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Approximation of the invariant distribution for a class of

ergodic SDEs with one-sided Lipschitz continuous drift

coefficient using an explicit tamed Euler scheme

Charles-Edouard Bréhier

Abstract. We consider the long-time behavior of an explicit tamed Euler scheme applied
to a class of stochastic differential equations driven by additive noise, under a one-sided
Lipschitz continuity condition. The setting encompasses drift nonlinearities with polynomial
growth. First, we prove that moment bounds for the numerical scheme hold, with at most
polynomial dependence with respect to the time horizon. Second, we apply this result
to obtain error estimates, in the weak sense, in terms of the time-step size and of the
time horizon, to quantify the error to approximate averages with respect to the invariant
distribution of the continuous-time process. We justify the efficiency of using the explicit
tamed Euler scheme to approximate the invariant distribution, since the computational cost
does not suffer from the at most polynomial growth of the moment bounds. To the best
of our knowledge, this is the first result in the literature concerning the approximation of
the invariant distribution for SDEs with non-globally Lipschitz coefficients using an explicit
tamed scheme.

1. Introduction

The long-time behavior of deterministic and stochastic processes and of their discrete-
time approximations has been an active research area, with applications in all field of science.
In this manuscript, we consider Stochastic Differential Equations (SDEs) of the type

dXptq “ fpXptqqdt `
K
ÿ

k“1

σkdβ
kptq,

where Xptq P R
d, σk P R

d, βk are independent standard real-valued Wiener processes. The
drift f : Rd Ñ R is assumed to be non-globally Lipschitz continuous, instead it has poly-
nomial growth and satisfies a one-sided Lipschitz continuous condition, see Assumptions 1
and 2. Under these conditions, the SDE is globally well-posed and admits a unique invariant
probability µ‹, such that

ErϕpXpT qqs Ñ
TÑ8

ż

ϕdµ‹,

exponentially fast, for any initial condition Xp0q and any real-valued Lipschitz continuous
function ϕ. In general, no explicit expression for f is known. We study the question of
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approximating the invariant distribution µ‹ using a numerical scheme. The main novelty of
this article is to show that an explicit scheme can be used, without loss of computational
efficiency, even if the nonlinearity f is not globally Lipschitz continuous.

Applying an explicit scheme for SDEs with non-globally Lipschitz continuous coefficients
may lead to important issues due to the lack of moment bounds, see for instance [2]. In the
last two decades, many strategies have been explored: see for instance the monograph [1]
and references therein, and the articles [3], [8], [4], [7], among many other contributions.

In this article, we apply the tamed Euler-Maruyama method (see Equation 6)

Xn`1 “ Xn `
∆tfpXnq

1 ` ∆t}fpXnq}
`

K
ÿ

k“1

σk∆βk
n,

for which for every T , one has moment bounds of the type

sup
0ďn∆tďT

`

Er}Xn}ms
˘ 1

m ă 8.

To the best of our knowledge, the question of the dependence with respect to T , and the
possibility to have uniform in time moment bounds, has not been studied in the literature yet.
Our first contribution (see Theorem 3.1) is to prove that, under appropriate assumptions,
one has

sup
0ďn∆tďT

`

Er}Xn}ms
˘

1

m ď Cp}x0}qp1 ` TMq,

where X0 “ x0, for some M ě 1. As a consequence, the growth with respect to T is at
most polynomial. We only proved upper bounds, and the question whether uniform moment
bounds (with M “ 0) remains open.

Our second contribution is to apply these upper bounds for the analysis of the error
between ErϕpXNqs and

ş

ϕdµ‹, see Theorem 3.2. Under appropriate assumptions, one has

ˇ

ˇErϕpXNqs ´

ż

ϕdµ‹

ˇ

ˇ ď Cp}x0}, ϕq
´

expp´γN∆tq `
`

1 ` pN∆tqM
˘

∆t
¯

,

where γ ą 0. Contrary to existing works in the literature concerning the numerical ap-
proximation of the invariant distribution for SDEs (this is a classical problem, see for in-
stance [5], [6], [9]), the weak error |ErϕpXNqs ´ ErϕpXpN∆tqqs is not of size ∆t uniformly
in time, and one cannot take the limit T “ N∆t Ñ 8 in the weak error estimate.

Nevertheless, the fact that the dependence with respect to T “ N∆t is at most poly-
nomial is striking, and analyzing the computational cost (see Corollary 3.3) shows that, to
have an error less than ε, the cost is of size

Cpεq ď Cε´1| logpεq|1`M .

Passing from the case with uniform in time moment bounds(M “ 0) to the case with
polynomial dependence (M ě 1) does not substantially increase the computational cost and
the method is effective. In the numerical experiments that have been performed (and are
not reported here), it has not been possible to exhibit the polynomial growth with respect
to time in the moment bounds or in the weak error estimate.

One of the objectives of this article is to present in a simplified framework the strategy
and the arguments used in a companion paper devoted to the case of semilinear parabolic
Stochastic Partial Differential Equations. The presentation is intended to be pedagogical.
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This manuscript is organized as follows. The setting is presented in Section 2, including
the statement of precise assumptions (Assumptions 1 and 2), properties of the solutions of
the SDE (3), and the definition of the numerical scheme (Equation (6)). The main results
are stated and discussed in Section 3. The proof of Theorem 3.1 is provided in Section 4,
whereas Section 5 presents the proof of Theorem 3.2.

2. Setting

Let d P N. The standard inner product and norm in the space R
d are denoted by x¨, ¨y

and } ¨ } respectively.
Let us first state assumptions concerning the nonlinear drift coefficient f : it is assumed

to be of class C2, with at most polynomial growth (Assumption 1, and to satisfy a one-sided
Lipschitz continuity condition (Assumption 2).

Assumption 1. Let f : Rd Ñ R
d be of class C2, with at most polynomial growth in the

following sense: there exists q P N such that

(1) Nqpfq :“ sup
xPRd

}fpxq} `
ř

2

j“1
sup

}h1},...,}hj}ď1

}Djfpxq.ph1, . . . , hjq}

1 ` |x|q
ă 8.

The notation Dfpxq.h and D2fpxq.ph1, h2q is used to denote first and second order deriva-
tives of f at point x, in directions h, h1, h2 P R

d.

Assumption 2. The following condition is satisfied: there exists γ ą 0 such that for all
x1, x2 P R

d one has

(2) xfpx2q ´ fpx1q, x2 ´ x1y ď ´γ|x2 ´ x1|2.

Let us now describe the noise. Let σ1, . . . , σK P R
d and let

`

β1ptq
˘

tě0
, . . .

`

βKptq
˘

tě0
be

independent standard real-valued Wiener processes, defined on a probability space pΩ,F ,Pq
satisfying the usual conditions. In the sequel, the notation

σdBptq “
K
ÿ

k“1

σkdβ
kptq

is used.
In this work, we consider the following SDE with values in R

d:

(3) dXptq “ fpXptqqdt ` σdBptq.

Owing to the locally Lipschitz and the one-sided Lipschitz properties of the function f ,
it is straigthforward to check that for any x0 P R

d, there exists a unique global solution
`

Xx0
ptq

˘

tě0
to (3) with Xx0

p0q “ x0. Moreover, for every m P r1,8q, there exists a polyno-
mial function Pm : R Ñ R such that

(4) sup
tě0

Er}Xx0
ptq}ms ď Pmp}x0}q.

Finally, there exists a unique invariant distribution µ‹, such that any Lipschitz continuous
function ϕ : Rd Ñ R, one has for all T P p0,8q and x0 P R

d

(5)
ˇ

ˇErϕpXx0
pT qqs ´

ż

ϕdµ‹

ˇ

ˇ ď e´γTLippϕqp1 ` }x0}q.
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Moment bounds (4) are obtained by an application of the Itô formula, and the use of the
one-sided Lipschitz continuity condition (2). Applying the Krylov-Bogoliubov criterion, the
moment bounds (4) yield existence of invariant distributions, and uniqueness follows from
a straightforward coupling argument: if x1

0, x
2
0 P R

d are two initial conditions, then almost
surely for all t ě 0 one has

}Xx2

0
ptq ´ Xx1

0
ptq} ď e´γt}x2

0 ´ x1

0},

using the one-sided Lipschitz condition (2), where the processes Xx1

0
and Xx2

0
are driven by

the same noise process.
In the sequel, to simplify notation the dependence with respect to x0 is omitted: Xptq “

Xx0
ptq for all t ě 0.
The objective is to define estimators of

ş

ϕdµ‹, using an explicit integrator for the dis-
cretization of the SDE (3). Note that in general, no explicit expression of the invariant
distribution µ‹ is known, and if dimension d is large quadrature rules are not efficient and
Monte-Carlo methods are usually employed.

Let ∆t denote the time-step size, and without loss of generality assume that ∆t P p0,∆t0s
for some arbitrarily fixed ∆t0 ą 0. Let tn “ n∆t, and define the Wiener increments as
∆βk

n “ βkptn`1q ´ βkptnq, and σ∆Bn “ σk∆tβk
n, for all n ě 0.

In this work, we consider the explicit tamed Euler-Maruyama method

(6) Xn`1 “ Xn `
∆t

1 ` α∆t}fpXnq}
fpXnq ` σ∆Bn,

where α P p0,8q is a given parameter and X0 “ x0. The parameter α does not play
an important role in the sequel, and the notation Mn “ α}fpXnq} is used. Introduce a
continuous-time auxiliary process

`

X̃ptq
˘

tě0
as follows: for all t ě 0, set

(7) X̃ptq “ x0 `

ż t

0

1

1 ` ∆tMℓpsq

fpXℓpsqqds `

ż t

0

σdBpsq

where ℓptq “ n if and only if tn ď t ă tn`1, and
`

Xn

˘

ně0
is defined by the tamed explicit

Euler-Maruyama scheme (6). Observe that one has X̃ptnq “ Xn for all n ě 0.

The process
`

Xn

˘

ně0
and

`

X̃ptq
˘

tě0
depend on the time-step size ∆t and on the initial

condition x0, however the dependence is omitted to simplify notation.

Remark 2.1. The explicit tamed Euler-Maruyama scheme (6) can be interpreted as com-
ing from the application of the standard explicit Euler-Maruyama scheme for the SDE

dX∆tptq “ f∆tpX
∆tptqqdt ` σdBptq

with modified drift coefficient

f∆tpxq “
fpxq

1 ` α}fpxq}
.

However, the function f∆t does not satisfy a one-sided Lipschitz continuity condition as in
Assumption 2, with γ ą 0. Indeed, let d “ 1 and assume that f is a polynomial function,
for instance fpxq “ ´x ´ x3, then one checks that

f 1
∆tpxq Ñ

xÑ˘8
0.

4



As a consequence, the long-time behavior (uniform in time moment bounds, existence and
uniqueness of invariant distriutions) of the process X∆t may be non trivial. It may even be
the case that sup

xPR
f 1
∆tpxq ą 0, in which case uniform in time moment bounds are not expected

to hold. In turn no information on the behavior of the scheme (6) is obtained by using the
interpretation of the tamed scheme.

3. Main results

The objective of this section is to state the two main results of this article: Theorem 3.1
concerning moment bounds and Theorem 3.2 concering weak error estimates. The most
striking feature is the polynomial dependence with respect to the time T (and with respect
to the norm of the initial condition). The consequences in terms of computational cost for
the approximation of the invariant distributions are also discussed, see Corollary 3.3.

Theorem 3.1. Let Assumptions 1 and 2 be satisfied.
For every m P r1,8q, there exists a polynomial function Pm : R2 Ñ R, such that for all

T P p0,8q and x0 P R
d, one has

(8) sup
∆tPp0,∆t0s

sup
0ďn∆tďT

Er}Xm}ps ď PmpT, }x0}q.

Theorem 3.2. Let Assumptions 1 and 2 be satisfied.
For every r P N, there exists polynomial functions Pr : R2 Ñ R and Qr : R Ñ R, such

that the following holds: if ϕ : Rd Ñ R is a function of class C2 such that

Nrpϕq “ sup
xPRd

|ϕpxq| `
ř

2

j“1
sup

}h1},...,}hj}ď1

|Djfpxq.ph1, . . . , hjq|

1 ` |x|r
ă 8,

then for all N P N, x0 P R
d and ∆t P p0,∆t0s, one has

(9)
ˇ

ˇErϕpXNqs ´

ż

ϕdµ‹

ˇ

ˇ ď Nrpϕq
´

expp´γN∆tqQrp}x0}q ` ∆tPrpN∆t, }x0}q
¯

,

where
`

Xn

˘

ně0
is defined by the tamed Euler-Maruyama scheme (6).

In Theorem 3.2, the function ϕ is allowed to have at most polynomial growth (as well as
its derivatives).

To simplify the presentation, the degrees of the polynomial functions Pm in Theorem 3.1
and Pr and Qr in Theorem 3.2 are not indicated, however they could be identified by a close
inspection of the proofs. This is left to the interested readers. Since we want to insist on the
polynomial dependence with respect to time T or N∆t, the exact value of the degrees does
not matter.

Let us now draw consequences of Theorem 3.2 in terms of computational cost. In practice,
the expectation ErϕpXnqs needs to be approximated using Monte-Carlo averages. The total
computational cost may be reduced for instance using the Multilevel Monte-Carlo method.
Since those aspects are not specific to the situation studied in this article, we only consider
the cost per realization. The cost to sample a realization of XN is proportional to N . Then
one has the following result.
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Corollary 3.3. Let x0 P R
d and ϕ : Rd Ñ R of class C2 such that Nrpϕq ă 8.

There exists a constant C “ Cpx0, ϕq P p0,8q, such that for all ε P p0, 1q, the error
satisfies

ˇ

ˇErϕpXNqs ´

ż

ϕdµ‹

ˇ

ˇ ď ε

with a computational cost satisfying

Cpεq ď Cε´1| logpεq|1`R

for some R P N.

Since | logpεq|R “ ε
1

R for all R P N, one has Cpεq ď Cαε
´ 1

α , for all α P p0, 1q.
If in Theorems 3.1 and 3.2 the upper bounds were uniform in time, one could choose R “ 0

in Corollary 3.3. The polynomial growth with respect to T only introduces a polynomial
factor in | logpεq|, which does not significantly increase the computational cost. Note that
if the dependence with respect to T in Theorems 3.1 and 3.2 had been exponential, an
additional factor which would have been a power of ε´1 would have appeared in Corollary 3.3,
and in turn the computational cost would have significantly increased.

Proof of Corollary 3.3. The error estimate of Theorem 3.2 is rewritten as follows:
there exists R P N such that

ˇ

ˇErϕpXNqs ´

ż

ϕdµ‹

ˇ

ˇ ď C
`

expp´γN∆tq ` p1 ` pN∆tqRq∆t
˘

,

where C is a constant (depending on x0 and ϕ). Note that R may depend on ϕ (more
precisely on the value of r such that Nrpϕq ă 8.

The parameters N and ∆t are chosen such that

N∆t “ C| logpεq|

and
pN∆tqR∆t “ Cε.

This leads to
∆t “ Cε| logpεq|´R,

and finally
N “ C| logpεq|∆t´1 “ Cε´1| logpεq|1`R.

This concludes the proof of Corollary 3.3. �

Remark 3.4. In [7], the authors propose to use the so-called rejecting exploding trajecto-
ries technique to approximate ergordic averages

ş

ϕdµ‹, for SDEs with non-globally Lipschitz
coefficients. This technique requires to introduce an auxiliary truncation parameter. How-
ever, even if in practice it is effective, this technique does not lead to a clean analysis of the
cost as in Corollary 3.3.

Remark 3.5. The results can be generalized, under appropriate assumptions, to SDEs
driven by multiplicative noise

dXptq “ fpXptqqdt ` σpXptqqdBptq,

where σpxqdBptq “
řK

k“1
σkpxqdβkptq. Slight modifications of the proof of Theorem 3.1 are

sufficient if the functions σk, k P t1, . . . , Ku, are assumed to be bounded. These functions are
6



also to be Lipschitz continuous. The one-sided Lipschitz condition (2) from Assumption 2
needs to be modified to ensure the uniqueness of the invariant distribution by the coupling
argument providing (5). The condition (2) also needs to be modified in order to be able to
prove Theorem 3.2, in particular to prove exponential decrease in time of derivatives of the
solution of the associated Kolmogorov equation.

These modifications and the statements of appropriate conditions would only make the
presentation more complex, so for pedagogical reasons the details are only provided for the
additive noise case.

4. Proof of Theorem 3.1

Recall that Mn “ α}fpXnq}, and that the auxiliary process
`

X̃ptq
˘

tě0
is defined by (7).

Introduce an auxiliary parameter R “ ∆t´κ, where κ P p0, 1

2q
q and q is given by Assump-

tion 1.
For every n ě 0, let ΩR,tn “ t sup

0ďℓďn

}Xℓ} ď Ru, and to simplify notation let χn “ 1ΩR,tn

denote the indicator function of the set ΩR,tn . Let also χ´1 “ 1.
To prove Theorem 3.1, it suffices to prove the following two auxiliary results.

Lemma 4.1. For every m P r1,8q, there exists a polynomial function P1
m : R2 Ñ R, such

that for all T P p0,8q and x0 P R
d, one has

(10) sup
∆tPp0,∆t0s

sup
0ďn∆tďT

Erχn´1}Xn}ms ď P1

mpT, }x0}q.

Lemma 4.2. For every m P r1,8q, there exists a polynomial function P2
m : R2 Ñ R, such

that for all T P p0,8q and x0 P R
d, one has

(11) sup
∆tPp0,∆t0s

sup
0ďn∆tďT

Erp1 ´ χnq}Xn}ms ď P2

mpT, }x0}q.

Theorem 3.1 is then a straightforward consequence of Lemma 4.1 and Lemma 4.2.

Proof of Theorem 3.1. Since ΩR,tn Ă ΩR,tn´1
, one has χn ď χn´1. Writing

Er}Xn}ms “ Erχn}Xn}ms ` Erp1 ´ χnq}Xn}ms ď Erχn´1}Xn}ms ` Erp1 ´ χnq}Xn}ms,

combining the auxiliary moment bounds (10) and (11) then concludes the proof. �

In the proofs, values of constants C,Cm P p0,8q and polynomial functions Pm may
change from line to line.

Proof of Lemma 4.1. Introduce two auxiliary processes
`

Y ptq
˘

tě0
and

`

Zptq
˘

tě0
as

follows: for all t ě 0,

Zptq :“ X̃ptq ´

ż t

0

fpX̃psqqds

Y ptq :“ X̃ptq ´ Zptq.

One obtains the following equality: for all t ě 0

Y ptq “

ż t

0

fpX̃psqqds “

ż t

0

fpY psq ` Zpsqqds,

7



thus Y solves the differential equation

dY ptq

dt
“ fpY ptq ` Zptqq.

Using the one-sided Lipschitz condition (2) satisfied by f (Assumption 2), one obtains

1

2

d}Y ptq}2

dt
“ xY ptq, fpY ptq ` Zptqy

ď xY ptq, fpY ptq ` Zptqq ´ fpZptqqy ` }Y ptq}}fpZptqq}

ď ´γ}Y ptq}2 ` }Y ptq}fpZptqq}.

Since γ ą 0, using Young’s inequality and Gronwall’s lemma, one obtains

}Y ptq}2 ď C

ż t

0

}fpZpsqq}2ds.

Multiplying by χn´1 and using Minkowski’s inequality, for every m P r1,8q, one obtains

(12)
`

Erχn´1}Y ptnq}2ms
˘

1

m ď C

ż t

0

`

Erχn´1}fpZpsqq}2ms
˘

1

mds.

Since f has at most polymomial growth (Assumption 1), oo obtain (10), it is thus sufficient
to prove that for every m P r1,8q, one has an estimate of the type

(13) sup
0ďtďtnďT

Erχn´1}Zptq}ms ď PmpT, }x0}q.

By definition of the auxiliary process Z, one has for all t ě 0

Zptq “ X̃ptq ´

ż t

0

fpX̃psqqds

“ X0 `

ż t

0

σdBpsq ´

ż t

0

∆tMℓps

1 ` ∆tMℓpsq

fpXℓpsqqds `

ż t

0

“

fpXℓpsqq ´ fpX̃psqq
‰

ds

“: Z0ptq ` Z1ptq ` Z2ptq.

First, for all 0 ď t ď tn ď T , one has

`

Erχn´1}Z0ptq}ms
˘

1

m ď
`

ErZ0ptq}m
˘

1

m ď }x0} ` CmT
1

2 ,

for some Cm P p0,8q.
Second, recall that Mℓ “ α}fpXℓq}. Since f has at most polynomial growth (Assump-

tion 1), one obtains

`

Erχn´1}Z1ptq}ms
˘ 1

m ď α∆t

ż t

0

`

Erχn´1}fpXℓpsqq}2ms
˘ 1

mds

ď C∆tp1 ` R2qq ď Cp∆t0 ` ∆t
1´2qκ
0

q,

where we recall that R “ ∆t´κ with 2qκ ă 1.
It remains to deal with the term Erχn´1}Z2ptq}ms. Using the fact that the derivative

of f has at most polynomial growth (Assumption 1) and Minkowski and Cauchy-Schwarz
8



inequalities, one obtains for all t ě 0

`

Erχn´1}Z2ptq}ms
˘

1

m ď

ż t

0

`

χn´1}fpXℓpsq ´ fpX̃psq}m
˘

1

mds

ď C

ż t

0

`

Erχn´1}Xℓpsq ´ X̃psq}2ms
˘

1

2m
`

1 ` Erχn´1}Xℓpsq}
2mqs ` Erχn´1}X̃psq}2mqs

˘
1

2mds.

The first factor in the integrand above is treated as follows: for s ď t ă tn, one obtains

χn´1}Xℓpsq ´ X̃psq} ď χn´1

|s ´ tℓpsq|

1 ` ∆tMℓpsq

}fpXℓpsq} ` C}σ
`

Bpsq ´ Bptℓpsqq
˘

}

ď C∆tp1 ` Rqq ` C}Bpsq ´ Btℓpsq
}.

As a consequence, one obtains
`

Erχn´1}Xℓpsq ´ X̃psq}2ps
˘

1

2p ď Cp

`

∆tp1 ` Rqq ` ∆t
1

2

˘

ď C∆t
1

2 p∆t
1

2
´κq

0 ` 1q,

for all ∆t P p0,∆t0s, using the definition R “ ∆t´κ with 2qκ ă 1.
To treat the second factor of the integrand above, it suffices to write

Erχn´1}Xℓpsq}
2mqs ` Erχn´1}X̃psq}2mq ď CErχn´1}Xℓpsq}

2mqs ` CErχn´1}X̃psq ´ Xℓpsq}
2mq,

and to use the estimate on the first factor above and the inequality Erχn´1}Xℓpsq}
2mqs ď R2mq.

Finally, using again the inequality ∆t
1

2Rq ď ∆t
1

2
´qκ

0 for all ∆t P p0,∆t0s, one obtains
`

Erχn´1}Z2ptq}ms
˘

1

m ď Cp∆t0qT.

Gathering the estimates then yields (13). Inserting (13) in the inequality (12) then yields

Erχn´1}Y ptnq}ms ď PmpT, }x0}q,

if tn ď T and ∆t P p0,∆t0s.
Since Xn “ X̃ptnq “ Y ptnq ` Zptnq, this concludes the proof of Lemma 4.1. �

Proof of Lemma 4.2. Recall that χn “ 1ΩR,tn
, with ΩR,tn “ t sup

0ďℓďn

}Xℓ} ď Ru and

χ´1 “ 1. As a consequence, one has

1 ´ χn “ 1Ωc
R,tn

“ 1Ωc
R,tn´1

` 1ΩR,tn´1
1}Xn}ąR

“ 1 ´ χn´1 ` χn´11}Xn}ąR.

One thus obtains the equality

1 ´ χn “
n

ÿ

ℓ“0

χℓ´11}Xℓ}ąR.

Let m P N. Using Minkowksi, Cauchy-Schwarz and Markov inequalities, one obtains

`

Erp1 ´ χnq}Xn}ms
˘

1

m ď
n

ÿ

ℓ“0

`

Erχℓ´11}Xℓ}ąR}Xn}ms
˘

1

m

ď
n

ÿ

ℓ“0

`

Er}Xn}2ms
˘

1

2m
`

Erχℓ´1

}Xℓ}
θ

Rθ
s
˘

1

2m ,

where θ P N is chosen below.
9



On the one hand, by construction of the tamed Euler scheme, one has

}X̃ptq} ď }x0} `
T

∆t
` }

ż t

0

σpX̃psqqdBpsq},

thus
`

Er}Xn}2ms
˘

1

2m ď Cp}x0} ` T
1

2 `
T

∆t
q.

On the other hand, applying Lemma 4.1 yields

Erχℓ´1}Xℓ}
θs ď P1

θ pT, }x0}q.

Gathering the estimates yields

`

Erp1 ´ χnq}Xn}ms
˘

1

m ď CP1

θ pT, }x0}q
1

2m p1 `
T

∆t
qp}x0} ` T

1

2 `
T

∆t
qR´ θ

2m .

Since R “ ∆t´κ, it suffices to choose θ such that θκ
2m

ą 2 in order to obtain (11).
This concludes the proof of Lemma 4.2.

�

5. Proof of Theorem 3.2

The objective of this section is to prove Theorem 3.2. In Section 5.1, some auxiliary
results concerning the solution of the associated Kolmogorov equation. Even if this type of
results is standard, a proof is provided for completeness. Then Theorem 3.2 follows from the
weak error analysis of Section 5.2.

Like in Section 4, the values of constants C P p0,8q and of polynomial functions Pr or
P may change from line to line.

5.1. Auxiliary result: Kolmogorov equation. Let upt, xq “ ExrϕpXtqs, for all t ě 0

and x P R
d. Then u is the solution of the Kolmogorov equation

Btupt, xq “ Lupt, xq “ Dupt, xq.fpxq `
1

2

K
ÿ

k“1

D2upt, xq.pσk, σkq

with initial condition up0, ¨q “ ϕ. Set upt, ¨q ´
ş

ϕdµ‹.
The objective of this section is to prove the following lemma.

Lemma 5.1. Let Assumptions 1 and 2 be satisfied.
For any r P N, there exists R P N such that the following holds: for all ϕ : Rd Ñ R of

class C2 which satisfies Nrpϕq ă 8q, for all γ1 P r0, γq, one has

sup
tě0

NRpupt, ¨qqeγ
1t ă 8.

In other words, the function u and its first and second order spatial derivatives Dupt, ¨q
and Dupt, ¨q have at most polynomial growth, and NRpupt, ¨qq decreases exponentially fast
when t Ñ 8. This type of result and the strategy of the proof are standard. A specific
feature of the approach considered in this article is that a weaker result is employed: since
we do not expect to prove uniform in time weak error estimates, and to have polynomial
in time dependence instead, it is sufficient to use uniform in time upper bounds for the
derivatives Dupt, ¨q and Dupt, ¨q. Thus in the analysis of the weak error due to temporal
discretization, one will use estimates with γ1 “ 0. Keeping γ1 ą 0 would only allow to reduce
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the degree of the polynomial dependence with respect to T , but this does not qualitatively
change the analysis of the cost. The fact that γ1 ą 0 has a role only to estimate the error
upt, xq “ upt, xq ´

ş

ϕdµ‹, and as will be clear below for this contribution one can take γ1 “ γ

(see also (5)).

Proof. Recall that, for every x P R
d, the solution of (3) with initial condition Xp0q “ x

is denoted by
`

Xxptq
˘

tě0
.

First, let x1, x2 P R
d, then the one-sided Lipschitz condition (2) implies

1

2

d}Xx2ptq ´ Xx1ptq}2

dt
“ xfpXx2ptqq ´ fpXx1ptqq, Xx2ptq ´ Xx1ptqy ď ´γ}Xx2ptq ´ Xx1ptq}2,

thus }Xx2ptq ´ Xx1ptq} ď e´γt}x2 ´ x1} for all t ě 0. One obtains for all t ě 0
ˇ

ˇErϕpXx2ptqqs ´ ErϕpXx1ptqqs
ˇ

ˇ ď CNrpϕqE
“`

1 ` }Xx1ptq}r ` }Xx2ptq}
˘

}Xx2ptq ´ Xx1ptq}
‰

ď CNrpϕq
`

1 ` Prp}x1}q ` Prp}x2}q
˘

e´γt}x2 ´ x1}.

Choosing x2 “ x and integrating with respect to dµ‹px2q then yields

|upt, xq| ď CNrpϕqe´γtp1 ` }x}Prp}x}qq,

using the moment bound (4) for the exact solution.
Next, the first-order derivative of upt, ¨q satisfies

Dupt, xq.h “ ErDϕpXxptqq.ηhptqs,

where one has
dηhptq

dt
“ DfpXxptqq.ηhptq , ηhp0qh.

Using the one-sided Lipschitz condition (2) implies

1

2

d}ηhptq}2

dt
“ xDfpXxptqq, ηhptqy ď ´γ}ηhptq}2,

thus Gronwall’s lemma yields the inequality }ηhptq} ď e´γt}h} for all t ě 0. One obtains

|Dupt, xq.h| ď e´γt}h}NrpϕqEr1 ` }Xxptq}rs ď e´γt}h}Nrpϕq
`

1 ` Prp}x}q
˘

,

using the moment bound (4) for the exact solution.
Finally, the second-order derivative of upt, ¨q satisfies

D2upt, xq.ph1, h2q “ ErDϕpXxptqq.ζh1,h2ptqs ` ErD2ϕpXxptqq.pηh1ptq, ηh2ptqqs,

where one has

dζh1,h2ptq

dt
“ DfpXxptqq.ζh1,h2ptq ` D2fpXxptqq.pηh1ptq, ηh2ptqq , ζh1,h2p0q “ 0.

Using the one-sided Lipschitz condition (2), the at most polynomial growth of f and its
derivatives (Assumption 1) and Young’s inequality, one has

1

2

d}ζh1,h2ptq}2

dt
“ xDfpXxptqq.ζh1,h2ptq, ζh1,h2ptqy ` xD2fpXxptqq.pηh1ptq, ηh2ptqq, ζh1,h2ptqy

ď ´pγ ` ǫq}ζh1,h2ptq}2 `
1

4ǫ
Nqpfq2p1 ` }Xxptq}2qqe´4γt}h1}

2}h2}2.
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Using Gronwall’s lemma and the moment bound (4) for the exact solution, one obtains

Er}ζh1,h2ptq}2s ď Ce´2γ1t}h1}
2}h2}

2
`

1 ` P2qp}x}q
˘

.

Finally, this gives the inequalities

ˇ

ˇD2upt, xq.ph1, h2q
ˇ

ˇ ď Nrpϕq
`

Erp1 ` }Xxptq}rq2s
˘

1

2

`

E}ζh1,h2ptq}2
˘

1

2

` NrpϕqErp1 ` }Xxptq}qrqse´2γt}h1}}h2}

ď Ce´γ1t}h1}}h2}Nrpϕqp1 ` P2rp}x}qq.

Gathering the estimates then concludes the proof.
�

5.2. Weak error analysis. By a linearity argument, without loss of generality one
assumes that Nrpϕq ď 1.

Proof of Theorem 3.2. The weak error can be written as

ErϕpXN qs ´

ż

ϕdµ‹ “ Erup0, XNqs

“ Erup0, XNqs ´ ErupN∆t, X0qs ` upN∆t, x0q.

Using Lemma 5.1, one has

(14)
ˇ

ˇupN∆t, x0q
ˇ

ˇ ď e´γN∆tNrpϕqQrp}x0}q,

for some polynomial function Qr.
Using successively a telescoping sum argument, Itô’s formula and the fact that u solves

the Kolmogorov equation, one obtains

Erup0, XNqs ´ ErupN∆t, X0qs “
N´1
ÿ

n“0

`

EruptN ´ tn`1, Xn`1qs ´ EruptN ´ tn, Xnqs
˘

“
N´1
ÿ

n“0

`

EruptN ´ tn`1, X̃ptn`1qqs ´ EruptN ´ tn, X̃ptnqqs
˘

“
N´1
ÿ

n“0

ż tn`1

tn

ErDuptN ´ t, X̃ptqq.
` fpXnq

1 ` ∆tMn

´ fpX̃ptqq
˘

sdt,

where tn “ n∆t, and the auxiliary process
`

X̃ptq
˘

is defined by (7) and satisfies X̃ptnq “ Xn,
with Mn “ α}fpXnq}.

Introduce the following decomposition:

Erup0, XNqs ´ ErupN∆t, X0qs “ ǫ1N ` ǫ2N ` ǫ3N ,
12



with

ǫ1N “ ´∆t

ż tN

0

ErMℓptqDuptN ´ t, X̃ptqq.fpXℓptqqsdt

ǫ2N “
N´1
ÿ

n“0

ż tn`1

tn

ErDuptN ´ t, Xnq.
`

fpXnq ´ fpX̃ptqq
˘

sdt

ǫ3N “
N´1
ÿ

n“0

ż tn`1

tn

Er
`

DuptN ´ t, X̃ptqq ´ DuptN ´ t, Xnq
˘

.
`

fpXnq ´ fpX̃ptqq
˘

sdt.

First, using Lemma 5.1 and Theorem 3.1, one obtains

|ǫ1N | ď α∆t

ż tN

0

Erp1 ` }X̃ptq}Rq}fpXnq}2sdt

ď CtN∆tp1 ` sup
0ďtďtN

`

Er}X̃ptq}2Rs
˘

1

2

`

1 ` sup
0ďn∆tďT

Er}Xn}4qsq
1

2

ď C∆tPptN , }x0}q,

where P is a polynomial function.
Note that the following result has been used above: Theorem 3.1 gives moment bounds

for Xn, with 0 ď n∆t ď tN , and it is straightforward to deduce moment bounds of the same
type for X̃ptq, with 0 ď t ď T , i.e.

sup
0ďtďT

Er}X̃ptq}ms ď PmpT, }x0}q.

Second, applying Itô’s formula and a conditional expectation argument gives for all t P
rtn, tn`1s

ErDuptN ´ t, Xnq.
`

fpXnq ´ fpX̃ptqq
˘

sdt “ ErDuptN ´ t, Xnq.
`

ż t

tn

DfpX̃psqq.
fpXnq

1 ` ∆tMn

ds
˘

s

` ErDuptN ´ t, Xnq.
`1

2

ż t

tn

K
ÿ

k“1

D2fpX̃psqq.pσk, σkqds
˘

s.

This yields

|ǫ2N | ď C

N´1
ÿ

n“0

ż tn`1

tn

ż tn`1

tn

E
“

p1 ` }Xn}qRp1 ` }X̃ptqq}qp1 ` }Xn}qq
‰

dsdt

` C∆t

K
ÿ

k“1

}σk}2
N´1
ÿ

n“0

ż tn`1

tn

ż t

tn

Erp1 ` }Xn}Rqp1 ` }X̃psq}qqsdsdt.

Using the Cauchy-Schwarz inequality and moment bounds for Xn and X̃psq, one then obtains

|ǫ2N | ď C∆tPptN , }x0}q,

where P is a polynomial function.
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Finally, using a Taylor expansion, one has

|ǫ3N | ď
N´1
ÿ

n“0

ż tn`1

tn

Erp1 ` }Xn}R ` }X̃ptq}Rq}fpX̃ptqq ´ fpXnq}2sdt

ď C

N´1
ÿ

n“0

ż tn`1

tn

Erp1 ` }Xn}R`2q ` }X̃ptq}R`2qq}X̃ptq ´ Xn}2sdt

ď C∆tPptN , }x0}q,

using moment bounds, Cauchy-Schwarz inequality and the inequality

Er}X̃ptq ´ Xn}4s ď C∆t4Er}fpXnq}4s ` Er}σpBptq ´ Bptnqq}4s ď C∆t2PptN , }x0}q.

Gathering the estimates gives

(15)
ˇ

ˇErup0, XNqs ´ ErupN∆t, X0qs ď ∆tPpN∆t, }x0}q.

Combining the inequalities (14) and (15) then concludes the proof of Theorem 3.2. �
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