V (φ(t), t)) (15)

=

∫ T

0

n∑
i=1

∂xiV (φ(t), t)φ̇i(t) + ∂tV (φ(t), t)

= V (φ(T ), T )− V (φ(0), 0).

The minimum is exactly reached at any time for trajectories φ̂t solutions for all t ∈ [0, T ) of the
system defined for all i = 1, · · · , n by:{

pi(t) = ∂xiV (φ̂(t), t)
˙̂
φi(t) = ∂piH(φ̂(t), p(t)).

(16)

Thus, a regular solution V of the Hamilton-Jacobi equation (14) defines trajectories minimizing
the cost between any couple of its points. If trajectories solutions of the system (16) realize
events described by the probabilities (6), these probabilities can be approximated by the costs
of these trajectories, as they realize the minimum in the expression (10).
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2 Results

2.1 Expressions of the Hamiltonian and the Lagrangian

In this section, we identify the Perron eigenvalue H(x, p) of the spectral problem (11), and prove
that its Fenchel-Legendre transform L, with respect to the variable p is well defined on Rn. We
then obtain the explicit form of the Hamiltonian and the Lagrangian associated to the PDMP
system.

Theorem 2. For all n in N∗, the spectral problem (11) has a unique eigenvalue associated to
a positive eigenvector, defined for every (x, p) by the function:

H(x, p) =
1

2

n∑
i=1

(
pidi(1− 2xi)− (kon,i(x) + koff ,i)+√

(pidi + kon,i(x)− koff ,i)2 + 4kon,i(x)koff ,i

)
. (17)

Moreover, the function H is convex with respect to p.

Theorem 3. Let denote Ωv(x) =
n⊗
i=1

[−dixi, di(1− xi)].

The Lagrangian of the PDMP system is defined for every (x, v) ∈ Ω× Rn by the function:
L(x, v) =

n∑
i=1

√koff ,i
vi + dixi

di
−

√
kon,i(x)

di(1− xi)− vi
di

2

if v ∈ Ωv(x)

L(x, v) =∞ if v /∈ Ωv(x)

(18)

In addition, for all x ∈ Ω, L(x, v) = 0 if and only if for all i = 1, · · · , n:

vi = di

(
kon,i(x)

kon,i(x) + koff ,i
− xi

)
.

Proof of Theorem 2. We begin by the analysis of the case of one gene to understand the method.
In this case, the desired eigenvector is only 2-dimensional (card(SE) = 2), and can be rewritten
for all x ∈ Ω as ζ1(x) = αp(x) and ζ0(x) = 1− αp(x) with αp(x) ∈ (0, 1). The problem can be
rewritten as: {

−kon(x)(1− αp(x)) + koff αp(x) = (H(x, p) + pdx)(1− αp(x))

kon(x)(1− αp(x))− koff αp(x) = (H(x, p)− pd(1− x))αp(x).

First we remark that it is necessary to have ∀x, p ∈ Ω×Rn, αp(x) ∈ (0, 1) because kon and koff

are positive.
By summing the two equations, we obtain:

H(x, p) = pd(αp(x)− x). (19)

We can then reduce the problem to one equation:

Tx(αp) = koff αp(x)− kon(x)(1− αp(x)) + dp(αp(x)− 1)αp(x) = 0.

For any x, this equation has two solutions in R. As Tx(0) = −kon(x) and Tx(1) = koff , Tx has
one and only one root in (0, 1). For all x, p ∈ Ω× R, this solution can be written:
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αp(x) =

1

2

(
1 +

√
(pd+ kon(x)− koff )2 + 4kon(x)koff − (kon(x) + koff )

pd

)
if p 6= 0

αp(x) =
kon(x)

kon(x) + koff
if p = 0

We then obtain:
H(x, p) = 1

2

(
pd(1− 2x)− (kon(x) + koff ) +

√
(pd+ kon(x)− koff )2 + 4kon(x)koff

)
.

The case of n genes is a generalization of this reasoning, which uses the tensorial expression of
the matrices Ki(x) and Fi(x).

We define a vector αp(x) = (αp,1(x), · · · , αp,n(x)) ∈ Rn where for all i = 1, · · · , n, αp,i is defined
as in the one-dimensional case:
αp,i(x) =

1

2

(
1 +

√
(pidi + kon,i(x)− koff ,i)2 + 4kon,i(x)koff ,i − (kon,i(x) + koff ,i)

pidi

)
if pi 6= 0

αp,i(x) =
kon,i(x)

kon,i(x) + koff ,i
if pi = 0

(20)
We now define the vector:

ψ(x, p) =

n⊗
i=1

(
1− αp,i(x)
αp,i(x)

)
.

The vector ψ is always non-negative, since for all x ∈ Ω, αp,i(x) ∈ (0, 1) for all i = 1, . . . , n.
Setting

Hi(x, pi) =
1

2
(pidi(1− 2xi)− (kon,i(x) + koff ,i) +

√
(pidi + kon,i(x)− koff ,i)2 + 4kon,i(x)koff ,i),

we clearly have for all i, from the one-dimensional case:(
K(i)(x) + piF

(i)(x)
)(1− αp,i(x)

αp,i(x)

)
= Hi(x, pi)

(
1− αp,i(x)
αp,i(x)

)
We can take a tensorial product and sum on i, to obtain:

n∑
i=1

(
1− αp,1(x)
αp,1(x)

)
⊗ · · · ⊗

(
K(i)(x) + piF

(i)(x)
)(1− αp,i(x)

αp,i(x)

)
︸ ︷︷ ︸

i-th position

⊗ · · ·

⊗
(

1− αp,n(x)
αp,n(x)

)
=

(
n∑
i=1

Hi(x, pi)

)
n⊗
i=1

(
1− αp,i(x)
αp,i(x)

)
which is exactly the tensorial expression of the spectral problem (11) for the vector ζ = ψ
defined above.

We retrieve the form (17) for the Hamiltonian: H(x, p) =
n∑
i=1

Hi(x, pi).

To see the convexity of H with respect to p, we verify that, for all i = 1, · · · , n:

∂2

∂p2
i

H(x, p) =
2d2

i kon,i(x)koff ,i

(
√

(pidi + kon,i(x)− koff ,i)2 + 4kon,i(x)koff ,i)
3
2

> 0.
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Proof of Theorem 3. We now identify the Fenchel-Legendre transformation of the Hamiltonian
defined in Theorem 2.

For all x ∈ Ω and for all vi ∈ R, the function g : pi 7→ pivi−Hi(x, pi) is concave. An asymptotic
expansion gives:

g(pi) = pi

(
vi − di

(
1

2
(1 + sgn(pi))− xi

))
+

1

2
(kon,i(x) + koff ,i + sgn(pi) (kon,i(x)− koff ,i))

+O

(
1

pi

)
.

If vi ∈ (−dixi, di(1 − xi)), g goes to −∞ when pi → ±∞: thus g reaches an unique maximum
in R. At the limit vi = −dixi or di(1 − xi), g goes to −∞ at one side and is bounded on the
other side: then g is upper bounded and the sup is well defined. If vi /∈ [−dixi, di(1− xi)], g is
clearly not bounded.
As a consequence, Li(x, vi) = sup

pi

(
pivi − Hi(x, pi)

)
is well defined and finite in the domain

Ω× [−dixi, di(1− xi)].
The Fenchel-Legendre transformation is then well defined for all x ∈ Ω and v ∈ Ωv(x) by:

L(x, v) =
∑
i

Li(x, vi) =
n∑
i=1

sup
pi∈R

(
pivi −Hi(x, pi)

)
,

and the sup is reached inside Rn for every v ∈ Ωv(x). To find an expression for L(x, v), we have
to find for all i = 1, · · · , n the unique solution pi = pv,i(x) of the invertible equation: vi = ∂Hi

∂pi
.

vi =
∂Hi

∂pi
(x, pi) =

1

2

(
di(1− 2xi) +

di(dipi + kon,i(x)− koff ,i)√
(dipi + kon,i(x)− koff ,i)2 + 4kon,i(x)koff ,i

)

⇐⇒ui =
dizi√
z2
i + ci

,

where ui = 2(vi + dixi)− di, ci = 4kon,i(x)koff ,i > 0, zi = dipi + kon,i(x)− koff ,i.
When vi ∈ (−dixi, di(1− xi)), we have ui ∈ (−di, di). Thus, we obtain:

zi = ±
ui
√
ci√

d2
i − u2

i

.

As zi and ui must have the same sign, we can conclude for every vi ∈ (−dixi, di(1− xi)):

pi =
1

di

(
koff ,i − kon,i(x) +

√
koff ,ikon,i(x)

2(vi + dixi)− di√
(vi + dixi)(di(1− xi)− vi)

)
. (21)

Injecting this value of pi = pi in the Fenchel-Legendre transform, we obtain:

Li(x, vi) = pivi −Hi(xi, pi)

=
1

2

√2koff ,i
vi + dixi

di
−

√
2kon,i(x)

di(1− xi)− vi
di

2

.

We finally obtain the expression for any v ∈ Ωv(x):

L(x, v) =

n∑
i=1

√koff ,i
vi + dixi

di
−

√
kon,i(x)

di(1− xi)− vi
di

2

.
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Passing to the limit, we extend this expression for v ∈ Ωv(x). As expected, the Lagrangian
is always non-negative. From the asymptotic expansion presented above, we complete this
expression by the value +∞ outside Ωv(x).
In addition, we immediately see that L(x, v) = 0 if and only if the velocity field v characterizes
the deterministic trajectories, solutions of the system (4).

2.2 Stationary Hamilton-Jacobi equation

We justified in Section 1.5.2 that solutions of the Hamilton-Jacobi equation (14) are central for
finding an analytical approximation of the MFPTs described in Section 1.4. Non-stationary
solutions being generally out of range, we are going to restrict our study to the stationary
Hamilton-Jacobi equation, i.e to study functions V ∈ C1(Ω,R) such that for all x ∈ Ω:

H(x,∇V (x)) = 0. (22)

Recall that, H(x, p) =
n∑
i=1

pidi(αp,i(x) − xi), two classes of solutions are obviously given by

functions V such that for all i = 1, · · · , n, pi = ∂xiV , and for all x ∈ Ω: pi(x) = 0 or
αp,i(x) = xi.
The first class contains every constant function on Ω. From the expression (20), they are
associated to a probability of promoters states defined for all i = 1, · · · , n and for all x ∈ Ω by:

αi(x) =
kon,i(x)

koff ,i+kon,i(x) .

From the expression (20), the second class contains all functions V such that for all x ∈ Ω:

∀i = 1, · · · , n : ∂xiV (x) = −kon,i(x)

dixi
+

koff ,i

di(1− xi)
, (23)

We show in Appendix B that this relation is hold at least for a simple class of networks including
the toggle-switch described in Appendix C.
We will see in the next section that the class of constant solutions defines the deterministic
system (4). A generalization of the second class of solutions (23) defines the optimal trajectories
of exit from the basins of attraction of the deterministic system, and is consistent with the

interpretation of the distribution e−
V (·)
ε as an approximation of the marginal on proteins of the

steady state distribution.

2.3 Optimal trajectories

We denote C1,pw
0T (Ω) the set of piecewise differentiable trajectories in C0T (Ω).

Definition 2. We define the quasipotential as follows: for two sets A,B ⊂ Ω and a set R ⊂
Ω \ (A ∪B),

QR(A,B) = inf
φt,T
{JT (φ) | φt ∈ C1,pw

0T (Ω), φ(0) ∈ A, φ(T ) ∈ B, ∀t ∈ (0, T ) : φ(t) /∈ R}.

We call optimal trajectory between the two subsets A,B ⊂ Ω, in Ω\R, a trajectory φt ∈ C1,pw
0T (Ω)

for which the previous infimum is reached.

For the sake of simplicity, if R = ∅, we write QR(A,B) = Q(A,B).

The following lemma is a direct consequence of the inequality (15), in the case where equality
is reached:

Lemma 1. For a solution V ∈ C1(Ω,R) of (22), any trajectory φt ∈ C1,pw
0T (Ω) solution of the

system (16) is optimal in Ω between each couple of points (φ(t1), φ(t2)) such that T ≥ t2 > t1 ≥
0, and we have:
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Q(φ(t1), φ(t2)) = V (φ(t2))− V (φ(t1)).

We are now going to study some properties of the optimal trajectories associated to two classes
of solutions of the equation (22).

2.3.1 Deterministic limit and forward trajectories

From Lemma 1, every constant solution of (22) is associated to a collection of paths φt, optimal
in Ω. These trajectories are solutions of the deterministic limit system (4) defined for every
t > 0 by:

∀i ∈ {1, · · · , n} : φ̇i(t) = di

(
kon,i(φ(t))

kon,i(φ(t)) + koff ,i
− φi(t)

)
.

Moreover, for every trajectory φt solution of this system, we have for any T > 0:

JT (φt) =

∫ T

0
L(φt, φ̇t)dt = 0. (24)

We call such trajectories the forward trajectories, as they characterize the optimal path of
convergence within every basins. From Theorem 3, these forward trajectories are the only
zero-cost admissible trajectories.

2.3.2 Quasipotential and backward trajectories

We now characterize the optimal trajectories of exit from the basins. For this sake, we are going
to find a sufficient condition for a solution of the equation (22) of class C1(Ω,R) to define the
optimal trajectories associated to the probabilities (6).

Definition 3. We define the following condition on a function V ∈ C1(Ω,R):

(C) The gradient of V vanishes only on isolated points of Ω.

In the first theorem (Theorem 4), we state some properties of solutions V of (22) of class
C1(Ω,R) satisfying condition (C):

Theorem 4. Let V a solution of (22) of class C1(Ω,R).

(i) For any optimal trajectory φt of the system (16), we have the equivalence for any time t:(
∀i ∈ {1, · · · , n}, φi(t) =

kon,i(φ(t))

kon,i(φ(t)) + koff ,i

)
⇐⇒ φ̇(t) = 0.

(ii) The condition (C) is equivalent to the condition:

(C’) the gradient of V vanishes only on the stationary points of the system (4).

(iii) If V satisfies (C), V strictly increases on every trajectory solution of the system (16)
which does not begin at an equilibrium point of the system (4).
Moreover, for any basin of attraction Zi of the system (4) associated to an attractor Xeq,Zi,
we have:

∀x ∈ Zi \Xeq,Zi , V (x) > V (Xeq,Zi).

(iv) For any solution Ṽ solution of (22) in C1(Ω,R) and satisfying the condition (C), there
exists a constant c ∈ R such that: ∀x ∈ Ω, V1(x)− V2(x) = c.
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We remark that any function verifying the relation (23) belongs to the class of solutions of (22)
satisfying the condition (C).
The precise analysis of the existence of a regular solution V verifying (C) for a given network is
beyond the scope of this article. We remark that the points (iii) and (iv) make these solutions
consistent with the interpretation of such function V coming from the WKB approximation,

for which the distribution u(·) = e−
V (·)
ε approximates the stationary distribution of the PDMP

system. The condition (C) appears as a natural extension of the condition stated in Section
1.2, that the equilibrium of the deterministic system are reduced to single points.

If V ∈ C1(Ω,R) is solution of the equation (22) and satisfies (C), we call a trajectory φt ∈
C1,pw

0T (Ω) solution of the system (16) a backward trajectory.
When p = ∇V verifies the relation (23), we can explicitly describe these trajectories, injecting
this expression in the relation v = −∂H

∂p (x, p). For all t ∈ [0, T ):

∀i ∈ {1, · · · , n} : φ̇i(t) = di

(
koff ,iφi(t)

2

kon,i(φ(t))(1− φi(t))2 + koff ,iφi(t)2
− xi

)
. (25)

In the second theorem (Theorem 5), we justify that the backward trajectories are the optimal
trajectories of exit from each basin.

Theorem 5. Let assume that there exists V ∈ C1(Ω,R) solution of (22) and satisfying the
condition (C).
Let consider a couple of basins (Zi, Zj) of the system (4) such that ∂Zi ∩ ∂Zj 6= ∅. We denote
Xeq,Zi the attractor of Zi.
For all y in ∂Zi ∩ ∂Zj and for all r > 0, there exists a couple (x, φ), where ||x −Xeq,Zi ||2 < r
and φ is a backward trajectory, such that φ(0) = x, φ(T ) →

T→∞
y.

Denoting R =
⋃
k 6=j
{∂Zi ∩ ∂Zk}, we have:

QR(Xeq,Zi , ∂Zi ∩ ∂Zj) = min
y∈∂Zi∩∂Zj

V (y)− V (Xeq,Zi).

We denote Xun,ZiZj = arg min{V (y) | y ∈ ∂Zi ∩ ∂Zj , ∇V (y) = 0}. If any forward trajectory
starting in ∂Zi ∩ ∂Zj stays in ∂Zi ∩ ∂Zj and converges to one of the saddle points, then:

∀y ∈ Xun,ZiZj , : QR(Xeq,Zi , ∂Zi ∩ ∂Zj) = V (y)− V (Xeq,Zi).

The proofs of these two theorems use classical tools from Hamiltonian system theory and can
be found in Appendix E.

When a solution V satisfying (C) exists, the saddle points of the deterministic system (4) are
then generally the bottleneck of transitions between basins and the function V characterizes
the energetic barrier between them.
The function Q(Xeq,Zi , ·) depends on the basin Zi, which is a local property: it explains why the
function V is generally called the global quasipotential, and Q(Xeq,Zi , ·) the local quasipotential
of the stochastic process [44].

2.4 Partial conclusion

We have obtained in Theorem 3 a variational expression for the cost function JT of the Large
deviations principle for the PDMP system (1). We have also highlighted the existence and
meaning of two types of optimal trajectories.
Let x ∈ Zi and y ∈ Ω such that Q(x, y) > 0. We denote A the set of trajectories beginning
at x and reaching a (small) neighborhood of Xeq,Zi before y: we see that a forward trajectory
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beginning at x belongs to A. From the expression (10), the cost of the forward trajectories
being equal to 0, we have then:

Pεx(Xε
t ∈ A) ∼

ε→0
1.

This justifies that, for all basin Zi ∈ Z and ∀x ∈ Zi, a random path starting at x reaches any
neighborhood of Xeq,Zi before every point y ∈ Ω such that Q(x, y) > 0, with probability 1 when
ε→ 0.
For any basin Zj , i 6= j, the probability (6), which is the probability of reaching Zj from Γmin,Zi ,
before γmin,Zi , p

ε
ij(x), can be approximated by the expression:

−ε ln
(
pεij(x)

)
∼
ε→0

Q ⋃
k 6=j
{∂Zi∩∂Zk}(Xeq,Zi , ∂Zi ∩ ∂Zj).

When there exists a function V belonging to the second class of obvious solutions of the equation
(22), i.e verifying (23), we can conclude explicitly, injecting the expression of v given by (25) in
the expression (18):

ε ln
(
E(W ε

ij)
)
∼
ε→0

λi,j =

∫ T

0

n∑
i=1

(kon,i(φ(t))(1− φi(t))− koff ,iφi(t))
2

kon,i(φ(t))(1− φi(t))2 + koff ,iφi(t)2
dt, (26)

where W ε
ij is defined in Section 1.4, and φ(t) ∈ C1,pw(Ω) is solution of the system (25) for an

appropriate initial condition close from Xeq,Zi , reaching the minimum of V on the common
boundary ∂Zi ∩ ∂Zj at T > 0. As proved in Theorem 5, if any forward trajectory starting in
∂Zi∩∂Zj stays inside, this minimum is reached on a saddle point of V on ∂Zi∩∂Zj and T ∼ ∞.
The continuity of V ensures that the initial condition, if close enough (and not equal) to Xeq,Zi ,
has no impact on the estimated value of ln(E(W ε

ij)): we need to choose the isocommitor surface

Γmin,Zi , from which we compute the probability of exit, such that sup
x∈Γmin,Zi

{(Xeq,Zi − x)2} is

sufficiently small (see Section 1.4, and Appendix D).
Thus, we can conclude:

T
ε
Zi,Zj ' Cije

λij
ε T

ε
Zi,Zi , (27)

where Cij is an appropriate prefactor which is supposed to not depend on ε. Unfortunately,
if there exists an explicit expression of Cij in the one-dimensional case ([34]), and that an ap-
proximation has been built for multi-dimensional SDE model [45], they seem intractable in our
case. A solution consists in approximating the prefactor by comparison between the probabil-
ities given by the AMS algorithm and the Large deviations approximation (27) for a fixed ε,

using then the linearity of − ln
(
T
ε
Zi,Zj

)
with respect to ε.

To conclude, for every couple of basins (Zi, Zj), i 6= j, one of the most efficient methods for
computing the probability (6) is to use the AMS algorithm. When the number of dimensions
is large, coupled with a ε too small for this algorithm to be efficiently run, we have to use the
LDP approximation (27). The AMS algorithm is therefore necessary for approximating the
prefactors, but can be run for a larger ε. Finally, the quantity T

ε
Zi,Zi can be computed by a

crude Monte-Carlo method.

2.5 Application to the toggle-switch network

In this part, we consider the class of interaction functions defined in Appendix B for a network
of two genes (n = 2). This function comes from a chromatin model developed in [28] and
is consistent with the classical Hill function characterizing promoters switches. Using results
and methods described in the previous sections, we are going to reduce the PDMP system
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(a) (b)

Figure 6: 6a: 100 cells are plotted under the stationary distribution. The forward trajectory
bound each of these cells to its associated attractor. 6b: 5000 cells are classified depending on
their attractor with this procedure. This figure sketches the different basins of attraction, the
ratio of cells between each of them and the distribution of proteins concentration inside.

for parameters characterizing the toggle-switch network described in Appendix C. We compare
the results, i.e the parameters characterizing the discrete Markov chain on the cellular types
approximated with Large deviations theory and the method described in Section 1.4, to MFPTs
given by a crude Monte-Carlo method.

2.5.1 Computation of the attractors, saddle points and optimal trajectories

First, we compute the stable equilibrium points of the PDMP system (1). The problem (5) has
no explicit solution: we present a simple method to compute them.
It consists in sampling a collection of random paths in Ω: the distribution of their final position
after a long time approximates the marginal on proteins of the stationary distribution. We
use these final positions as starting points for simulating the forward trajectories, described
by (4), with an ODE solver: each of these forward trajectories converges to one of the stable
equilibrium points. This method allows to obtain all the stable equilibrium corresponding to
sufficiently deep potential wells (see Figure 6). Possible other potential wells can be omitted
because they correspond to basins where the process has very low probability of going, and
which does not impact significantly the Markov chain of the coarse-grained model.
Second, we need to find the saddle points. In general, the reverse of the forward trajectories,
as the backward trajectories (given by (25) if the condition (23) holds), are very unstable: the
saddle point cannot be obtained with a direct shooting method around the stable equilibrium.
Many methods are available for computing saddle points when the energetic landscape is known
[46]. We develop in our case a simple algorithm which uses the Lagrangian associated to the
trajectories defined by (25). This Lagrangian, defined on the right-hand side of (26), is a non-
negative function which vanishes only at the stationary points of the deterministic limit (4).
If there exists a saddle point connecting two attractors, this function will then vanish at this
point. The algorithm is described in Appendix F. For the toggle-switch network, this method
allows to recover all the saddle points.
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Figure 7: The optimal backward trajectories from a first attractor continued by the forward
trajectories reaching the second attractor, for the pair (Z+−, Z−+). We omit the other pairs of
attractors (Z+−, Z−−) and (Z−−, Z−+), because their optimal trajectories are simply straight
lines.

We prove in Appendix B that for any two-dimensional network associated to such interaction
function, if the network is symmetric, i.e that for any couple of genes (i, j), θij = θji (where θ is
the matrix characterizing the interactions between genes), there exists a function V such that
the relation (23) is verified.
The toggle-switch network being symmetric, such function V exists and is then solution of the
Hamilton-Jacobi equation. Moreover, we observe that any forward trajectory starting in the
common boundary of two basins stays on this boundary: from Theorem 5, the trajectories solu-
tions of the system (25) between the attractors and the saddle points characterize the optimal
cost of exit from every basin.
Using the reverse of the backward trajectories, for which the attractors are necessarily attractive
(see the proof of Theorem 4.(iv)), we can apply successively a shooting method around every
saddle point to plot the backward trajectories.

For any pair of basins (Zi, Zj), we then obtain the optimal trajectories connecting the stable
equilibrium points Xeq,Zi and the saddle points belonging to the common boundary ∂Zi ∩ ∂Zj
(see Figure 7). Their costs are explicitly described by the right-hand side of the expression (26).
From Theorem 5, the optimal trajectories of exit are necessarily the ones minimizing the cost
among all these trajectories. We observe that for the toggle-switch network, there is only one

optimal trajectory between each pair of basins (Zi, Zj), that we denote φ
ZiZj
t .

The Large deviations setting ensures that ∀δ, η > 0, ∃ε > 0, such that ∀ε < ε, a random path
Xε
t reaching Zj from ΓZi before γZi , verifies: supt{| Xε

t − φ
ij
t |} ≤ δ with probability greater

than 1 − η. We could then theoretically find ε such that any trajectory of exit from Zi to Zj

would be indistinguishable from trajectory φ
ZiZj
t . But in practice, the event {τ εZj < τ εγZi

} is too

21

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.283176doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283176
http://creativecommons.org/licenses/by-nc/4.0/


(a) (b)

Figure 8: Comparison between the optimal trajectory of the figure 7 and 30 random paths
conditioned on reaching Xeq,Z+− before going back to γ−+ from a random point of ∂Γ−+, for 8a
: ε = 1/7 and 8b : ε = 1/21. For each figure, one of these random paths is colored, separating
the backward and the forward parts.

rare to be simulated for such ε.
We plot in Figure 8 two sets of random exit paths, simulated for two different ε, illustrating
the fact that the probability of an exit path to be far from the optimal backward trajectory
decreases with ε.

2.5.2 Comparison between predictions and simulations

For each couple of basins (Zi, Zj), the expression (26) provides an approximation of the prob-
ability of the rare event {τ εZj < τ εγZi

}, up to a prefactor, and expression (27) allows to deduce
the associated MFPT.
We plot in Figure 9 the evolution of these two estimations, as ε decreases, comparing respectively
to the probabilities given by the AMS algorithm and the MFPTs computed with a standard
MC method. As in [47], we decide to plot these quantities in logarithmic scale. We observe
that, knowing the prefactor, the Large deviations approximation is accurate even for ε > 0.1,
and that induced MFPTs are close to the ones observed with a crude Monte-Carlo method. We
represent in Figure 11b the variance of the estimator of the MFPTs given by the AMS method.

We also remark that our analysis provides two ways of finding the stationary measure of the
discrete coarse-grained model: on the one hand, computing the stationary distribution µz of
the Markov process (Z l), on the other hand, taking the ratio µb, from many cells under the
long-time proteins distribution obtained from simulations of the PDMP system (1), of the ones
belonging to each basins (see Figure 10).
The computational time needed for approximating the MFPTs with a MC method being very
high for small ε, comparing these two stationary distributions appears as a good alternative
for verifying the accuracy of the transition rates approximations. We plot in Figure 11a the
evolution of the total variation of the difference between these two stationary distributions as ε
decreases. The total variation is small even for realistic values of ε.
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Figure 9: Comparison between probabilities given by the Large Deviation expression and
the AMS algorithm, in logarithmic scale, between the basins Z+− and Z−−. We compute the
prefactor and adjust the curves to fit the numerical results. The Monte-Carlo method is not
represented after ε = 1/8 because the MFPT becomes too large to be efficiently computed.

The variance of the estimator of µb is very small (given it is estimated after a time long enough)
but the estimator of µz accumulates all numerical errors coming from the estimators needed to
compute each MFPT, which explain the unexpected small increases observed in the curve for
ε = 1/6. We represent in Figure 11b the variance of the MFPTs estimators between pair of
attractors used for estimating the distribution µz in Figure 11a, for ε = 1/7: as expected, this
variance increases with the MFPTs.

The similarity between the two distributions µz and µb seems to justify the Markovian approxi-
mation of the reduced process Ẑεt for small but realistic ε: at least for the toggle-switch network,
the coarse-grained model, evolving on the basins of attractions seen as cellular types, describes
accurately the complex behaviour of a cell in the gene expression space.

2.6 Mixture model

Combining the approximation of the functions kon,i by their main mode within a basin, described
in Section 1.4.4, with the description of metastability provided in Section 1.3, we now consider
another process described by the 2n+ 1-dimensional vector of variables (Z(t), E(t), X(t)), rep-
resenting respectively the cell type, the promoter state and the protein concentration of every
gene (see Figure 12).
Considering that the PDMP process spends in each basin a time long enough to equilibrate
inside, we decide to approximate the distribution of a couple (E(t), X(t)) in a basin Zj by its
quasistationary distribution. As referred in Section 1.4.4, it is then equivalent to the stationary
distribution of a simple two states model with constant activation function, which is a product
of Beta distributions. We can then approximate the marginal on proteins of the stationary
distribution p of this new model by a mixture of Beta distributions:

p ≈
∑
Zj∈Z

µz(Zj)
∏
i

Beta

(
kon,i(Xeq,Zj )

εdi
,
koff ,i

εdi

)
, (28)
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Figure 10: Comparison between the two methods for obtaining the stationary distributions
on the basins.

(a) (b)

Figure 11: 11a: The total variation of the difference between µb and µz as a function of ε−1.
11b: Boxplots representing the variation of the MFPTs for 10 iterations of the method used in
11a, between each pair of basins for ε = 1/7.
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Figure 12: Weak noise approximate model. The Markov chain on the set of basins Z is here
illustrated by the one corresponding to the toggle-switch network of Figure 3a.

where µz is the stationary distribution of the Markov chain characterizing the coarse-grained
model.
In that point of view, the marginal distribution on proteins of a single cell X is characterized
by a hidden Markov model: in each basin Zj , which corresponds to the hidden variable, the
vector X is randomly chosen under the quasistationary distribution pZj of the reduced process
(E,X | Zj). This simplified model provides a useful analytical link between the protein dis-
tribution of the PDMP system (depending on the whole GRN) and the coarse-grained model
parameters.

This mixture also provides a new approximation for the potential of the system, extending the
local potential presented in Section 1.4.4, which is defined on Ω:

V (x) ≈ − ln

∑
Zj∈Z

µz(Zj)
∏
i

Beta

(
kon,i(Xeq,Zj )

εdi
,
koff ,i

εdi

)
(x)


≈ − ln

(
sup
Zj∈Z

(
µz(Zj)

∏
i

Beta

(
kon,i(Xeq,Zj )

εdi
,
koff ,i

εdi

)
(x)

))
. (29)

This last approximation allows to retrieve the definition of the local potential (8), when the
boundary of the basins are approximated by the leading term in the Beta mixture. It is justified
by the fact that for small ε, the Beta distributions are very concentrated around their centers,
meaning that for every basin Zk ∈ Z, k 6= j:

∀x ∈ Zj ,
∏
i

Beta

(
kon,i(Xeq,Zk)

εdi
,
koff ,i

εdi

)
(x)�

∏
i

Beta

(
kon,i(Xeq,Zj )

εdi
,
koff ,i

εdi

)
(x).

We supposed that ∀Zj ∈ Z, µz(Zj) > 0: this is a consequence of the more general assumption
that the stationary distribution of the PDMP system is positive on the whole gene expression
space, which is necessary for rigorously deriving an analogy of the Boltzman law for the PDMP
system (see Section 1.5.2).
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The results of the previous Section leads us to consider this mixture model as promising for
combining both simplicity and ability to capture the main ingredients of cell differentiation
process.

3 Discussion

3.1 Correspondences between velocities and promoters frequency lead to
energetic interpretations

The main idea behind the LDP principle for the PDMP system is that a slow dynamics on
proteins coupled to the fast Markov chain on promoters rapidly samples the different states

of SE according to some probability measure π = (πe)e∈SE . The value
n∑

e,ei=1
πe corresponds

then to the parameter of the Bernoulli parameter of the random variable Ei, and can then be
interpreted as the frequency of the promoter ei.
The distribution π itself follows a LDP, which is the point of view of [42]. The work of [43]
consists in averaging the flux associated to the transport of each protein over the measure
π, in order to build a new expression of this LDP depending on the protein dynamics. Its
coupling with an Hamiltonian function through a Fenchel-Legendre transform allows to apply
a wide variety of analytical tools to gain insight on the most probable behaviour of the process,
conditioned on rare events.
In this Section, we see how correspondences between these different points of view on the LDP
highlight the meaning of the Hamiltonian and Lagrangian functions and lead to some energetic
interpretations.

3.1.1 Correspondence between velocity and promoters frequency

We denote Ωv = {u ∈ C(Ω,Rn) | ∀x ∈ Ω, u(x) ∈
n⊗
i=1

[−dixi, di(1− xi)]}.

The velocity field of the PDMP system, Φ, is a n-dimensional vector field, function of the
random vectors E,X, which can be written for any i = 1, · · · , n:

Φi = (1− Ei)× voff ,i(Xi) + Ei × von,i(Xi), (30)

with the functions voff ,i : xi 7→ −dixi and von,i : xi 7→ di(1− xi) for any x ∈ Ω.
Let fix the time and consider that the distribution of X is absolutely continuous. We denote
for all x ∈ Ω and for all i = 1, · · · , n ρi(x) = E(Ei | X = x) the conditional expectation of
promoter Ei knowing proteins X.
As presented in Section 1.2, the quasistationary approximation identifies the vector ρ to the
invariant measure of the Markov chain on the promoter states.
For a given conditional expectation of promoters ρ, the vector field
v : x 7→ E(Φ | X = x) is defined for all x ∈ Ω by:

∀i = 1, · · · , n, vi(x) = (1− ρi(x))voff ,i(x) + ρi(x)von,i(x) (31)

= di(ρi(x)− xi) ∈ [−dixi, di(1− xi)].

Thus, v ∈ Ωv. Conversely, we can associate to any vector field v ∈ Ωv a unique conditional
expectation of promoters states knowing proteins, ρv, defined by:

∀x ∈ Ω, ∀i = 1, · · · , n : ρv,i(x) =
vi(x)− voff ,i(x)

di
∈ [0, 1]. (32)
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3.1.2 Dynamics associated to a protein field

We detailed above the correspondence between any admissible velocity fields v ∈ Ωv and a
unique vector field ρv describing a conditional expectation of promoters states, knowing pro-
teins.

Moreover, the proof of Theorem 2 reveals that for any vector field p : Ω 7→ Rn, we can define a
unique vector field αp : Ω 7→ (0, 1)n by the expression (20).
As presented in Section 1.5.2, we denote ζ = (ζ0e)e∈SE and V = V0 the leading order terms of
the Taylor expansion in ε of ζ and V , when the distribution of the system at a time t is defined

for all e ∈ SE by ue(x, t) = ζe(x, t)e
−V (x,t)

ε .
On the one hand, for all i = 1, · · · , n,

∑
e∈SE ,ei=1

ζe(x,∇V (x, t)) then represents the first order

approximation of the conditional expectation E(Ei | X = x) at time t.
On the other hand, if we denote the gradient field p(·) = ∇V (·, t) defined on Ω, we recall that

ζ can be written for all x ∈ Ω of the form ζ(x) =
n⊗
i=1

(
1− αp,i(x)
αp,i(x)

)
. We then obtain:

αp,i(x) =
∑

e∈SE ,ei=1

ζe(x,∇V (x, t)) ≈ E(Ei | X = x).

This interpretation of the vector αp, combined with the relation (32), allows us to state that
the vector vα,p = (di(αp,i(x)− xi))i=1,··· ,n characterizes, in the weak noise limit, the protein

dynamics associated to the protein distribution e
−V (·)
ε .

The gradient field p can then be understood as a deformation of the deterministic drift, in the
weak noise limit. We verify that the velocity field vα,p corresponds to the deterministic limit if
and only if p = 0, but is different otherwise.

The duality between p and v then corresponds to a duality between two promoters frequencies
αp and ρv.
Recall that for all p ∈ Rn, from (19), we have:

H(x, p) =

n∑
i=1

pidi(αp,i(x)− xi).

The Lagrangian associated to a velocity field v can be written on every x ∈ Ω as a function of
αp and ρv:

L(x, v(x)) =
n∑
i=1

pi(x)di(ρv,i(x)− xi)−
n∑
i=1

pi(x)di(αp,i(x)− xi)

= 〈p(x), v(x)− vα,p(x)〉,

where p(x) = pv(x) is defined by the expression (21).

We observe that the velocity v = (di(ρv,i(x)− xi))i=1,··· ,n associated to a protein field p = ∇V
by the Fenchel-Legendre transform does not correspond to the protein velocity vα,p associated

to the distribution u = e−
V
ε in the weak noise limit, except when the Lagrangian vanishes on

(x, v). This is an important limit for developing a physical interpretation of the Hamiltonian
system in analogy with Newtonian mechanics.
However, the correspondences between promoters states distributions and velocity fields devel-
oped above leads us to draw a parallel with some notions of energy.
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3.1.3 Energetic interpretation

Following a classical interpretation in Hamiltonian system theory, we introduce a notion of
energy associated to a velocity field:

Definition 4. Let x ∈ Ω and v ∈ Ωv(x). The quantity Ev(x) = H(x, pv(x)) is called the energy
of the velocity field v on x, where pv(x) is defined by the expression (21).

Interestingly, combining the expression of the Hamiltonian given in Theorem 2 with the expres-
sions (21) and (32), the energy of a velocity v on every x ∈ Ω can be rewritten:

Ev(x) =

n∑
i=1

√
kon,i(x)koff ,i

di

(Eρv,i(|Φi| | X = x)

σ(ρv,i)
−

Eρi(|Φi| | X = x)

σ(ρi)

)
where for all i = 1, · · · , n, Φi is the random variable defined by the expression (30), condi-
tionally distributed (knowing proteins) with a Bernoulli distribution of parameter ρv,i, and
σ(ρv,i) =

√
ρv,i(1− ρv,i) denotes its standard distribution.

Finally, we have Eρv,i(|Φi| | X = x) = (1 − ρv,i)voff,i(x) + ρv,ivon,i(x), and ρ denotes the qua-
sistationary distribution described in (3).
Formally, the energy of a promoter distribution can then be decomposed in two terms : a first
term describing its velocity in absolute terms, scaled by its standard deviation, and a second
term depending on the network. A high energy distribution is characterized by a fast and de-
terministic protein dynamics in regards to the quasistationary distribution.
We remark that this notion of energy does not depend on the protein distribution, but only
on the promoter frequency ρv around a certain location x. Depending on x only through the
vector field ρv (and the functions kon,i), it is likely to be interpreted as the kinetic energy of a cell.

The potential V = − ln(û), where û is the marginal on proteins of the steady state distribution
of the stochastic process, is classically interpreted as a notion of potential energy, not depending
on the effective promoter frequency.
Apparently, this notion of energy is not related to the one described previously. Once again, the
difficulty for linking these two notions of energy comes from the fact that the velocity associated
to the ”momentum” p = ∇V does not correspond to the protein dynamics associated to the

marginal distribution on proteins e−
V (·)
ε .

3.2 Exemple of application for the mixture model

An interesting application for the estimator of the stationary distribution given by the mixture
model is about the computation of the potential energy of the system, as defined in the previous
section. The potential energy of a population of cells C, can be approximated by the sum of
(V (c, t))c∈C , V (c, t) corresponding to the opposite of the logarithm of the stationary distribu-
tion of the mixture model p evaluated on the protein level xc of the cell c.
We represent in Figure 13 the evolution of the potential energy of a population of cells during
the differentiation process, simulated from the PDMP system associated to the toggle-switch
network presented in Appendix C. The population is initially centered on the attractor of the
undifferentiated state Z−−. We observe that the potential energy reaches a peak before de-
creasing.
We remark that in [48], the authors have reconstructed what they called the transcriptional
uncertainty landscape during cell differentiation for many available single-cell gene expression
data sets. This transcriptional uncertainty corresponds to the stationary potential V , approx-
imated for each cell from the exact stationary distribution of an uncoupled system of PDMPs
(with a diagonal interaction matrix).
The universality of such feature seems to be revealed in [48]. Although it cannot be formally

28

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.283176doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283176
http://creativecommons.org/licenses/by-nc/4.0/


Figure 13: Evolution of the potential energy V of a population of 500 cells along the differen-
tiation process.

linked to intracellular energetic spending yet, we can note that one of the authors recently de-
scribed a peak in energy consumption during the erythroid differentiation sequence [49].

The mixture model also paves the way for interpreting non-stationary behaviours. Indeed, the
mixture distribution can be used as a proxy for non stationary distributions of a PDMP system:

pt ≈
∑
Zj∈Z

µz,t(Zj)
∏
i

Beta

(
kon,i(Xeq,Zj )

εdi
,
koff ,i

εdi

)
.

In that case, the only time-dependent parameters are the coordinates of the vector µz,t ∈ [0, 1]m

where m is the number of basins, and µz,t = µz if t is such that the stationary distribution is
reached.

The parameters (µz,t(Zj),
kon,i(Xeq,Zj )

di
,
koff ,i

di
)Zj∈Z could be inferred from omics data at any time

t, for example with an EM algorithm [50], [51].

Conclusion

Reducing a model of gene expression to a discrete coarse-grained model is not a new challenge,
([26], [25]), and it is often hard to perform when the dimension is large. This reduction is closely
linked to the notion of landscape through the quasipotential, the analysis of which has been
often performed for non mechanistic models, where the random effects are considered as simple
noise ([52], [22]), or in small dimension.
In this work, we have proposed a numerical method to approximate the transition rates char-
acterizing the reduction of a mechanistic model of gene expression, for any GRN.
We have built the explicit expression of the Hamilton-Jacobi equation characterizing the quasipo-
tential, for any number of genes, and the explicit expression of the associated variational problem
characterizing the landscape. We have deduced for some networks an analytical expression of
the energetic costs of switching between the cell types, which approximate the transition rates.
These approximations are accurate for a two-dimensional toggle-switch. Testing the accuracy of
this method to describe more complex networks would imply to build an approximate solution
of the stationary Hamilton-Jacobi equation (22), which will be the subject of future works.
Finally, we have derived from the coarse-grained model a Beta-mixture model able to describe
the stationary behavior of a cell in the gene expression space. As far as we know, this is the
first time that such an explicit link between a PDMP system describing cell differentiation and
a non-Gaussian mixture model is proposed.

29

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.283176doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283176
http://creativecommons.org/licenses/by-nc/4.0/


Altogether this work establishes a formal basis for the definition of a genetic/epigenetic land-
scape, given a GRN. It is tempting to now use the same formalism to assess the inverse problem
of inferring the most likely GRN, given an (experimentally-determined) cell distribution in the
gene expression space, a notoriously difficult task [53], [28].
Such random transitions between cell states has been recently proposed as the basis for facili-
tating the concomitant maintenance of transcriptional plasticity and stem cell robustness [54].
In this case, the authors have proposed a phenomenological view of the transition dynamics
between states. Our work lays the foundation for formally connecting this cellular plasticity to
the underlying GRN dynamics.
Finally our work provides the formal basis for the quantitative modelling of stochastic state
transitions underlying the generation of diversity in cancer cells ([55], [56]), including the gen-
eration of cancer stem cells [57].
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A Tensorial expression of the master equation of the PDMP
system

We detail the tensorial expression of the master equation (2) for a two-dimensional network.
The general form for the infinitesimal operator can be written:

Lu(t, e, x) = 〈F (e, x) ,∇xu(t, e, x)〉+
∑
e′∈SE

Q(e, e′)(x)u(t, e′, x)

where F is the vectorial flow associated to the PDMP and Q the matrix associated to the jump
operator.
Each jump between two promoters states e, e′ can append only between states for which at least
one promoter has a different state: in this case, we denote e ∼ e′.
We have, for any x: F (e, x) = (d0(e0 − x0), · · · , dn(en − xn))T . Then, for all e ∈ SE , the
infinitesimal operator can be written:

Lu(t, e, x) =
n∑
i=1

Fi(e, x)∂xiu(t, e, x) +
∑

{e′|e′∼e}

(kon,i(x)δei=0 + koff ,iδei=1)
(
u(t, e′, x)− u(t, e, x)

)
.

For a two-dimensional process (n = 2), there are four possible configurations for the promoter
state: e00 = (0, 0), e01 = (0, 1), e10 = (1, 0), e11 = (1, 1). It is impossible to jump between the
states e00 and e11. If we denote u(t, x) the four-dimensional vector: (ue(t, x))e∈SE , we can write
the infinitesimal operator in a matrix form:

Lu(t, x) =


−d1x1 0 0 0

0 −d1x1 0 0
0 0 d1(1− x1) 0
0 0 0 d1(1− x1)


︸ ︷︷ ︸

F1(x)


∂x1ue00(t, x)
∂x1ue01(t, x)
∂x1ue10(t, x)
∂x1ue11(t, x)

 +


−d2x2 0 0 0

0 d2(1− x2) 0 0
0 0 −d2x2 0
0 0 0 d2(1− x2)


︸ ︷︷ ︸

F2(x)


∂x2ue00(t, x)
∂x2ue01(t, x)
∂x2ue10(t, x)
∂x2ue11(t, x)

 +


−kon,1(x) 0 kon,1(x) 0

0 −kon,1(x) 0 kon,1(x)
koff ,1 0 −koff ,1 0

0 koff ,1 0 −koff ,1


︸ ︷︷ ︸

Q1(x)


ue00(t, x)
ue01(t, x)
ue10(t, x)
ue11(t, x)

 +


−kon,2(x) kon,2(x) 0 0
koff ,2 −koff ,2 0 0

0 0 −kon,2(x) kon,2(x)
0 0 koff ,2 −koff ,2


︸ ︷︷ ︸

Q2(x)


ue00(t, x)
ue01(t, x)
ue10(t, x)
ue11(t, x)

 .

We remark that each of these matrices can be written as a tensorial product of the corresponding
two-dimensional operator with the identity matrix:

• F1(x) = F (1)(x)⊗ I2 • Q1(x) = Q(1)(x)⊗ I2

• F2(x) = I2 ⊗ F (2)(x) • Q2(x) = I2 ⊗Q(2)(x)
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• F (i)(x) =

(
−dixi 0

0 di(1− xi)

)
• Q(i)(x) =

(
−kon,i(x) kon,i(x)
koff ,i −koff ,i

)
.

The master equation (2) is obtained by taking the adjoint operator of L:

∂u

∂t
(t, x) = L∗u(t, x) = −

n∑
i=1

∂

∂xi
(Fiu)(t, x) +

n∑
i=1

Kiu(t, x)

where K(x) = QT (x) is the transpose matrix of Q.

B Example of interaction function

We recall that we keep considering that the vector koff does not depend on the protein vector.
The specific interaction function chosen comes from a model of the molecular interactions at
the promoter level, described in [28]:

kon,i(X) =
k0,i + k1,i(σiXi)

miiΦi(X)

1 + (σiXi)miiΦi(X)
(33)

with:

• k0,i the basal rate of expression of gene i,

• k1,i the maximal rate of expression of gene i,

• mi,j an interaction exponent, representing the power of the interaction between genes i
and j,

• σi is the rescaling factor depending on the parameters of the full model including mRNAs,

• θ a matrix defining the interactions between genes, corresponding to a matrix with diag-
onal terms defining external stimuli, and

• Φi(X) = eθi,i
∏
j 6=i

1+eθj,i+θj,j (σjXj)
mji

1+eθj,j (σjXj)
mji

.

For a two symmetric two-dimensional network, we have for any x = (x1, x2) ∈ Ω:

∂x2kon,1

x1
(x) =

m21e
θ22xm21−1

2 eθ11xm11−1
1 (1− eθ12)

1 + eθ22xm21
2 + eθ11xm11

1 + xm21
2 xm11

1 eθ11+θ22+θ12
.

When m11 = m22 = m12 = m21 and θ12 = θ21, we have then for every x ∈ Ω:

∂x2kon,1

x1
(x) =

∂x1kon,2

x2
(x).

Thus, for all x ∈ Ω we have:

∂x2

(
−kon,1(x)

d1x1
+

koff ,1

d1(1− x1)

)
= ∂x1

(
−kon,2(x)

d2x2
+

koff ,2

d2(1− x2)

)
.

By the Poincaré lemma, there exists a function V ∈ C1(Ω,R) which satisfies the condition (23):

∀i = 1, 2 : ∂xiV (x) = −kon,i(x)

dixi
+

koff ,i

di(1− xi)
.
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C Description of the toggle-switch network

This table describes the parameters of the symmetric two-dimensional toggle-switch used all
along the article.

(i, j) k0,i k1,i di σi mi,i mi,j θi,i θi,j koff ,i

(1,2) 0, 012/ε 0.39/ε 0, 2 5 3 3 7 −7 1, 25/ε
(2,1) 0, 012/ε 0.39/ε 0, 2 5 3 3 7 −7 1, 25/ε

D AMS algorithm

We use an adaptive multilevel splitting algorithm described in [38], which provides for every
Borel sets (A,B) an unbiased estimator of the probability:

Pεx(τ εA < τ εB).

It is supposed that the random process attains easily A from x, more often than B, called the
target set.
The crucial ingredient we need to introduce is a score function ξ(·) able to quantify the adaptive
levels describing how close we are from the objective set B from any point x. The variance of
the algorithm strongly depends on the choice of this function.
The optimal score function is obviously the function Pεx(τ εA < τ εB) itself, which is unknown,
but it is proved, at least for Multivel Splitting algorithms applied to stochastic differential
equations in [58], [59], that if a certain scalar multiplied by the score function is solution of the
stationary HJE coming from the Large deviations setting, the number of simulation needed by
the algorithm for keeping the probability in a fixed interval confidence grows sub-exponentially
in ε.
In our case, for every basin Zj ∈ Z, we are interested in computing probabilities substituting A
to γj and B to another basin Zk, k 6= j. Using the approximation of V given by the expression
(29), we obtain the following score function up to a specific constant in each basin:

ξ(x) = − ln

(
sup
Zj∈Z

(∏
i

Beta

(
kon,i(Xeq,Zj )

di
,
koff ,i

di

)
(x)

))
.

We modify the score function to be adapted for the study of the transitions to each basin Zj :

ξj(x) = − ln

(
sup
Zk∈Z

(∏
i

Beta

(
kon,i(Xeq,Zk)

di
,
koff ,i

di

)
(x)

))
+

ln

(∏
i

Beta

(
kon,i(Xeq,Zj )

di
,
koff ,i

di

)
(x)

)
.

This function is specific to each basin Zj but defined in the whole gene expression space. We
verify: ξj(x) ≤ 0 if x ∈ Ω \ Zj and ξj(x) = 0 if x ∈ Zj . We use ξj as the score function for the
AMS algorithm.

For computing probabilities such that Pεx(τ εZk < τ εγj ) for x ∈ Zj , we need to approximate the
boundaries of the basins of attraction, which are unknown. For this sake, we use again the
approximate potential function ξ ≈ V to approximate the basins. For every x ∈ Ω, we consider
that the associated basin is:

Zj = argmax
Zk∈Z

(∏
i

Beta

(
kon,i(Xeq,Zk)

di
,
koff ,i

di

)
(x)

)
.
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We use exactly the Adaptative Multilevel Splitting algorithm described in Section 4 of [38].
Two improvements have been taken into account to adapt this algorithm:

• First, a random path associated to the PDMP system does not depend only on the protein
state but is characterized at each time t by the 2n-dimensional vector: (Xt, Et). For any
simulated random path, we then need to associate an initial promoter state. However, we know
that in the weak noise limit, for a protein state close to the attractor of a basin, the promoter
states are rapidly going to be sampled by the quasistationary distribution: heuristically, this
initial promoter state will not affect the algorithm. We decide to choose it stochastically under
the quasistationary distribution. For every x0 ∈ Γmin,j beginning a random path in a basin Zj ,
we choose for the promoter state of any gene i, ei0 , following a Bernoulli distribution:

ei0 ∼ B
(

1,
kon,i(x0)

koff,i + kon,i(x0)

)
.

• Compared with [38], an advanced algorithm is used to improve the sampling of the entrance
time in a set γmin,j . In practice timestepping is required to approximate the protein dynamics,
and it may happen that the exact solution enters γmin,j between two time steps, whereas the
discrete-time approximation remains outside γmin,j . We propose a variant of the algorithm
studied in [60] for diffusion processes, where a Brownian Bridge approximation gives a more
accurate way to test entrance in the set γmin,j .
In the case of the PDMP system, we replace the Brownian Bridge approximation, by the solution
of the ODE describing the protein dynamics: considering that the promoter state e remains
constant between two timepoints, the protein concentration of every gene i, xi(t) is solution of
the ODE: ˙xi(t) = di(ei − xi(t)), which implies:

∀t ∈ [0,∆t] : xi(t) = ei + (xi(0)− ei)e−tdi .

We show that for one gene, the problem can be easily solved. Indeed, the function: fi(t) =
(xi(t)−Xieq,Zj

)2 is differentiable and its derivative

f ′i(t) = −2di(xi(0)− ei)e−tdi((ei −Xieq,Zj
) + (xi(0)− ei)e−tdi),

vanishes if and only if (xi(0)− ei)e−tdi = (Xieq,Zj
− ei), i.e when

t =
1

di
ln

(
Xieq,Zj

− ei
xi(0)− ei

)
= ci.

Then, if ci ≤ 0 or ci ≥ ∆t, the minimum of the squared euclidean distance of the i-th coordinate
of the path to the attractor is reached at one of of the points xi(0) or xi(∆t). If 0 ≤ ci ≤ ∆t,
the extremum is reached at xi(ci). This value, if it is a minimum, allows us to determine if the
process has reached any neighborhood of an attractor Xeq,Zj between two timepoints.

For more than one gene, the minimum of the sum: || x−Xeq,Zj ||2=
n∑
i=1

(xi(t)−Xieq,Zj
)2 is more

complicated to find. If for all i = 1, · · · , n, di = d, which is the case of the two-dimensional
toggle-switch studied in Section 2.5, the extremum can be explicitly computed:

t =
1

d
ln


n∑
i=1

(Xieq,Zj
− ei)(xi(0)− ei)

n∑
i=1

(xi(0)− ei)2

 = c.

But we recall that for more than one gene, the set of interest is the isocommitor surface
γmin,j and not a neighborhood γj . An approximation consists in identifying γmin,j to the
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r-neighborhood of Xeq,Zj , where r is the mean value of || x−Xeq,Zj ||2 for x ∈ γmin,j .
If the parameters di are not all similar, we consider that the minimum is close to the minimum
for each gene. In this case, it is enough to verify the value of the minimum xi(ci) for every
gene to know if the process has reached any neighborhood of the attractor between the two
timepoints.

E Proofs of Theorems 4 and 5

Proof of Theorem 4. We introduce three lemmas which are necessary to prove this theorem.

First, we state that optimal trajectories associated to a solution of the stationary Hamilton-
Jacobi equation cannot cross with the same velocity:

Lemma 2. Let V1 and V2 be two solutions of (22) in C1(Ω,R).
For any trajectories φ1

t , φ
2
t ∈ C1,pw

0T (Ω) solutions of the system (16) associated respectively to

V1 and V2, if there exists t ∈ [0, T ) such that φ1(t) = φ2(t) and φ̇1(t) = φ̇2(t), then one has
φ1(t) = φ2(t) for all t ∈ [0, T ].

This can be simply proved by the theorem of characteristics applied to Hamilton-Jacobi equa-
tions, which ensures that on these trajectories, we have necessarily for any time t: ṗi(t) =
−DxiH(φ̂(t), p(t)) (see for example [61]).

A simple consequence of the correspondence between any velocity field of Ωv and a unique
vector field p, proved in Theorem 3, combined with the previous Lemma 2 and applied to the
deterministic trajectories, allows us to state:

Corollary 1. For any solution V ∈ C1(Ω,R) of (22), any trajectory φt ∈ C1,pw
0T (Ω) solution of

the system (16), we have the equivalence:

∃ t ∈ [0, T ), ∀i ∈ {1, · · · , n} : φ̇i(t) = di

(
kon,i(φ(t))

kon,i(φ(t)) + koff ,i
− φi(t)

)
⇐⇒∀t ∈ [0, T ) : ∇V (φ(t)) = 0.

Finally, the following lemma is important for the two first items of the proof:

Lemma 3. ∀i ∈ {1, · · · , n}, ∀x ∈ Ω we have:

∂

∂pi
H(x, p) = 0 ⇐⇒ Hi(x, pi) = min

p′i∈R
Hi(x, p

′
i) ≤ 0.

Moreover, min
p′i∈R

Hi(x, p
′
i) = 0 if and only if xi =

kon,i(x)
kon,i(x)+koff ,i

.

Proof. We have seen in the proof of Theorem 3 that for all i = 1, · · · , n and for all x ∈ Ω,
Hi(x, ·) is convex. For any pi ∈ R, we have: Hi(x, pi) ≤ 0 ⇐⇒ pi ∈ [pi1 , pi2 ] where pi1 = 0

and pi2 = −kon,i(x)
dixi

+
koff ,i(x)
di(1−xi) . Then, ∂

∂pi
Hi(x, pi) = 0 on a unique global minimum pi and

Hi(x, pi) ≤ 0.
Moreover, Hi(x, pi) = 0 ⇐⇒ pi1 = pi2 = 0.

Proof of (i). As a consequence of the Fenchel-Legendre expression of the Lagrangian with H = 0
on Ω, for such trajectory φt we have for any time t:

L(φ(t), φ̇(t)) =

n∑
i=1

∂xiV (φ(t))φ̇i(t). (34)
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Recall that from Theorem 3 :

L(φ(t), φ̇(t)) = 0 ⇐⇒ ∀i = 1, · · · , n : φ̇i(t) = di

(
kon,i(φ(t))

kon,i(φ(t)) + koff ,i
− φi(t)

)
,

we have thus:

φ̇(t) = 0 =⇒ ∀i = 1, · · · , n : φ̇i(t) = di

(
kon,i(φ(t))

kon,i(φ(t)) + koff ,i
− φi(t)

)
.

The velocity field then vanishes only at the equilibrium points of the deterministic system.
Conversely, we recall that for such trajectory we have for any t:{

φ̇(t) = ∂H
∂p (φ(t),∇V (φ(t))),

H(φ(t),∇V (φ(t)) = 0.

Thus, from Lemma 3, if for all i = 1, · · · , n, φi(t) =
kon,i(φ(t))

kon,i(φ(t))+koff ,i
, we have:

H(φ(t),∇V (φ(t))) = 0 =⇒ H(φ(t),∇V (φ(t))) =
n∑
i=1

min
pi∈R

Hi(φ(t), pi)

=⇒ ∂H

∂p
(φ(t),∇V (φ(t))) = 0.

Then φ̇(t) = 0 and the lemma is proved.

Proof of (ii). For a solution V of the equation (22) satisfying the condition (C), we can prove
the equivalence: (

∀i ∈ {1, · · · , n}, xi =
kon,i(x)

kon,i(x) + koff ,i

)
⇐⇒ ∇V (x) = 0.

From (i), it is equivalent to prove that for any optimal trajectory associated to such solution
V , we have for any time t:

φ̇(t) = 0 ⇐⇒ ∇V (φ(t)) = 0.

From the corollary 1, if ∇V (φ(t)) = 0, the trajectory is a forward trajectory, along which the
gradient is uniformly equal to zero. The condition (C) implies that it is reduced to a single
point: φ̇(t) = 0. Conversely, as for the first item of the proof:

φ̇(t) = 0 =⇒ L(φ(t), φ̇(t)) =⇒ ∀i : φ̇i(t) = di

(
kon,i(φ(t))

kon,i(φ(t)) + koff ,i
− φi(t)

)
.

We recognize the equation of a forward trajectory, which implies: ∇V (φ(t)) = 0.
Thus, for a solution of (22), the condition (C) is equivalent to (C’).

Proof of (iii). From the relation (34) and the two previous items (i) and (ii), we have on every
trajectory φt associated to a solution V of (22) verifying the condition (C):

φ̇(t) 6= 0 ⇐⇒
n∑
i=1

∂xiV (φ(t))φ̇i(t) > 0.

As φ̇(t) 6= 0 on such trajectories, the term on the right side, equal to ∂V
∂t (φ(t)), is positive and

V strictly increases.
Furthermore, on any forward trajectory φf (t), we have from (15) :

0 =

∫ T2

T1

L(φf (t), φ̇f (t))dt ≥ V (φf (T2))− V (φf (T1)).
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From the corollary 1, the equality holds only for constant solutions ∇V = 0, which are excluded
by condition (C). Then V (φ(T1)) < V (φ(T2)).
By definition, for any basin Zi and for all x ∈ Zi there exists a forward trajectory connecting
x to the associated attractor Xeq,Zi . So ∀x ∈ Zi, V (x) > V (Xeq,Zi) and Xeq,Zi is a global
minimum.

Proof of (iv). Let V a solution of (22) satisfying the condition (C). We denote by νV the velocity
field associated to a trajectory φt solution of the system (16) associated to V : φ̇(t) = νV (φ(t)).
For any basin Zi, from the previous item (i):

νV (Xeq,Zi) = 0 and ∀x ∈ Zi : νV (x) 6= 0.

From (iii), we know that V increases on these trajectories:

∀x ∈ Zi : 〈∇V (x), νV (x)〉 > 0.

Furthermore: V (Xeq,Zi) = min
x∈Zi

V (x).

We define: Ṽ : x→ V (x)− V (Xeq,Zi). We have:

∀x ∈ Z1 \ {Xeq,Zi} : Ṽ (x) > 0.

Thus, Ṽ is a Lyapunov function for the system φ̇(t) = −νV (φ(t)), for which Xeq,Zi is an
asymptotic stable equilibrium.
We deduce that:

∀x ∈ Zi, ∃φt ∈ C1,pw(Ω) : {φ(0) = x, ∀t ∈ [0, T ) : φ̇(t) = −νV (φ(t)), , φ(T ) →
T→∞

Xeq,Zi}.

Reverting time, any point of the basin Zi can then be reached from any small neighborhood of
Xeq,Zi .
Passing to the limit (by continuity of V ), we can deduce from Lemma 1 that for any basin Zi:

∀x ∈ Zi : Q(Xeq,Zi , x) = V (x)− V (Xeq,Zi)

As the closure of basins covers the gene expression space, we can conclude that all solutions V
are equal up to an additive constant.

Proof of Theorem 5. From the proof of Theorem 4.(iv), we know that:

∀x ∈ ∂Zi : Q(Xeq,Zi , x) = V (x)− V (Xeq,Zi), (35)

and that for any small neighborhood of Xeq,Zi , there exists a backward trajectory starting inside
and converging to x.
Moreover the cost of reaching ∂Ω is infinite. Indeed, for any velocity field v ∈ Ωv, x ∈ Ω and
i = 1, · · · , n: vi(x) ∈ [−dixi, di(1 − xi)]. Then a trajectory which tends to ∂Ω in a direction
i, i.e xi → 0 or 1, associated to a velocity field v, verifies necessarily vi(x)→0. The associated
Lagrangian verifies L(x, v) ≥ Li(x, vi) which tends to kon,i(x) or koff ,i when xi tends respectively
to 0 or 1. Recall that for all i = 1, · · · , n, koff ,i > 0 and kon,i is lower bounded by a positive
constant. Thus, the i-th coordinate of the velocity of such trajectory tends to 0 in the direction
of ∂Ω and its Lagrangian is always bigger than a positive constant k = min(kon,i(x), koff ,i): the
cost of such trajectory is then infinite.
This ensures that for any couple of basins (Zi, Zj) such that ∂Zi∩∂Zj 6= ∅, the cost of reaching
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Figure 14: Saddle-point algorithm between two attractors. The color map corresponds to the
Lagrangian function associated to the backward trajectories.

any point of ∂Zi ∩ ∂Zj without crossing ∂Zi on a point belonging to R =
⋃
k 6=j
{∂Zi ∩ ∂Zk} is

given by a trajectory crossing ∂Zi for the first time on ∂Zi ∩ ∂Zj . Thus, we have:

QR(Xeq,Zi , ∂Zi ∩ ∂Zj) = min
y∈∂Zi∩∂Zj

V (y)− V (Xeq,Zi).

From Theorem 4.(iii), V decreases on the forward trajectories: under the hypothesis that any
forward trajectory starting in ∂Zi ∩ ∂Zj stays inside (then it necessarily converges to a saddle
point inside), the minimum of V in ∂Zi ∩ ∂Zj is reached on one (or many) saddle points that
we denote y. Since from Theorem 4.(i), the drift of the backward trajectory vanishes on the
saddle points, we find that the min of the previous expression is reached on y ∈ Xun,ZiZj .

F Algorithm to find the saddle points

We develop a simple algorithm using the Lagrangian associated to the backward trajectories
(25) to find the saddle points of the deterministic system (4). This Lagrangian is a non-negative
function which vanishes only at the equilibrium point. Then, if there exists a saddle point con-
necting two attractors, this function will vanish at this point. Starting on a small neighborhood
of the first attractor, we follow the direction of the second one until reaching a maximum on the
line (see 14a). Then, we follow different lines, in the direction of each other attractor for which
the Lagrangian function decreases (at least, the direction of the second attractor (see 14b)),
until reaching a local minimum. We then apply a gradient descent to find a local minimum (see
14c). If this minimum is equal to 0, this is a saddle point, if not we repeat the algorithm from
this local minimum until reaching a saddle point or an attractor. Repeating this operation for
any ordered couple of attractors (Xeq,Zi , (Xeq,Zj )Zi,Zj∈Z,i6=j , we are likely to find most of the
saddle points of the system. This method is described in pseudo-code in Algorithm 1.
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Algorithm 1 Find the list of saddle points: list-saddle-points

Require: • The list of attractors: list-attractors = (Xeq,Zi)Zi∈Z
• The Lagrangian function to minimize on the saddle points: Lag : Rn → R+

• A gradient descent function, finding a local minimum of Lag from a point x:
gradient-descent(x)
• A subdivision coefficient: α� 1
while Xeq,Zi ∈ list-attractors do
X = Xeq,Zi

while Xeq,Zj ∈ list-attractors\Xeq,Zi do
Lag0 = Lag(X)
X ← X + α(Xeq,Zi −Xeq,Zj )
while Lag(X) >= Lag0 do
Lag0← Lag(X)
X ← X + α(Xeq,Zi −Xeq,Zj )

end while
while Xeq,Zj ∈ list-attractors\Xeq,Zi do

while Lag(X) < Lag0 do
Lag0← Lag(x)
X ← X + α(Xeq,Zi −Xeq,Zj )

end while
X0 = gradient-descent(X)
if Lag(X0) = 0 then

list-saddle-points← X0

end if
end while

end while
end while
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